Inverse Fourier transform of $frac{jwL}{R+jwl}$
up vote
1
down vote
favorite
I am trying to find the inverse Fourier transform of:
$$frac{jwL}{R+jwl}$$
My current attempt is
$$mathcal{F^{-1}(frac{jwL}{R+jwl})}$$
$$mathcal{F^{-1} ({jwL})} oplus mathcal{F^{-1}(frac{1}{R+jwL}}) $$
$$L.mathcal{F^{-1} ({jw}}) oplus frac{1}{L}.mathcal{F^{-1}(frac{1}{frac{R}{L}+jw}}) $$
$$ L.mathcal{F^{-1} ({jw}}) oplus frac{1}{L}.u(t).e^{frac{Rt}{L}} $$
I get stuck with $$ mathcal{F^{-1} ({jw}}) $$ as $$frac{1}{2 pi} int_{-infty}^infty jwe^{jwt} $$ doesn't converge
fourier-transform
add a comment |
up vote
1
down vote
favorite
I am trying to find the inverse Fourier transform of:
$$frac{jwL}{R+jwl}$$
My current attempt is
$$mathcal{F^{-1}(frac{jwL}{R+jwl})}$$
$$mathcal{F^{-1} ({jwL})} oplus mathcal{F^{-1}(frac{1}{R+jwL}}) $$
$$L.mathcal{F^{-1} ({jw}}) oplus frac{1}{L}.mathcal{F^{-1}(frac{1}{frac{R}{L}+jw}}) $$
$$ L.mathcal{F^{-1} ({jw}}) oplus frac{1}{L}.u(t).e^{frac{Rt}{L}} $$
I get stuck with $$ mathcal{F^{-1} ({jw}}) $$ as $$frac{1}{2 pi} int_{-infty}^infty jwe^{jwt} $$ doesn't converge
fourier-transform
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
I am trying to find the inverse Fourier transform of:
$$frac{jwL}{R+jwl}$$
My current attempt is
$$mathcal{F^{-1}(frac{jwL}{R+jwl})}$$
$$mathcal{F^{-1} ({jwL})} oplus mathcal{F^{-1}(frac{1}{R+jwL}}) $$
$$L.mathcal{F^{-1} ({jw}}) oplus frac{1}{L}.mathcal{F^{-1}(frac{1}{frac{R}{L}+jw}}) $$
$$ L.mathcal{F^{-1} ({jw}}) oplus frac{1}{L}.u(t).e^{frac{Rt}{L}} $$
I get stuck with $$ mathcal{F^{-1} ({jw}}) $$ as $$frac{1}{2 pi} int_{-infty}^infty jwe^{jwt} $$ doesn't converge
fourier-transform
I am trying to find the inverse Fourier transform of:
$$frac{jwL}{R+jwl}$$
My current attempt is
$$mathcal{F^{-1}(frac{jwL}{R+jwl})}$$
$$mathcal{F^{-1} ({jwL})} oplus mathcal{F^{-1}(frac{1}{R+jwL}}) $$
$$L.mathcal{F^{-1} ({jw}}) oplus frac{1}{L}.mathcal{F^{-1}(frac{1}{frac{R}{L}+jw}}) $$
$$ L.mathcal{F^{-1} ({jw}}) oplus frac{1}{L}.u(t).e^{frac{Rt}{L}} $$
I get stuck with $$ mathcal{F^{-1} ({jw}}) $$ as $$frac{1}{2 pi} int_{-infty}^infty jwe^{jwt} $$ doesn't converge
fourier-transform
fourier-transform
edited Nov 20 at 21:38
asked Nov 20 at 20:18
C. Begley
105
105
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
Recall that:
- $$mathcal{F}(e^{-alpha t}u(t)) = frac{1}{alpha + jomega};$$
- $$mathcal{F}(delta(t)) = 1.$$
Notice that:
$$frac{jomega L}{R+jomega L} = frac{jomega L + R - R}{R+jomega L} = 1- frac{R}{R+jomega L}.$$
The inverse Fourier transform of is:
$$delta(t) - frac{R}{L}e^{-frac{Rt}{L}}u(t).$$
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
Recall that:
- $$mathcal{F}(e^{-alpha t}u(t)) = frac{1}{alpha + jomega};$$
- $$mathcal{F}(delta(t)) = 1.$$
Notice that:
$$frac{jomega L}{R+jomega L} = frac{jomega L + R - R}{R+jomega L} = 1- frac{R}{R+jomega L}.$$
The inverse Fourier transform of is:
$$delta(t) - frac{R}{L}e^{-frac{Rt}{L}}u(t).$$
add a comment |
up vote
1
down vote
accepted
Recall that:
- $$mathcal{F}(e^{-alpha t}u(t)) = frac{1}{alpha + jomega};$$
- $$mathcal{F}(delta(t)) = 1.$$
Notice that:
$$frac{jomega L}{R+jomega L} = frac{jomega L + R - R}{R+jomega L} = 1- frac{R}{R+jomega L}.$$
The inverse Fourier transform of is:
$$delta(t) - frac{R}{L}e^{-frac{Rt}{L}}u(t).$$
add a comment |
up vote
1
down vote
accepted
up vote
1
down vote
accepted
Recall that:
- $$mathcal{F}(e^{-alpha t}u(t)) = frac{1}{alpha + jomega};$$
- $$mathcal{F}(delta(t)) = 1.$$
Notice that:
$$frac{jomega L}{R+jomega L} = frac{jomega L + R - R}{R+jomega L} = 1- frac{R}{R+jomega L}.$$
The inverse Fourier transform of is:
$$delta(t) - frac{R}{L}e^{-frac{Rt}{L}}u(t).$$
Recall that:
- $$mathcal{F}(e^{-alpha t}u(t)) = frac{1}{alpha + jomega};$$
- $$mathcal{F}(delta(t)) = 1.$$
Notice that:
$$frac{jomega L}{R+jomega L} = frac{jomega L + R - R}{R+jomega L} = 1- frac{R}{R+jomega L}.$$
The inverse Fourier transform of is:
$$delta(t) - frac{R}{L}e^{-frac{Rt}{L}}u(t).$$
edited Nov 20 at 20:39
answered Nov 20 at 20:26
the_candyman
8,55921944
8,55921944
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006837%2finverse-fourier-transform-of-fracjwlrjwl%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown