Area integral over complex plane of non-holomorphic gaussian $e^{-zbar{z}}$











up vote
10
down vote

favorite
9












Let $A$ be the two-dimensional area integral, over the complex plane, of a gaussian function:
$$A = int_text{plane} frac{mathrm{d}bar{z} wedge mathrm{d}z}{2i} exp[-zbar{z}].$$



Of course one could evaluate this integral by converting to Cartesian (or alternatively to polar) coordinates, where the answer is evident,
$$A = int_text{plane} mathrm{d}x wedge mathrm{d}y exp[-(x^2+y^2)] = pi.$$



But, is there a way to do the complex area integration directly in the complex coordinates $z,bar{z}$?



In particular, let us define the (non-holomorphic) function $f$, $$f=-frac{1}{z}exp[-zbar{z}], \ frac{partial f}{partial bar{z}} = exp[-zbar{z}].$$
Then I wonder whether one can proceed with the following manipulations: first "integrate" over $bar{z}$,
$$A = int_text{plane} frac{mathrm{d}bar{z} wedge mathrm{d}z}{2i} exp[-zbar{z}]
= oint_text{contour} frac{mathrm{d}z}{2i} f(bar{z},z) .$$

and then evaluate the positive definite Gaussian part at the $z=0$ pole, to use the Residue theorem,
$$
= oint_text{contour} frac{mathrm{d}z}{2i} frac{1}{z} = pi ,$$

which produces the correct value of the integral. Is there a sense in which these manipulations are correct?

Can one perform the complex plane area integral by first integrating over $bar{z}$, and then over $z$?










share|cite|improve this question




























    up vote
    10
    down vote

    favorite
    9












    Let $A$ be the two-dimensional area integral, over the complex plane, of a gaussian function:
    $$A = int_text{plane} frac{mathrm{d}bar{z} wedge mathrm{d}z}{2i} exp[-zbar{z}].$$



    Of course one could evaluate this integral by converting to Cartesian (or alternatively to polar) coordinates, where the answer is evident,
    $$A = int_text{plane} mathrm{d}x wedge mathrm{d}y exp[-(x^2+y^2)] = pi.$$



    But, is there a way to do the complex area integration directly in the complex coordinates $z,bar{z}$?



    In particular, let us define the (non-holomorphic) function $f$, $$f=-frac{1}{z}exp[-zbar{z}], \ frac{partial f}{partial bar{z}} = exp[-zbar{z}].$$
    Then I wonder whether one can proceed with the following manipulations: first "integrate" over $bar{z}$,
    $$A = int_text{plane} frac{mathrm{d}bar{z} wedge mathrm{d}z}{2i} exp[-zbar{z}]
    = oint_text{contour} frac{mathrm{d}z}{2i} f(bar{z},z) .$$

    and then evaluate the positive definite Gaussian part at the $z=0$ pole, to use the Residue theorem,
    $$
    = oint_text{contour} frac{mathrm{d}z}{2i} frac{1}{z} = pi ,$$

    which produces the correct value of the integral. Is there a sense in which these manipulations are correct?

    Can one perform the complex plane area integral by first integrating over $bar{z}$, and then over $z$?










    share|cite|improve this question


























      up vote
      10
      down vote

      favorite
      9









      up vote
      10
      down vote

      favorite
      9






      9





      Let $A$ be the two-dimensional area integral, over the complex plane, of a gaussian function:
      $$A = int_text{plane} frac{mathrm{d}bar{z} wedge mathrm{d}z}{2i} exp[-zbar{z}].$$



      Of course one could evaluate this integral by converting to Cartesian (or alternatively to polar) coordinates, where the answer is evident,
      $$A = int_text{plane} mathrm{d}x wedge mathrm{d}y exp[-(x^2+y^2)] = pi.$$



      But, is there a way to do the complex area integration directly in the complex coordinates $z,bar{z}$?



      In particular, let us define the (non-holomorphic) function $f$, $$f=-frac{1}{z}exp[-zbar{z}], \ frac{partial f}{partial bar{z}} = exp[-zbar{z}].$$
      Then I wonder whether one can proceed with the following manipulations: first "integrate" over $bar{z}$,
      $$A = int_text{plane} frac{mathrm{d}bar{z} wedge mathrm{d}z}{2i} exp[-zbar{z}]
      = oint_text{contour} frac{mathrm{d}z}{2i} f(bar{z},z) .$$

      and then evaluate the positive definite Gaussian part at the $z=0$ pole, to use the Residue theorem,
      $$
      = oint_text{contour} frac{mathrm{d}z}{2i} frac{1}{z} = pi ,$$

      which produces the correct value of the integral. Is there a sense in which these manipulations are correct?

      Can one perform the complex plane area integral by first integrating over $bar{z}$, and then over $z$?










      share|cite|improve this question















      Let $A$ be the two-dimensional area integral, over the complex plane, of a gaussian function:
      $$A = int_text{plane} frac{mathrm{d}bar{z} wedge mathrm{d}z}{2i} exp[-zbar{z}].$$



      Of course one could evaluate this integral by converting to Cartesian (or alternatively to polar) coordinates, where the answer is evident,
      $$A = int_text{plane} mathrm{d}x wedge mathrm{d}y exp[-(x^2+y^2)] = pi.$$



      But, is there a way to do the complex area integration directly in the complex coordinates $z,bar{z}$?



      In particular, let us define the (non-holomorphic) function $f$, $$f=-frac{1}{z}exp[-zbar{z}], \ frac{partial f}{partial bar{z}} = exp[-zbar{z}].$$
      Then I wonder whether one can proceed with the following manipulations: first "integrate" over $bar{z}$,
      $$A = int_text{plane} frac{mathrm{d}bar{z} wedge mathrm{d}z}{2i} exp[-zbar{z}]
      = oint_text{contour} frac{mathrm{d}z}{2i} f(bar{z},z) .$$

      and then evaluate the positive definite Gaussian part at the $z=0$ pole, to use the Residue theorem,
      $$
      = oint_text{contour} frac{mathrm{d}z}{2i} frac{1}{z} = pi ,$$

      which produces the correct value of the integral. Is there a sense in which these manipulations are correct?

      Can one perform the complex plane area integral by first integrating over $bar{z}$, and then over $z$?







      complex-analysis contour-integration residue-calculus complex-integration






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 25 at 11:21









      Qmechanic

      4,75811852




      4,75811852










      asked Sep 29 '15 at 13:30









      PhysicsQuerist

      514




      514






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          3
          down vote













          Well, there is certainly various manipulations one can perform in the $z$ and $bar{z}$ variables:




          1. There is a complex Stoke's theorem
            $$ int_R! mathrm{d}eta ~=~oint_{partial R} !eta, qquad R ~subseteq~ mathbb{C}, qquad mathrm{d}~=~partial+bar{partial}~=~mathrm{d}zfrac{partial}{partial z} + mathrm{d}bar{z}frac{partial}{partial bar{z}}, tag{1} $$
            where$^1$
            $$eta~=~ f(z,bar{z})~ mathrm{d}z +g(z,bar{z}) ~ mathrm{d}bar{z} tag{2}$$
            is a 1-form in the Dolbeault double complex.


          2. Often one can argue that an integration over the complex plane
            $$
            int_{mathbb{C}} !mathrm{d}bar{z} wedge mathrm{d}z~f(z,bar{z}) ~=~lim_{Rto infty} int_{B(z_0,R)}!mathrm{d}bar{z}wedge mathrm{d}z ~f(z,bar{z})
            tag{3}$$
            is a limit of integrations over disks $B(z_0,R)$.


          3. One may prove that
            $$forall a,b~in~mathbb{C}:~~int_{mathbb{C}} !frac{mathrm{d}bar{z} wedge mathrm{d}z}{2 pi i}~expleft[-(z-a)(bar{z}-b)right] ~=~1, tag{4}$$
            for instance by translating $z=x+iy$ into real and imaginary parts.


          4. If e.g. $P(z)$ is a holomorphic polynomial, then
            $$fbox{$forall a~in~mathbb{C}:~~ I~:=~int_{mathbb{C}} !frac{mathrm{d}bar{z} wedge mathrm{d}z}{2 pi i}~P(z)~expleft[-bar{z}(z-a)right]~=~P(a).$}tag{5}$$
            Sketched proof of eq. (5):
            $$begin{align}
            int_{B(z_0,R)} !frac{mathrm{d}bar{z} wedge mathrm{d}z}{2 pi i}~left{P(a)-P(z)right}~expleft[-bar{z}(z-a)right]&quadstackrel{(3)+(4)}{longrightarrow}quad P(a)-I quadtext{for}quad R~to~infty cr
            ~=~int_{B(z_0,R)} !mathrm{d}bar{z} wedge frac{partial}{partial bar{z}} left{frac{P(z)-P(a)}{z-a}expleft[-bar{z}(z-a)right]frac{mathrm{d}z}{2 pi i}right}& cr
            ~=~int_{B(z_0,R)} !mathrm{d}left{frac{P(z)-P(a)}{z-a}expleft[-bar{z}(z-a)right]frac{mathrm{d}z}{2 pi i}right}& cr
            ~stackrel{(1)}{=}~oint_{partial B(z_0,R)} !frac{mathrm{d}z}{2 pi i} frac{P(z)-P(a)}{z-a}expleft[-bar{z}(z-a)right]&quadlongrightarrowquad 0 quadtext{for}quad R~to~infty. tag{6}end{align}$$
            $Box$



          --



          $^1$ Note that $bar{z}=x-iy$ denotes the complex conjugate variable. It is not an independent complex variable. In particular,



          $$ frac{partial}{partial z} ~:=~frac{1}{2}left(frac{partial}{partial x}-i frac{partial}{partial y}right), qquad frac{partial}{partial bar{z}} ~:=~frac{1}{2}left(frac{partial}{partial x}+i frac{partial}{partial y}right).tag{7}$$



          The double argument notation $f(z,bar{z})$ is traditionally used to indicate that $f(z,bar{z})$ is not necessarily a holomorphic function. A holomorhic function $bar{partial}g(z) / partial bar{z}=0$ is in turn written with only a single argument $g(z)$.






          share|cite|improve this answer























            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1456403%2farea-integral-over-complex-plane-of-non-holomorphic-gaussian-e-z-barz%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            3
            down vote













            Well, there is certainly various manipulations one can perform in the $z$ and $bar{z}$ variables:




            1. There is a complex Stoke's theorem
              $$ int_R! mathrm{d}eta ~=~oint_{partial R} !eta, qquad R ~subseteq~ mathbb{C}, qquad mathrm{d}~=~partial+bar{partial}~=~mathrm{d}zfrac{partial}{partial z} + mathrm{d}bar{z}frac{partial}{partial bar{z}}, tag{1} $$
              where$^1$
              $$eta~=~ f(z,bar{z})~ mathrm{d}z +g(z,bar{z}) ~ mathrm{d}bar{z} tag{2}$$
              is a 1-form in the Dolbeault double complex.


            2. Often one can argue that an integration over the complex plane
              $$
              int_{mathbb{C}} !mathrm{d}bar{z} wedge mathrm{d}z~f(z,bar{z}) ~=~lim_{Rto infty} int_{B(z_0,R)}!mathrm{d}bar{z}wedge mathrm{d}z ~f(z,bar{z})
              tag{3}$$
              is a limit of integrations over disks $B(z_0,R)$.


            3. One may prove that
              $$forall a,b~in~mathbb{C}:~~int_{mathbb{C}} !frac{mathrm{d}bar{z} wedge mathrm{d}z}{2 pi i}~expleft[-(z-a)(bar{z}-b)right] ~=~1, tag{4}$$
              for instance by translating $z=x+iy$ into real and imaginary parts.


            4. If e.g. $P(z)$ is a holomorphic polynomial, then
              $$fbox{$forall a~in~mathbb{C}:~~ I~:=~int_{mathbb{C}} !frac{mathrm{d}bar{z} wedge mathrm{d}z}{2 pi i}~P(z)~expleft[-bar{z}(z-a)right]~=~P(a).$}tag{5}$$
              Sketched proof of eq. (5):
              $$begin{align}
              int_{B(z_0,R)} !frac{mathrm{d}bar{z} wedge mathrm{d}z}{2 pi i}~left{P(a)-P(z)right}~expleft[-bar{z}(z-a)right]&quadstackrel{(3)+(4)}{longrightarrow}quad P(a)-I quadtext{for}quad R~to~infty cr
              ~=~int_{B(z_0,R)} !mathrm{d}bar{z} wedge frac{partial}{partial bar{z}} left{frac{P(z)-P(a)}{z-a}expleft[-bar{z}(z-a)right]frac{mathrm{d}z}{2 pi i}right}& cr
              ~=~int_{B(z_0,R)} !mathrm{d}left{frac{P(z)-P(a)}{z-a}expleft[-bar{z}(z-a)right]frac{mathrm{d}z}{2 pi i}right}& cr
              ~stackrel{(1)}{=}~oint_{partial B(z_0,R)} !frac{mathrm{d}z}{2 pi i} frac{P(z)-P(a)}{z-a}expleft[-bar{z}(z-a)right]&quadlongrightarrowquad 0 quadtext{for}quad R~to~infty. tag{6}end{align}$$
              $Box$



            --



            $^1$ Note that $bar{z}=x-iy$ denotes the complex conjugate variable. It is not an independent complex variable. In particular,



            $$ frac{partial}{partial z} ~:=~frac{1}{2}left(frac{partial}{partial x}-i frac{partial}{partial y}right), qquad frac{partial}{partial bar{z}} ~:=~frac{1}{2}left(frac{partial}{partial x}+i frac{partial}{partial y}right).tag{7}$$



            The double argument notation $f(z,bar{z})$ is traditionally used to indicate that $f(z,bar{z})$ is not necessarily a holomorphic function. A holomorhic function $bar{partial}g(z) / partial bar{z}=0$ is in turn written with only a single argument $g(z)$.






            share|cite|improve this answer



























              up vote
              3
              down vote













              Well, there is certainly various manipulations one can perform in the $z$ and $bar{z}$ variables:




              1. There is a complex Stoke's theorem
                $$ int_R! mathrm{d}eta ~=~oint_{partial R} !eta, qquad R ~subseteq~ mathbb{C}, qquad mathrm{d}~=~partial+bar{partial}~=~mathrm{d}zfrac{partial}{partial z} + mathrm{d}bar{z}frac{partial}{partial bar{z}}, tag{1} $$
                where$^1$
                $$eta~=~ f(z,bar{z})~ mathrm{d}z +g(z,bar{z}) ~ mathrm{d}bar{z} tag{2}$$
                is a 1-form in the Dolbeault double complex.


              2. Often one can argue that an integration over the complex plane
                $$
                int_{mathbb{C}} !mathrm{d}bar{z} wedge mathrm{d}z~f(z,bar{z}) ~=~lim_{Rto infty} int_{B(z_0,R)}!mathrm{d}bar{z}wedge mathrm{d}z ~f(z,bar{z})
                tag{3}$$
                is a limit of integrations over disks $B(z_0,R)$.


              3. One may prove that
                $$forall a,b~in~mathbb{C}:~~int_{mathbb{C}} !frac{mathrm{d}bar{z} wedge mathrm{d}z}{2 pi i}~expleft[-(z-a)(bar{z}-b)right] ~=~1, tag{4}$$
                for instance by translating $z=x+iy$ into real and imaginary parts.


              4. If e.g. $P(z)$ is a holomorphic polynomial, then
                $$fbox{$forall a~in~mathbb{C}:~~ I~:=~int_{mathbb{C}} !frac{mathrm{d}bar{z} wedge mathrm{d}z}{2 pi i}~P(z)~expleft[-bar{z}(z-a)right]~=~P(a).$}tag{5}$$
                Sketched proof of eq. (5):
                $$begin{align}
                int_{B(z_0,R)} !frac{mathrm{d}bar{z} wedge mathrm{d}z}{2 pi i}~left{P(a)-P(z)right}~expleft[-bar{z}(z-a)right]&quadstackrel{(3)+(4)}{longrightarrow}quad P(a)-I quadtext{for}quad R~to~infty cr
                ~=~int_{B(z_0,R)} !mathrm{d}bar{z} wedge frac{partial}{partial bar{z}} left{frac{P(z)-P(a)}{z-a}expleft[-bar{z}(z-a)right]frac{mathrm{d}z}{2 pi i}right}& cr
                ~=~int_{B(z_0,R)} !mathrm{d}left{frac{P(z)-P(a)}{z-a}expleft[-bar{z}(z-a)right]frac{mathrm{d}z}{2 pi i}right}& cr
                ~stackrel{(1)}{=}~oint_{partial B(z_0,R)} !frac{mathrm{d}z}{2 pi i} frac{P(z)-P(a)}{z-a}expleft[-bar{z}(z-a)right]&quadlongrightarrowquad 0 quadtext{for}quad R~to~infty. tag{6}end{align}$$
                $Box$



              --



              $^1$ Note that $bar{z}=x-iy$ denotes the complex conjugate variable. It is not an independent complex variable. In particular,



              $$ frac{partial}{partial z} ~:=~frac{1}{2}left(frac{partial}{partial x}-i frac{partial}{partial y}right), qquad frac{partial}{partial bar{z}} ~:=~frac{1}{2}left(frac{partial}{partial x}+i frac{partial}{partial y}right).tag{7}$$



              The double argument notation $f(z,bar{z})$ is traditionally used to indicate that $f(z,bar{z})$ is not necessarily a holomorphic function. A holomorhic function $bar{partial}g(z) / partial bar{z}=0$ is in turn written with only a single argument $g(z)$.






              share|cite|improve this answer

























                up vote
                3
                down vote










                up vote
                3
                down vote









                Well, there is certainly various manipulations one can perform in the $z$ and $bar{z}$ variables:




                1. There is a complex Stoke's theorem
                  $$ int_R! mathrm{d}eta ~=~oint_{partial R} !eta, qquad R ~subseteq~ mathbb{C}, qquad mathrm{d}~=~partial+bar{partial}~=~mathrm{d}zfrac{partial}{partial z} + mathrm{d}bar{z}frac{partial}{partial bar{z}}, tag{1} $$
                  where$^1$
                  $$eta~=~ f(z,bar{z})~ mathrm{d}z +g(z,bar{z}) ~ mathrm{d}bar{z} tag{2}$$
                  is a 1-form in the Dolbeault double complex.


                2. Often one can argue that an integration over the complex plane
                  $$
                  int_{mathbb{C}} !mathrm{d}bar{z} wedge mathrm{d}z~f(z,bar{z}) ~=~lim_{Rto infty} int_{B(z_0,R)}!mathrm{d}bar{z}wedge mathrm{d}z ~f(z,bar{z})
                  tag{3}$$
                  is a limit of integrations over disks $B(z_0,R)$.


                3. One may prove that
                  $$forall a,b~in~mathbb{C}:~~int_{mathbb{C}} !frac{mathrm{d}bar{z} wedge mathrm{d}z}{2 pi i}~expleft[-(z-a)(bar{z}-b)right] ~=~1, tag{4}$$
                  for instance by translating $z=x+iy$ into real and imaginary parts.


                4. If e.g. $P(z)$ is a holomorphic polynomial, then
                  $$fbox{$forall a~in~mathbb{C}:~~ I~:=~int_{mathbb{C}} !frac{mathrm{d}bar{z} wedge mathrm{d}z}{2 pi i}~P(z)~expleft[-bar{z}(z-a)right]~=~P(a).$}tag{5}$$
                  Sketched proof of eq. (5):
                  $$begin{align}
                  int_{B(z_0,R)} !frac{mathrm{d}bar{z} wedge mathrm{d}z}{2 pi i}~left{P(a)-P(z)right}~expleft[-bar{z}(z-a)right]&quadstackrel{(3)+(4)}{longrightarrow}quad P(a)-I quadtext{for}quad R~to~infty cr
                  ~=~int_{B(z_0,R)} !mathrm{d}bar{z} wedge frac{partial}{partial bar{z}} left{frac{P(z)-P(a)}{z-a}expleft[-bar{z}(z-a)right]frac{mathrm{d}z}{2 pi i}right}& cr
                  ~=~int_{B(z_0,R)} !mathrm{d}left{frac{P(z)-P(a)}{z-a}expleft[-bar{z}(z-a)right]frac{mathrm{d}z}{2 pi i}right}& cr
                  ~stackrel{(1)}{=}~oint_{partial B(z_0,R)} !frac{mathrm{d}z}{2 pi i} frac{P(z)-P(a)}{z-a}expleft[-bar{z}(z-a)right]&quadlongrightarrowquad 0 quadtext{for}quad R~to~infty. tag{6}end{align}$$
                  $Box$



                --



                $^1$ Note that $bar{z}=x-iy$ denotes the complex conjugate variable. It is not an independent complex variable. In particular,



                $$ frac{partial}{partial z} ~:=~frac{1}{2}left(frac{partial}{partial x}-i frac{partial}{partial y}right), qquad frac{partial}{partial bar{z}} ~:=~frac{1}{2}left(frac{partial}{partial x}+i frac{partial}{partial y}right).tag{7}$$



                The double argument notation $f(z,bar{z})$ is traditionally used to indicate that $f(z,bar{z})$ is not necessarily a holomorphic function. A holomorhic function $bar{partial}g(z) / partial bar{z}=0$ is in turn written with only a single argument $g(z)$.






                share|cite|improve this answer














                Well, there is certainly various manipulations one can perform in the $z$ and $bar{z}$ variables:




                1. There is a complex Stoke's theorem
                  $$ int_R! mathrm{d}eta ~=~oint_{partial R} !eta, qquad R ~subseteq~ mathbb{C}, qquad mathrm{d}~=~partial+bar{partial}~=~mathrm{d}zfrac{partial}{partial z} + mathrm{d}bar{z}frac{partial}{partial bar{z}}, tag{1} $$
                  where$^1$
                  $$eta~=~ f(z,bar{z})~ mathrm{d}z +g(z,bar{z}) ~ mathrm{d}bar{z} tag{2}$$
                  is a 1-form in the Dolbeault double complex.


                2. Often one can argue that an integration over the complex plane
                  $$
                  int_{mathbb{C}} !mathrm{d}bar{z} wedge mathrm{d}z~f(z,bar{z}) ~=~lim_{Rto infty} int_{B(z_0,R)}!mathrm{d}bar{z}wedge mathrm{d}z ~f(z,bar{z})
                  tag{3}$$
                  is a limit of integrations over disks $B(z_0,R)$.


                3. One may prove that
                  $$forall a,b~in~mathbb{C}:~~int_{mathbb{C}} !frac{mathrm{d}bar{z} wedge mathrm{d}z}{2 pi i}~expleft[-(z-a)(bar{z}-b)right] ~=~1, tag{4}$$
                  for instance by translating $z=x+iy$ into real and imaginary parts.


                4. If e.g. $P(z)$ is a holomorphic polynomial, then
                  $$fbox{$forall a~in~mathbb{C}:~~ I~:=~int_{mathbb{C}} !frac{mathrm{d}bar{z} wedge mathrm{d}z}{2 pi i}~P(z)~expleft[-bar{z}(z-a)right]~=~P(a).$}tag{5}$$
                  Sketched proof of eq. (5):
                  $$begin{align}
                  int_{B(z_0,R)} !frac{mathrm{d}bar{z} wedge mathrm{d}z}{2 pi i}~left{P(a)-P(z)right}~expleft[-bar{z}(z-a)right]&quadstackrel{(3)+(4)}{longrightarrow}quad P(a)-I quadtext{for}quad R~to~infty cr
                  ~=~int_{B(z_0,R)} !mathrm{d}bar{z} wedge frac{partial}{partial bar{z}} left{frac{P(z)-P(a)}{z-a}expleft[-bar{z}(z-a)right]frac{mathrm{d}z}{2 pi i}right}& cr
                  ~=~int_{B(z_0,R)} !mathrm{d}left{frac{P(z)-P(a)}{z-a}expleft[-bar{z}(z-a)right]frac{mathrm{d}z}{2 pi i}right}& cr
                  ~stackrel{(1)}{=}~oint_{partial B(z_0,R)} !frac{mathrm{d}z}{2 pi i} frac{P(z)-P(a)}{z-a}expleft[-bar{z}(z-a)right]&quadlongrightarrowquad 0 quadtext{for}quad R~to~infty. tag{6}end{align}$$
                  $Box$



                --



                $^1$ Note that $bar{z}=x-iy$ denotes the complex conjugate variable. It is not an independent complex variable. In particular,



                $$ frac{partial}{partial z} ~:=~frac{1}{2}left(frac{partial}{partial x}-i frac{partial}{partial y}right), qquad frac{partial}{partial bar{z}} ~:=~frac{1}{2}left(frac{partial}{partial x}+i frac{partial}{partial y}right).tag{7}$$



                The double argument notation $f(z,bar{z})$ is traditionally used to indicate that $f(z,bar{z})$ is not necessarily a holomorphic function. A holomorhic function $bar{partial}g(z) / partial bar{z}=0$ is in turn written with only a single argument $g(z)$.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Feb 6 '17 at 12:57

























                answered Feb 1 '17 at 20:50









                Qmechanic

                4,75811852




                4,75811852






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1456403%2farea-integral-over-complex-plane-of-non-holomorphic-gaussian-e-z-barz%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Wiesbaden

                    Marschland

                    Dieringhausen