Area integral over complex plane of non-holomorphic gaussian $e^{-zbar{z}}$
up vote
10
down vote
favorite
Let $A$ be the two-dimensional area integral, over the complex plane, of a gaussian function:
$$A = int_text{plane} frac{mathrm{d}bar{z} wedge mathrm{d}z}{2i} exp[-zbar{z}].$$
Of course one could evaluate this integral by converting to Cartesian (or alternatively to polar) coordinates, where the answer is evident,
$$A = int_text{plane} mathrm{d}x wedge mathrm{d}y exp[-(x^2+y^2)] = pi.$$
But, is there a way to do the complex area integration directly in the complex coordinates $z,bar{z}$?
In particular, let us define the (non-holomorphic) function $f$, $$f=-frac{1}{z}exp[-zbar{z}], \ frac{partial f}{partial bar{z}} = exp[-zbar{z}].$$
Then I wonder whether one can proceed with the following manipulations: first "integrate" over $bar{z}$,
$$A = int_text{plane} frac{mathrm{d}bar{z} wedge mathrm{d}z}{2i} exp[-zbar{z}]
= oint_text{contour} frac{mathrm{d}z}{2i} f(bar{z},z) .$$
and then evaluate the positive definite Gaussian part at the $z=0$ pole, to use the Residue theorem,
$$
= oint_text{contour} frac{mathrm{d}z}{2i} frac{1}{z} = pi ,$$
which produces the correct value of the integral. Is there a sense in which these manipulations are correct?
Can one perform the complex plane area integral by first integrating over $bar{z}$, and then over $z$?
complex-analysis contour-integration residue-calculus complex-integration
add a comment |
up vote
10
down vote
favorite
Let $A$ be the two-dimensional area integral, over the complex plane, of a gaussian function:
$$A = int_text{plane} frac{mathrm{d}bar{z} wedge mathrm{d}z}{2i} exp[-zbar{z}].$$
Of course one could evaluate this integral by converting to Cartesian (or alternatively to polar) coordinates, where the answer is evident,
$$A = int_text{plane} mathrm{d}x wedge mathrm{d}y exp[-(x^2+y^2)] = pi.$$
But, is there a way to do the complex area integration directly in the complex coordinates $z,bar{z}$?
In particular, let us define the (non-holomorphic) function $f$, $$f=-frac{1}{z}exp[-zbar{z}], \ frac{partial f}{partial bar{z}} = exp[-zbar{z}].$$
Then I wonder whether one can proceed with the following manipulations: first "integrate" over $bar{z}$,
$$A = int_text{plane} frac{mathrm{d}bar{z} wedge mathrm{d}z}{2i} exp[-zbar{z}]
= oint_text{contour} frac{mathrm{d}z}{2i} f(bar{z},z) .$$
and then evaluate the positive definite Gaussian part at the $z=0$ pole, to use the Residue theorem,
$$
= oint_text{contour} frac{mathrm{d}z}{2i} frac{1}{z} = pi ,$$
which produces the correct value of the integral. Is there a sense in which these manipulations are correct?
Can one perform the complex plane area integral by first integrating over $bar{z}$, and then over $z$?
complex-analysis contour-integration residue-calculus complex-integration
add a comment |
up vote
10
down vote
favorite
up vote
10
down vote
favorite
Let $A$ be the two-dimensional area integral, over the complex plane, of a gaussian function:
$$A = int_text{plane} frac{mathrm{d}bar{z} wedge mathrm{d}z}{2i} exp[-zbar{z}].$$
Of course one could evaluate this integral by converting to Cartesian (or alternatively to polar) coordinates, where the answer is evident,
$$A = int_text{plane} mathrm{d}x wedge mathrm{d}y exp[-(x^2+y^2)] = pi.$$
But, is there a way to do the complex area integration directly in the complex coordinates $z,bar{z}$?
In particular, let us define the (non-holomorphic) function $f$, $$f=-frac{1}{z}exp[-zbar{z}], \ frac{partial f}{partial bar{z}} = exp[-zbar{z}].$$
Then I wonder whether one can proceed with the following manipulations: first "integrate" over $bar{z}$,
$$A = int_text{plane} frac{mathrm{d}bar{z} wedge mathrm{d}z}{2i} exp[-zbar{z}]
= oint_text{contour} frac{mathrm{d}z}{2i} f(bar{z},z) .$$
and then evaluate the positive definite Gaussian part at the $z=0$ pole, to use the Residue theorem,
$$
= oint_text{contour} frac{mathrm{d}z}{2i} frac{1}{z} = pi ,$$
which produces the correct value of the integral. Is there a sense in which these manipulations are correct?
Can one perform the complex plane area integral by first integrating over $bar{z}$, and then over $z$?
complex-analysis contour-integration residue-calculus complex-integration
Let $A$ be the two-dimensional area integral, over the complex plane, of a gaussian function:
$$A = int_text{plane} frac{mathrm{d}bar{z} wedge mathrm{d}z}{2i} exp[-zbar{z}].$$
Of course one could evaluate this integral by converting to Cartesian (or alternatively to polar) coordinates, where the answer is evident,
$$A = int_text{plane} mathrm{d}x wedge mathrm{d}y exp[-(x^2+y^2)] = pi.$$
But, is there a way to do the complex area integration directly in the complex coordinates $z,bar{z}$?
In particular, let us define the (non-holomorphic) function $f$, $$f=-frac{1}{z}exp[-zbar{z}], \ frac{partial f}{partial bar{z}} = exp[-zbar{z}].$$
Then I wonder whether one can proceed with the following manipulations: first "integrate" over $bar{z}$,
$$A = int_text{plane} frac{mathrm{d}bar{z} wedge mathrm{d}z}{2i} exp[-zbar{z}]
= oint_text{contour} frac{mathrm{d}z}{2i} f(bar{z},z) .$$
and then evaluate the positive definite Gaussian part at the $z=0$ pole, to use the Residue theorem,
$$
= oint_text{contour} frac{mathrm{d}z}{2i} frac{1}{z} = pi ,$$
which produces the correct value of the integral. Is there a sense in which these manipulations are correct?
Can one perform the complex plane area integral by first integrating over $bar{z}$, and then over $z$?
complex-analysis contour-integration residue-calculus complex-integration
complex-analysis contour-integration residue-calculus complex-integration
edited Nov 25 at 11:21
Qmechanic
4,75811852
4,75811852
asked Sep 29 '15 at 13:30
PhysicsQuerist
514
514
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
3
down vote
Well, there is certainly various manipulations one can perform in the $z$ and $bar{z}$ variables:
There is a complex Stoke's theorem
$$ int_R! mathrm{d}eta ~=~oint_{partial R} !eta, qquad R ~subseteq~ mathbb{C}, qquad mathrm{d}~=~partial+bar{partial}~=~mathrm{d}zfrac{partial}{partial z} + mathrm{d}bar{z}frac{partial}{partial bar{z}}, tag{1} $$
where$^1$
$$eta~=~ f(z,bar{z})~ mathrm{d}z +g(z,bar{z}) ~ mathrm{d}bar{z} tag{2}$$
is a 1-form in the Dolbeault double complex.Often one can argue that an integration over the complex plane
$$
int_{mathbb{C}} !mathrm{d}bar{z} wedge mathrm{d}z~f(z,bar{z}) ~=~lim_{Rto infty} int_{B(z_0,R)}!mathrm{d}bar{z}wedge mathrm{d}z ~f(z,bar{z})
tag{3}$$
is a limit of integrations over disks $B(z_0,R)$.One may prove that
$$forall a,b~in~mathbb{C}:~~int_{mathbb{C}} !frac{mathrm{d}bar{z} wedge mathrm{d}z}{2 pi i}~expleft[-(z-a)(bar{z}-b)right] ~=~1, tag{4}$$
for instance by translating $z=x+iy$ into real and imaginary parts.If e.g. $P(z)$ is a holomorphic polynomial, then
$$fbox{$forall a~in~mathbb{C}:~~ I~:=~int_{mathbb{C}} !frac{mathrm{d}bar{z} wedge mathrm{d}z}{2 pi i}~P(z)~expleft[-bar{z}(z-a)right]~=~P(a).$}tag{5}$$
Sketched proof of eq. (5):
$$begin{align}
int_{B(z_0,R)} !frac{mathrm{d}bar{z} wedge mathrm{d}z}{2 pi i}~left{P(a)-P(z)right}~expleft[-bar{z}(z-a)right]&quadstackrel{(3)+(4)}{longrightarrow}quad P(a)-I quadtext{for}quad R~to~infty cr
~=~int_{B(z_0,R)} !mathrm{d}bar{z} wedge frac{partial}{partial bar{z}} left{frac{P(z)-P(a)}{z-a}expleft[-bar{z}(z-a)right]frac{mathrm{d}z}{2 pi i}right}& cr
~=~int_{B(z_0,R)} !mathrm{d}left{frac{P(z)-P(a)}{z-a}expleft[-bar{z}(z-a)right]frac{mathrm{d}z}{2 pi i}right}& cr
~stackrel{(1)}{=}~oint_{partial B(z_0,R)} !frac{mathrm{d}z}{2 pi i} frac{P(z)-P(a)}{z-a}expleft[-bar{z}(z-a)right]&quadlongrightarrowquad 0 quadtext{for}quad R~to~infty. tag{6}end{align}$$
$Box$
--
$^1$ Note that $bar{z}=x-iy$ denotes the complex conjugate variable. It is not an independent complex variable. In particular,
$$ frac{partial}{partial z} ~:=~frac{1}{2}left(frac{partial}{partial x}-i frac{partial}{partial y}right), qquad frac{partial}{partial bar{z}} ~:=~frac{1}{2}left(frac{partial}{partial x}+i frac{partial}{partial y}right).tag{7}$$
The double argument notation $f(z,bar{z})$ is traditionally used to indicate that $f(z,bar{z})$ is not necessarily a holomorphic function. A holomorhic function $bar{partial}g(z) / partial bar{z}=0$ is in turn written with only a single argument $g(z)$.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
Well, there is certainly various manipulations one can perform in the $z$ and $bar{z}$ variables:
There is a complex Stoke's theorem
$$ int_R! mathrm{d}eta ~=~oint_{partial R} !eta, qquad R ~subseteq~ mathbb{C}, qquad mathrm{d}~=~partial+bar{partial}~=~mathrm{d}zfrac{partial}{partial z} + mathrm{d}bar{z}frac{partial}{partial bar{z}}, tag{1} $$
where$^1$
$$eta~=~ f(z,bar{z})~ mathrm{d}z +g(z,bar{z}) ~ mathrm{d}bar{z} tag{2}$$
is a 1-form in the Dolbeault double complex.Often one can argue that an integration over the complex plane
$$
int_{mathbb{C}} !mathrm{d}bar{z} wedge mathrm{d}z~f(z,bar{z}) ~=~lim_{Rto infty} int_{B(z_0,R)}!mathrm{d}bar{z}wedge mathrm{d}z ~f(z,bar{z})
tag{3}$$
is a limit of integrations over disks $B(z_0,R)$.One may prove that
$$forall a,b~in~mathbb{C}:~~int_{mathbb{C}} !frac{mathrm{d}bar{z} wedge mathrm{d}z}{2 pi i}~expleft[-(z-a)(bar{z}-b)right] ~=~1, tag{4}$$
for instance by translating $z=x+iy$ into real and imaginary parts.If e.g. $P(z)$ is a holomorphic polynomial, then
$$fbox{$forall a~in~mathbb{C}:~~ I~:=~int_{mathbb{C}} !frac{mathrm{d}bar{z} wedge mathrm{d}z}{2 pi i}~P(z)~expleft[-bar{z}(z-a)right]~=~P(a).$}tag{5}$$
Sketched proof of eq. (5):
$$begin{align}
int_{B(z_0,R)} !frac{mathrm{d}bar{z} wedge mathrm{d}z}{2 pi i}~left{P(a)-P(z)right}~expleft[-bar{z}(z-a)right]&quadstackrel{(3)+(4)}{longrightarrow}quad P(a)-I quadtext{for}quad R~to~infty cr
~=~int_{B(z_0,R)} !mathrm{d}bar{z} wedge frac{partial}{partial bar{z}} left{frac{P(z)-P(a)}{z-a}expleft[-bar{z}(z-a)right]frac{mathrm{d}z}{2 pi i}right}& cr
~=~int_{B(z_0,R)} !mathrm{d}left{frac{P(z)-P(a)}{z-a}expleft[-bar{z}(z-a)right]frac{mathrm{d}z}{2 pi i}right}& cr
~stackrel{(1)}{=}~oint_{partial B(z_0,R)} !frac{mathrm{d}z}{2 pi i} frac{P(z)-P(a)}{z-a}expleft[-bar{z}(z-a)right]&quadlongrightarrowquad 0 quadtext{for}quad R~to~infty. tag{6}end{align}$$
$Box$
--
$^1$ Note that $bar{z}=x-iy$ denotes the complex conjugate variable. It is not an independent complex variable. In particular,
$$ frac{partial}{partial z} ~:=~frac{1}{2}left(frac{partial}{partial x}-i frac{partial}{partial y}right), qquad frac{partial}{partial bar{z}} ~:=~frac{1}{2}left(frac{partial}{partial x}+i frac{partial}{partial y}right).tag{7}$$
The double argument notation $f(z,bar{z})$ is traditionally used to indicate that $f(z,bar{z})$ is not necessarily a holomorphic function. A holomorhic function $bar{partial}g(z) / partial bar{z}=0$ is in turn written with only a single argument $g(z)$.
add a comment |
up vote
3
down vote
Well, there is certainly various manipulations one can perform in the $z$ and $bar{z}$ variables:
There is a complex Stoke's theorem
$$ int_R! mathrm{d}eta ~=~oint_{partial R} !eta, qquad R ~subseteq~ mathbb{C}, qquad mathrm{d}~=~partial+bar{partial}~=~mathrm{d}zfrac{partial}{partial z} + mathrm{d}bar{z}frac{partial}{partial bar{z}}, tag{1} $$
where$^1$
$$eta~=~ f(z,bar{z})~ mathrm{d}z +g(z,bar{z}) ~ mathrm{d}bar{z} tag{2}$$
is a 1-form in the Dolbeault double complex.Often one can argue that an integration over the complex plane
$$
int_{mathbb{C}} !mathrm{d}bar{z} wedge mathrm{d}z~f(z,bar{z}) ~=~lim_{Rto infty} int_{B(z_0,R)}!mathrm{d}bar{z}wedge mathrm{d}z ~f(z,bar{z})
tag{3}$$
is a limit of integrations over disks $B(z_0,R)$.One may prove that
$$forall a,b~in~mathbb{C}:~~int_{mathbb{C}} !frac{mathrm{d}bar{z} wedge mathrm{d}z}{2 pi i}~expleft[-(z-a)(bar{z}-b)right] ~=~1, tag{4}$$
for instance by translating $z=x+iy$ into real and imaginary parts.If e.g. $P(z)$ is a holomorphic polynomial, then
$$fbox{$forall a~in~mathbb{C}:~~ I~:=~int_{mathbb{C}} !frac{mathrm{d}bar{z} wedge mathrm{d}z}{2 pi i}~P(z)~expleft[-bar{z}(z-a)right]~=~P(a).$}tag{5}$$
Sketched proof of eq. (5):
$$begin{align}
int_{B(z_0,R)} !frac{mathrm{d}bar{z} wedge mathrm{d}z}{2 pi i}~left{P(a)-P(z)right}~expleft[-bar{z}(z-a)right]&quadstackrel{(3)+(4)}{longrightarrow}quad P(a)-I quadtext{for}quad R~to~infty cr
~=~int_{B(z_0,R)} !mathrm{d}bar{z} wedge frac{partial}{partial bar{z}} left{frac{P(z)-P(a)}{z-a}expleft[-bar{z}(z-a)right]frac{mathrm{d}z}{2 pi i}right}& cr
~=~int_{B(z_0,R)} !mathrm{d}left{frac{P(z)-P(a)}{z-a}expleft[-bar{z}(z-a)right]frac{mathrm{d}z}{2 pi i}right}& cr
~stackrel{(1)}{=}~oint_{partial B(z_0,R)} !frac{mathrm{d}z}{2 pi i} frac{P(z)-P(a)}{z-a}expleft[-bar{z}(z-a)right]&quadlongrightarrowquad 0 quadtext{for}quad R~to~infty. tag{6}end{align}$$
$Box$
--
$^1$ Note that $bar{z}=x-iy$ denotes the complex conjugate variable. It is not an independent complex variable. In particular,
$$ frac{partial}{partial z} ~:=~frac{1}{2}left(frac{partial}{partial x}-i frac{partial}{partial y}right), qquad frac{partial}{partial bar{z}} ~:=~frac{1}{2}left(frac{partial}{partial x}+i frac{partial}{partial y}right).tag{7}$$
The double argument notation $f(z,bar{z})$ is traditionally used to indicate that $f(z,bar{z})$ is not necessarily a holomorphic function. A holomorhic function $bar{partial}g(z) / partial bar{z}=0$ is in turn written with only a single argument $g(z)$.
add a comment |
up vote
3
down vote
up vote
3
down vote
Well, there is certainly various manipulations one can perform in the $z$ and $bar{z}$ variables:
There is a complex Stoke's theorem
$$ int_R! mathrm{d}eta ~=~oint_{partial R} !eta, qquad R ~subseteq~ mathbb{C}, qquad mathrm{d}~=~partial+bar{partial}~=~mathrm{d}zfrac{partial}{partial z} + mathrm{d}bar{z}frac{partial}{partial bar{z}}, tag{1} $$
where$^1$
$$eta~=~ f(z,bar{z})~ mathrm{d}z +g(z,bar{z}) ~ mathrm{d}bar{z} tag{2}$$
is a 1-form in the Dolbeault double complex.Often one can argue that an integration over the complex plane
$$
int_{mathbb{C}} !mathrm{d}bar{z} wedge mathrm{d}z~f(z,bar{z}) ~=~lim_{Rto infty} int_{B(z_0,R)}!mathrm{d}bar{z}wedge mathrm{d}z ~f(z,bar{z})
tag{3}$$
is a limit of integrations over disks $B(z_0,R)$.One may prove that
$$forall a,b~in~mathbb{C}:~~int_{mathbb{C}} !frac{mathrm{d}bar{z} wedge mathrm{d}z}{2 pi i}~expleft[-(z-a)(bar{z}-b)right] ~=~1, tag{4}$$
for instance by translating $z=x+iy$ into real and imaginary parts.If e.g. $P(z)$ is a holomorphic polynomial, then
$$fbox{$forall a~in~mathbb{C}:~~ I~:=~int_{mathbb{C}} !frac{mathrm{d}bar{z} wedge mathrm{d}z}{2 pi i}~P(z)~expleft[-bar{z}(z-a)right]~=~P(a).$}tag{5}$$
Sketched proof of eq. (5):
$$begin{align}
int_{B(z_0,R)} !frac{mathrm{d}bar{z} wedge mathrm{d}z}{2 pi i}~left{P(a)-P(z)right}~expleft[-bar{z}(z-a)right]&quadstackrel{(3)+(4)}{longrightarrow}quad P(a)-I quadtext{for}quad R~to~infty cr
~=~int_{B(z_0,R)} !mathrm{d}bar{z} wedge frac{partial}{partial bar{z}} left{frac{P(z)-P(a)}{z-a}expleft[-bar{z}(z-a)right]frac{mathrm{d}z}{2 pi i}right}& cr
~=~int_{B(z_0,R)} !mathrm{d}left{frac{P(z)-P(a)}{z-a}expleft[-bar{z}(z-a)right]frac{mathrm{d}z}{2 pi i}right}& cr
~stackrel{(1)}{=}~oint_{partial B(z_0,R)} !frac{mathrm{d}z}{2 pi i} frac{P(z)-P(a)}{z-a}expleft[-bar{z}(z-a)right]&quadlongrightarrowquad 0 quadtext{for}quad R~to~infty. tag{6}end{align}$$
$Box$
--
$^1$ Note that $bar{z}=x-iy$ denotes the complex conjugate variable. It is not an independent complex variable. In particular,
$$ frac{partial}{partial z} ~:=~frac{1}{2}left(frac{partial}{partial x}-i frac{partial}{partial y}right), qquad frac{partial}{partial bar{z}} ~:=~frac{1}{2}left(frac{partial}{partial x}+i frac{partial}{partial y}right).tag{7}$$
The double argument notation $f(z,bar{z})$ is traditionally used to indicate that $f(z,bar{z})$ is not necessarily a holomorphic function. A holomorhic function $bar{partial}g(z) / partial bar{z}=0$ is in turn written with only a single argument $g(z)$.
Well, there is certainly various manipulations one can perform in the $z$ and $bar{z}$ variables:
There is a complex Stoke's theorem
$$ int_R! mathrm{d}eta ~=~oint_{partial R} !eta, qquad R ~subseteq~ mathbb{C}, qquad mathrm{d}~=~partial+bar{partial}~=~mathrm{d}zfrac{partial}{partial z} + mathrm{d}bar{z}frac{partial}{partial bar{z}}, tag{1} $$
where$^1$
$$eta~=~ f(z,bar{z})~ mathrm{d}z +g(z,bar{z}) ~ mathrm{d}bar{z} tag{2}$$
is a 1-form in the Dolbeault double complex.Often one can argue that an integration over the complex plane
$$
int_{mathbb{C}} !mathrm{d}bar{z} wedge mathrm{d}z~f(z,bar{z}) ~=~lim_{Rto infty} int_{B(z_0,R)}!mathrm{d}bar{z}wedge mathrm{d}z ~f(z,bar{z})
tag{3}$$
is a limit of integrations over disks $B(z_0,R)$.One may prove that
$$forall a,b~in~mathbb{C}:~~int_{mathbb{C}} !frac{mathrm{d}bar{z} wedge mathrm{d}z}{2 pi i}~expleft[-(z-a)(bar{z}-b)right] ~=~1, tag{4}$$
for instance by translating $z=x+iy$ into real and imaginary parts.If e.g. $P(z)$ is a holomorphic polynomial, then
$$fbox{$forall a~in~mathbb{C}:~~ I~:=~int_{mathbb{C}} !frac{mathrm{d}bar{z} wedge mathrm{d}z}{2 pi i}~P(z)~expleft[-bar{z}(z-a)right]~=~P(a).$}tag{5}$$
Sketched proof of eq. (5):
$$begin{align}
int_{B(z_0,R)} !frac{mathrm{d}bar{z} wedge mathrm{d}z}{2 pi i}~left{P(a)-P(z)right}~expleft[-bar{z}(z-a)right]&quadstackrel{(3)+(4)}{longrightarrow}quad P(a)-I quadtext{for}quad R~to~infty cr
~=~int_{B(z_0,R)} !mathrm{d}bar{z} wedge frac{partial}{partial bar{z}} left{frac{P(z)-P(a)}{z-a}expleft[-bar{z}(z-a)right]frac{mathrm{d}z}{2 pi i}right}& cr
~=~int_{B(z_0,R)} !mathrm{d}left{frac{P(z)-P(a)}{z-a}expleft[-bar{z}(z-a)right]frac{mathrm{d}z}{2 pi i}right}& cr
~stackrel{(1)}{=}~oint_{partial B(z_0,R)} !frac{mathrm{d}z}{2 pi i} frac{P(z)-P(a)}{z-a}expleft[-bar{z}(z-a)right]&quadlongrightarrowquad 0 quadtext{for}quad R~to~infty. tag{6}end{align}$$
$Box$
--
$^1$ Note that $bar{z}=x-iy$ denotes the complex conjugate variable. It is not an independent complex variable. In particular,
$$ frac{partial}{partial z} ~:=~frac{1}{2}left(frac{partial}{partial x}-i frac{partial}{partial y}right), qquad frac{partial}{partial bar{z}} ~:=~frac{1}{2}left(frac{partial}{partial x}+i frac{partial}{partial y}right).tag{7}$$
The double argument notation $f(z,bar{z})$ is traditionally used to indicate that $f(z,bar{z})$ is not necessarily a holomorphic function. A holomorhic function $bar{partial}g(z) / partial bar{z}=0$ is in turn written with only a single argument $g(z)$.
edited Feb 6 '17 at 12:57
answered Feb 1 '17 at 20:50
Qmechanic
4,75811852
4,75811852
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1456403%2farea-integral-over-complex-plane-of-non-holomorphic-gaussian-e-z-barz%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown