Limit $lim_{ttoinfty}int_{[1,+infty)}e^{-tx}frac{sin x}{x} dlambda(x)$
up vote
0
down vote
favorite
$f(t)=int_{[1,+infty)}e^{-tx}frac{sin x}{x} dlambda(x)$. $tin [1,+infty)$
How can I argue that $lim_{ttoinfty}f(t)=int_{[1,+infty)}lim_{ttoinfty}e^{-tx}frac{sin x}{x} dlambda(x)$? (switching limit and integral)
I know that $|e^{-tx}frac{sin x}{x}|le e^{-x}$ for $tge1$ and $int_1^infty e^{-x}<infty$ so I thought about using dominated convergence theorem dct
but what is my sequence $f_n$ in this case?
real-analysis integration analysis
add a comment |
up vote
0
down vote
favorite
$f(t)=int_{[1,+infty)}e^{-tx}frac{sin x}{x} dlambda(x)$. $tin [1,+infty)$
How can I argue that $lim_{ttoinfty}f(t)=int_{[1,+infty)}lim_{ttoinfty}e^{-tx}frac{sin x}{x} dlambda(x)$? (switching limit and integral)
I know that $|e^{-tx}frac{sin x}{x}|le e^{-x}$ for $tge1$ and $int_1^infty e^{-x}<infty$ so I thought about using dominated convergence theorem dct
but what is my sequence $f_n$ in this case?
real-analysis integration analysis
In the notation of wikipedia we have $g=e^{-x},f=e^{-tx}frac{sin x}{x}$ but what is my $f_n$?
– conrad
Nov 25 at 10:56
Not sure I fully understand where the problem is... You know that, for every $x$, $$left|frac{sin x}{x}right|leqslant 1$$ hence $$|f(t)|leqslantint_1^inftyleft|e^{-tx}frac{sin x}{x}right|dxleqslantint_1^infty e^{-tx}dxleqslantint_0^infty e^{-tx}dx=frac1tto0$$
– Did
Nov 25 at 12:05
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
$f(t)=int_{[1,+infty)}e^{-tx}frac{sin x}{x} dlambda(x)$. $tin [1,+infty)$
How can I argue that $lim_{ttoinfty}f(t)=int_{[1,+infty)}lim_{ttoinfty}e^{-tx}frac{sin x}{x} dlambda(x)$? (switching limit and integral)
I know that $|e^{-tx}frac{sin x}{x}|le e^{-x}$ for $tge1$ and $int_1^infty e^{-x}<infty$ so I thought about using dominated convergence theorem dct
but what is my sequence $f_n$ in this case?
real-analysis integration analysis
$f(t)=int_{[1,+infty)}e^{-tx}frac{sin x}{x} dlambda(x)$. $tin [1,+infty)$
How can I argue that $lim_{ttoinfty}f(t)=int_{[1,+infty)}lim_{ttoinfty}e^{-tx}frac{sin x}{x} dlambda(x)$? (switching limit and integral)
I know that $|e^{-tx}frac{sin x}{x}|le e^{-x}$ for $tge1$ and $int_1^infty e^{-x}<infty$ so I thought about using dominated convergence theorem dct
but what is my sequence $f_n$ in this case?
real-analysis integration analysis
real-analysis integration analysis
edited Nov 25 at 12:18
Martin Sleziak
44.5k7115269
44.5k7115269
asked Nov 25 at 10:40
conrad
707
707
In the notation of wikipedia we have $g=e^{-x},f=e^{-tx}frac{sin x}{x}$ but what is my $f_n$?
– conrad
Nov 25 at 10:56
Not sure I fully understand where the problem is... You know that, for every $x$, $$left|frac{sin x}{x}right|leqslant 1$$ hence $$|f(t)|leqslantint_1^inftyleft|e^{-tx}frac{sin x}{x}right|dxleqslantint_1^infty e^{-tx}dxleqslantint_0^infty e^{-tx}dx=frac1tto0$$
– Did
Nov 25 at 12:05
add a comment |
In the notation of wikipedia we have $g=e^{-x},f=e^{-tx}frac{sin x}{x}$ but what is my $f_n$?
– conrad
Nov 25 at 10:56
Not sure I fully understand where the problem is... You know that, for every $x$, $$left|frac{sin x}{x}right|leqslant 1$$ hence $$|f(t)|leqslantint_1^inftyleft|e^{-tx}frac{sin x}{x}right|dxleqslantint_1^infty e^{-tx}dxleqslantint_0^infty e^{-tx}dx=frac1tto0$$
– Did
Nov 25 at 12:05
In the notation of wikipedia we have $g=e^{-x},f=e^{-tx}frac{sin x}{x}$ but what is my $f_n$?
– conrad
Nov 25 at 10:56
In the notation of wikipedia we have $g=e^{-x},f=e^{-tx}frac{sin x}{x}$ but what is my $f_n$?
– conrad
Nov 25 at 10:56
Not sure I fully understand where the problem is... You know that, for every $x$, $$left|frac{sin x}{x}right|leqslant 1$$ hence $$|f(t)|leqslantint_1^inftyleft|e^{-tx}frac{sin x}{x}right|dxleqslantint_1^infty e^{-tx}dxleqslantint_0^infty e^{-tx}dx=frac1tto0$$
– Did
Nov 25 at 12:05
Not sure I fully understand where the problem is... You know that, for every $x$, $$left|frac{sin x}{x}right|leqslant 1$$ hence $$|f(t)|leqslantint_1^inftyleft|e^{-tx}frac{sin x}{x}right|dxleqslantint_1^infty e^{-tx}dxleqslantint_0^infty e^{-tx}dx=frac1tto0$$
– Did
Nov 25 at 12:05
add a comment |
1 Answer
1
active
oldest
votes
up vote
0
down vote
Theorem:
A functional limit $lim_{xto a}f(x)$ converges to some limit $L$ if and only if for every sequence ${x_n}_{ninBbb N}$ such that $x_nneq a$ for all $ninBbb N$ and that converges to $a$ the sequence ${f(x_n)}_{ninBbb N}$ converges to $L$.
Hence
$$lim_{ttoinfty}int_X f(x,t), dx=Liff lim_{ntoinfty}int_X f(x,t_n), dx=Ltag1$$
for every sequence ${t_n}_{ninBbb N}$ that converges to infinity. If we set $f_n(x):=f(x,t_n)$ then we have the equivalent expression
$$lim_{ttoinfty}int_X f(x,t), dx=Lifflim_{ntoinfty}int_X f_n(x), dx=Ltag2$$
for every sequence ${t_n}_{ninBbb N}toinfty$. Now using the dominated convergence theorem it is easy to check that the RHS of $(2)$ converges to $L=0$ for any chosen sequence ${t_n}_{ninBbb N}toinfty$.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
Theorem:
A functional limit $lim_{xto a}f(x)$ converges to some limit $L$ if and only if for every sequence ${x_n}_{ninBbb N}$ such that $x_nneq a$ for all $ninBbb N$ and that converges to $a$ the sequence ${f(x_n)}_{ninBbb N}$ converges to $L$.
Hence
$$lim_{ttoinfty}int_X f(x,t), dx=Liff lim_{ntoinfty}int_X f(x,t_n), dx=Ltag1$$
for every sequence ${t_n}_{ninBbb N}$ that converges to infinity. If we set $f_n(x):=f(x,t_n)$ then we have the equivalent expression
$$lim_{ttoinfty}int_X f(x,t), dx=Lifflim_{ntoinfty}int_X f_n(x), dx=Ltag2$$
for every sequence ${t_n}_{ninBbb N}toinfty$. Now using the dominated convergence theorem it is easy to check that the RHS of $(2)$ converges to $L=0$ for any chosen sequence ${t_n}_{ninBbb N}toinfty$.
add a comment |
up vote
0
down vote
Theorem:
A functional limit $lim_{xto a}f(x)$ converges to some limit $L$ if and only if for every sequence ${x_n}_{ninBbb N}$ such that $x_nneq a$ for all $ninBbb N$ and that converges to $a$ the sequence ${f(x_n)}_{ninBbb N}$ converges to $L$.
Hence
$$lim_{ttoinfty}int_X f(x,t), dx=Liff lim_{ntoinfty}int_X f(x,t_n), dx=Ltag1$$
for every sequence ${t_n}_{ninBbb N}$ that converges to infinity. If we set $f_n(x):=f(x,t_n)$ then we have the equivalent expression
$$lim_{ttoinfty}int_X f(x,t), dx=Lifflim_{ntoinfty}int_X f_n(x), dx=Ltag2$$
for every sequence ${t_n}_{ninBbb N}toinfty$. Now using the dominated convergence theorem it is easy to check that the RHS of $(2)$ converges to $L=0$ for any chosen sequence ${t_n}_{ninBbb N}toinfty$.
add a comment |
up vote
0
down vote
up vote
0
down vote
Theorem:
A functional limit $lim_{xto a}f(x)$ converges to some limit $L$ if and only if for every sequence ${x_n}_{ninBbb N}$ such that $x_nneq a$ for all $ninBbb N$ and that converges to $a$ the sequence ${f(x_n)}_{ninBbb N}$ converges to $L$.
Hence
$$lim_{ttoinfty}int_X f(x,t), dx=Liff lim_{ntoinfty}int_X f(x,t_n), dx=Ltag1$$
for every sequence ${t_n}_{ninBbb N}$ that converges to infinity. If we set $f_n(x):=f(x,t_n)$ then we have the equivalent expression
$$lim_{ttoinfty}int_X f(x,t), dx=Lifflim_{ntoinfty}int_X f_n(x), dx=Ltag2$$
for every sequence ${t_n}_{ninBbb N}toinfty$. Now using the dominated convergence theorem it is easy to check that the RHS of $(2)$ converges to $L=0$ for any chosen sequence ${t_n}_{ninBbb N}toinfty$.
Theorem:
A functional limit $lim_{xto a}f(x)$ converges to some limit $L$ if and only if for every sequence ${x_n}_{ninBbb N}$ such that $x_nneq a$ for all $ninBbb N$ and that converges to $a$ the sequence ${f(x_n)}_{ninBbb N}$ converges to $L$.
Hence
$$lim_{ttoinfty}int_X f(x,t), dx=Liff lim_{ntoinfty}int_X f(x,t_n), dx=Ltag1$$
for every sequence ${t_n}_{ninBbb N}$ that converges to infinity. If we set $f_n(x):=f(x,t_n)$ then we have the equivalent expression
$$lim_{ttoinfty}int_X f(x,t), dx=Lifflim_{ntoinfty}int_X f_n(x), dx=Ltag2$$
for every sequence ${t_n}_{ninBbb N}toinfty$. Now using the dominated convergence theorem it is easy to check that the RHS of $(2)$ converges to $L=0$ for any chosen sequence ${t_n}_{ninBbb N}toinfty$.
edited Nov 25 at 12:16
answered Nov 25 at 12:01
Masacroso
12.7k41746
12.7k41746
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3012675%2flimit-lim-t-to-infty-int-1-inftye-tx-frac-sin-xx-d-lambdax%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
In the notation of wikipedia we have $g=e^{-x},f=e^{-tx}frac{sin x}{x}$ but what is my $f_n$?
– conrad
Nov 25 at 10:56
Not sure I fully understand where the problem is... You know that, for every $x$, $$left|frac{sin x}{x}right|leqslant 1$$ hence $$|f(t)|leqslantint_1^inftyleft|e^{-tx}frac{sin x}{x}right|dxleqslantint_1^infty e^{-tx}dxleqslantint_0^infty e^{-tx}dx=frac1tto0$$
– Did
Nov 25 at 12:05