Sets constructed by random variable series limit











up vote
0
down vote

favorite












Let $(Omega$, $mathcal{F}$, $P)$ be a probability space, $X_n$, $X$ random variables in that space. Show that:



$(a)$ ${omegainOmega| lim_{nrightarrowinfty} X_n(omega)$ $exists}inmathcal{F}$,



$(b)$ ${omegainOmega| lim_{nrightarrowinfty} X_n(omega)=X(omega)}inmathcal{F}$.



Edit:



I found quite simply solution.



${omegainOmega| lim_{nrightarrowinfty} X_n(omega)exists}=\={omegainOmega| forall_{kinmathbb{N}}exists_{Ninmathbb{N}}forall_{m,n>N}|X_n(omega)-X_m(omega)|<frac1k}= \=bigcaplimits_{kinmathbb{N}}bigcuplimits_{Ninmathbb{N}}bigcaplimits_{n,m>N}{|X_n(omega)-X_m(omega)|<frac1k}=\=bigcaplimits_{kinmathbb{N}}bigcuplimits_{Ninmathbb{N}}bigcaplimits_{n,m>N}big({X_n(omega)-X_m(omega)<frac1k}cap{X_n(omega)-X_m(omega)>-frac1k}big)inmathcal{F}$










share|cite|improve this question




















  • 2




    Can you show that $limsup_n X_n$ is measurable (and $liminf$)? If so, the set of points at which the limit exists can be written as the set of points satisfying $limsup_n X_n(omega) = liminf_n X_n(omega)$.
    – copper.hat
    Oct 7 at 19:17












  • Is ${omega|limsup_nX_n(omega)>a}=bigcuplimits_{n=1}^{infty}{omega|X_n(omega)>a}$ enough to show that $limsup_nX_n$ measureable?
    – Matt53
    Oct 7 at 19:29








  • 1




    That is not a correct equality.
    – copper.hat
    Oct 7 at 19:32












  • It should be ${omega|sup_{kgeq n}X_k(omega)>a}=bigcuplimits_{k=n}^{infty}{omega|X_k(omega)>a}$ right? And then by $limsup_nX_n=lim_nsup_{kgeq n}X_k$ we got that $limsup_nX_n$ is measureable.
    – Matt53
    Oct 7 at 20:55















up vote
0
down vote

favorite












Let $(Omega$, $mathcal{F}$, $P)$ be a probability space, $X_n$, $X$ random variables in that space. Show that:



$(a)$ ${omegainOmega| lim_{nrightarrowinfty} X_n(omega)$ $exists}inmathcal{F}$,



$(b)$ ${omegainOmega| lim_{nrightarrowinfty} X_n(omega)=X(omega)}inmathcal{F}$.



Edit:



I found quite simply solution.



${omegainOmega| lim_{nrightarrowinfty} X_n(omega)exists}=\={omegainOmega| forall_{kinmathbb{N}}exists_{Ninmathbb{N}}forall_{m,n>N}|X_n(omega)-X_m(omega)|<frac1k}= \=bigcaplimits_{kinmathbb{N}}bigcuplimits_{Ninmathbb{N}}bigcaplimits_{n,m>N}{|X_n(omega)-X_m(omega)|<frac1k}=\=bigcaplimits_{kinmathbb{N}}bigcuplimits_{Ninmathbb{N}}bigcaplimits_{n,m>N}big({X_n(omega)-X_m(omega)<frac1k}cap{X_n(omega)-X_m(omega)>-frac1k}big)inmathcal{F}$










share|cite|improve this question




















  • 2




    Can you show that $limsup_n X_n$ is measurable (and $liminf$)? If so, the set of points at which the limit exists can be written as the set of points satisfying $limsup_n X_n(omega) = liminf_n X_n(omega)$.
    – copper.hat
    Oct 7 at 19:17












  • Is ${omega|limsup_nX_n(omega)>a}=bigcuplimits_{n=1}^{infty}{omega|X_n(omega)>a}$ enough to show that $limsup_nX_n$ measureable?
    – Matt53
    Oct 7 at 19:29








  • 1




    That is not a correct equality.
    – copper.hat
    Oct 7 at 19:32












  • It should be ${omega|sup_{kgeq n}X_k(omega)>a}=bigcuplimits_{k=n}^{infty}{omega|X_k(omega)>a}$ right? And then by $limsup_nX_n=lim_nsup_{kgeq n}X_k$ we got that $limsup_nX_n$ is measureable.
    – Matt53
    Oct 7 at 20:55













up vote
0
down vote

favorite









up vote
0
down vote

favorite











Let $(Omega$, $mathcal{F}$, $P)$ be a probability space, $X_n$, $X$ random variables in that space. Show that:



$(a)$ ${omegainOmega| lim_{nrightarrowinfty} X_n(omega)$ $exists}inmathcal{F}$,



$(b)$ ${omegainOmega| lim_{nrightarrowinfty} X_n(omega)=X(omega)}inmathcal{F}$.



Edit:



I found quite simply solution.



${omegainOmega| lim_{nrightarrowinfty} X_n(omega)exists}=\={omegainOmega| forall_{kinmathbb{N}}exists_{Ninmathbb{N}}forall_{m,n>N}|X_n(omega)-X_m(omega)|<frac1k}= \=bigcaplimits_{kinmathbb{N}}bigcuplimits_{Ninmathbb{N}}bigcaplimits_{n,m>N}{|X_n(omega)-X_m(omega)|<frac1k}=\=bigcaplimits_{kinmathbb{N}}bigcuplimits_{Ninmathbb{N}}bigcaplimits_{n,m>N}big({X_n(omega)-X_m(omega)<frac1k}cap{X_n(omega)-X_m(omega)>-frac1k}big)inmathcal{F}$










share|cite|improve this question















Let $(Omega$, $mathcal{F}$, $P)$ be a probability space, $X_n$, $X$ random variables in that space. Show that:



$(a)$ ${omegainOmega| lim_{nrightarrowinfty} X_n(omega)$ $exists}inmathcal{F}$,



$(b)$ ${omegainOmega| lim_{nrightarrowinfty} X_n(omega)=X(omega)}inmathcal{F}$.



Edit:



I found quite simply solution.



${omegainOmega| lim_{nrightarrowinfty} X_n(omega)exists}=\={omegainOmega| forall_{kinmathbb{N}}exists_{Ninmathbb{N}}forall_{m,n>N}|X_n(omega)-X_m(omega)|<frac1k}= \=bigcaplimits_{kinmathbb{N}}bigcuplimits_{Ninmathbb{N}}bigcaplimits_{n,m>N}{|X_n(omega)-X_m(omega)|<frac1k}=\=bigcaplimits_{kinmathbb{N}}bigcuplimits_{Ninmathbb{N}}bigcaplimits_{n,m>N}big({X_n(omega)-X_m(omega)<frac1k}cap{X_n(omega)-X_m(omega)>-frac1k}big)inmathcal{F}$







probability probability-theory random-variables






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 25 at 10:54

























asked Oct 7 at 19:13









Matt53

1227




1227








  • 2




    Can you show that $limsup_n X_n$ is measurable (and $liminf$)? If so, the set of points at which the limit exists can be written as the set of points satisfying $limsup_n X_n(omega) = liminf_n X_n(omega)$.
    – copper.hat
    Oct 7 at 19:17












  • Is ${omega|limsup_nX_n(omega)>a}=bigcuplimits_{n=1}^{infty}{omega|X_n(omega)>a}$ enough to show that $limsup_nX_n$ measureable?
    – Matt53
    Oct 7 at 19:29








  • 1




    That is not a correct equality.
    – copper.hat
    Oct 7 at 19:32












  • It should be ${omega|sup_{kgeq n}X_k(omega)>a}=bigcuplimits_{k=n}^{infty}{omega|X_k(omega)>a}$ right? And then by $limsup_nX_n=lim_nsup_{kgeq n}X_k$ we got that $limsup_nX_n$ is measureable.
    – Matt53
    Oct 7 at 20:55














  • 2




    Can you show that $limsup_n X_n$ is measurable (and $liminf$)? If so, the set of points at which the limit exists can be written as the set of points satisfying $limsup_n X_n(omega) = liminf_n X_n(omega)$.
    – copper.hat
    Oct 7 at 19:17












  • Is ${omega|limsup_nX_n(omega)>a}=bigcuplimits_{n=1}^{infty}{omega|X_n(omega)>a}$ enough to show that $limsup_nX_n$ measureable?
    – Matt53
    Oct 7 at 19:29








  • 1




    That is not a correct equality.
    – copper.hat
    Oct 7 at 19:32












  • It should be ${omega|sup_{kgeq n}X_k(omega)>a}=bigcuplimits_{k=n}^{infty}{omega|X_k(omega)>a}$ right? And then by $limsup_nX_n=lim_nsup_{kgeq n}X_k$ we got that $limsup_nX_n$ is measureable.
    – Matt53
    Oct 7 at 20:55








2




2




Can you show that $limsup_n X_n$ is measurable (and $liminf$)? If so, the set of points at which the limit exists can be written as the set of points satisfying $limsup_n X_n(omega) = liminf_n X_n(omega)$.
– copper.hat
Oct 7 at 19:17






Can you show that $limsup_n X_n$ is measurable (and $liminf$)? If so, the set of points at which the limit exists can be written as the set of points satisfying $limsup_n X_n(omega) = liminf_n X_n(omega)$.
– copper.hat
Oct 7 at 19:17














Is ${omega|limsup_nX_n(omega)>a}=bigcuplimits_{n=1}^{infty}{omega|X_n(omega)>a}$ enough to show that $limsup_nX_n$ measureable?
– Matt53
Oct 7 at 19:29






Is ${omega|limsup_nX_n(omega)>a}=bigcuplimits_{n=1}^{infty}{omega|X_n(omega)>a}$ enough to show that $limsup_nX_n$ measureable?
– Matt53
Oct 7 at 19:29






1




1




That is not a correct equality.
– copper.hat
Oct 7 at 19:32






That is not a correct equality.
– copper.hat
Oct 7 at 19:32














It should be ${omega|sup_{kgeq n}X_k(omega)>a}=bigcuplimits_{k=n}^{infty}{omega|X_k(omega)>a}$ right? And then by $limsup_nX_n=lim_nsup_{kgeq n}X_k$ we got that $limsup_nX_n$ is measureable.
– Matt53
Oct 7 at 20:55




It should be ${omega|sup_{kgeq n}X_k(omega)>a}=bigcuplimits_{k=n}^{infty}{omega|X_k(omega)>a}$ right? And then by $limsup_nX_n=lim_nsup_{kgeq n}X_k$ we got that $limsup_nX_n$ is measureable.
– Matt53
Oct 7 at 20:55















active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2946181%2fsets-constructed-by-random-variable-series-limit%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown






























active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2946181%2fsets-constructed-by-random-variable-series-limit%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Wiesbaden

Marschland

Dieringhausen