Computation: an integral depending on parameters












1















Compute
$$
I(a) = int_0^{+infty} frac {log^2(1+ax^2)}{x^4},mathrm dx,
$$

where $a > 0$.




Attempts



Easy to see that this integral converges. Also easy to see that the following integrals are convergent as well, so we could take derivatives:
$$
I'(a) = int_0^{+infty} frac {2 log(1+ax^2)}{x^2(1+ax^2)} ,mathrm dx,
$$

and
$$
frac 12 I''(a) =int_0^{+infty}frac 1{(1+ax^2)} ,mathrm dx - int_0^{+infty} frac {log(1+ax^2)}{(1+ax^2)^2},mathrm dx =: J(a) - K(a).
$$

Now for $J$, I compute as follows:
begin{align*}
J(a)&= int_{+infty}^0 frac {t^4,mathrm d(t^{-1})}{(t^2+a)^2}\
&= int_0^{+infty} frac {mathrm dt}{t^2+a} -int_0^{+infty}frac {a,mathrm dt}{(t^2+a)^2} \
&= frac pi 2cdot frac 1{sqrt a} - aint_0^{+infty} frac {mathrm dt}{(t^2+a)^2},
end{align*}

where
$$
int_0^{+infty}frac {mathrm dt}{(t^2+a)} = int_0^{+infty} -frac partial {partial a} frac 1{t^2+a} ,mathrm dt = -frac partial {partial a} left(frac pi 2 cdot frac 1{sqrt a}right) = frac pi { 4asqrt a},
$$

so
$$
J(a) = frac pi {4 sqrt a}.
$$



Difficulty



How to calculate $K(a)$ then? By using Wolfram|Alpha, I get
$$
K(a) = frac {pi(2log 2 -1)}{4sqrt a},
$$

but I do not know what I can do to reach this result. Also the indefinite integral seems awful.



Any help is appreciated, including other possible methods to compute $I$. Thanks in advance!










share|cite|improve this question





























    1















    Compute
    $$
    I(a) = int_0^{+infty} frac {log^2(1+ax^2)}{x^4},mathrm dx,
    $$

    where $a > 0$.




    Attempts



    Easy to see that this integral converges. Also easy to see that the following integrals are convergent as well, so we could take derivatives:
    $$
    I'(a) = int_0^{+infty} frac {2 log(1+ax^2)}{x^2(1+ax^2)} ,mathrm dx,
    $$

    and
    $$
    frac 12 I''(a) =int_0^{+infty}frac 1{(1+ax^2)} ,mathrm dx - int_0^{+infty} frac {log(1+ax^2)}{(1+ax^2)^2},mathrm dx =: J(a) - K(a).
    $$

    Now for $J$, I compute as follows:
    begin{align*}
    J(a)&= int_{+infty}^0 frac {t^4,mathrm d(t^{-1})}{(t^2+a)^2}\
    &= int_0^{+infty} frac {mathrm dt}{t^2+a} -int_0^{+infty}frac {a,mathrm dt}{(t^2+a)^2} \
    &= frac pi 2cdot frac 1{sqrt a} - aint_0^{+infty} frac {mathrm dt}{(t^2+a)^2},
    end{align*}

    where
    $$
    int_0^{+infty}frac {mathrm dt}{(t^2+a)} = int_0^{+infty} -frac partial {partial a} frac 1{t^2+a} ,mathrm dt = -frac partial {partial a} left(frac pi 2 cdot frac 1{sqrt a}right) = frac pi { 4asqrt a},
    $$

    so
    $$
    J(a) = frac pi {4 sqrt a}.
    $$



    Difficulty



    How to calculate $K(a)$ then? By using Wolfram|Alpha, I get
    $$
    K(a) = frac {pi(2log 2 -1)}{4sqrt a},
    $$

    but I do not know what I can do to reach this result. Also the indefinite integral seems awful.



    Any help is appreciated, including other possible methods to compute $I$. Thanks in advance!










    share|cite|improve this question



























      1












      1








      1


      1






      Compute
      $$
      I(a) = int_0^{+infty} frac {log^2(1+ax^2)}{x^4},mathrm dx,
      $$

      where $a > 0$.




      Attempts



      Easy to see that this integral converges. Also easy to see that the following integrals are convergent as well, so we could take derivatives:
      $$
      I'(a) = int_0^{+infty} frac {2 log(1+ax^2)}{x^2(1+ax^2)} ,mathrm dx,
      $$

      and
      $$
      frac 12 I''(a) =int_0^{+infty}frac 1{(1+ax^2)} ,mathrm dx - int_0^{+infty} frac {log(1+ax^2)}{(1+ax^2)^2},mathrm dx =: J(a) - K(a).
      $$

      Now for $J$, I compute as follows:
      begin{align*}
      J(a)&= int_{+infty}^0 frac {t^4,mathrm d(t^{-1})}{(t^2+a)^2}\
      &= int_0^{+infty} frac {mathrm dt}{t^2+a} -int_0^{+infty}frac {a,mathrm dt}{(t^2+a)^2} \
      &= frac pi 2cdot frac 1{sqrt a} - aint_0^{+infty} frac {mathrm dt}{(t^2+a)^2},
      end{align*}

      where
      $$
      int_0^{+infty}frac {mathrm dt}{(t^2+a)} = int_0^{+infty} -frac partial {partial a} frac 1{t^2+a} ,mathrm dt = -frac partial {partial a} left(frac pi 2 cdot frac 1{sqrt a}right) = frac pi { 4asqrt a},
      $$

      so
      $$
      J(a) = frac pi {4 sqrt a}.
      $$



      Difficulty



      How to calculate $K(a)$ then? By using Wolfram|Alpha, I get
      $$
      K(a) = frac {pi(2log 2 -1)}{4sqrt a},
      $$

      but I do not know what I can do to reach this result. Also the indefinite integral seems awful.



      Any help is appreciated, including other possible methods to compute $I$. Thanks in advance!










      share|cite|improve this question
















      Compute
      $$
      I(a) = int_0^{+infty} frac {log^2(1+ax^2)}{x^4},mathrm dx,
      $$

      where $a > 0$.




      Attempts



      Easy to see that this integral converges. Also easy to see that the following integrals are convergent as well, so we could take derivatives:
      $$
      I'(a) = int_0^{+infty} frac {2 log(1+ax^2)}{x^2(1+ax^2)} ,mathrm dx,
      $$

      and
      $$
      frac 12 I''(a) =int_0^{+infty}frac 1{(1+ax^2)} ,mathrm dx - int_0^{+infty} frac {log(1+ax^2)}{(1+ax^2)^2},mathrm dx =: J(a) - K(a).
      $$

      Now for $J$, I compute as follows:
      begin{align*}
      J(a)&= int_{+infty}^0 frac {t^4,mathrm d(t^{-1})}{(t^2+a)^2}\
      &= int_0^{+infty} frac {mathrm dt}{t^2+a} -int_0^{+infty}frac {a,mathrm dt}{(t^2+a)^2} \
      &= frac pi 2cdot frac 1{sqrt a} - aint_0^{+infty} frac {mathrm dt}{(t^2+a)^2},
      end{align*}

      where
      $$
      int_0^{+infty}frac {mathrm dt}{(t^2+a)} = int_0^{+infty} -frac partial {partial a} frac 1{t^2+a} ,mathrm dt = -frac partial {partial a} left(frac pi 2 cdot frac 1{sqrt a}right) = frac pi { 4asqrt a},
      $$

      so
      $$
      J(a) = frac pi {4 sqrt a}.
      $$



      Difficulty



      How to calculate $K(a)$ then? By using Wolfram|Alpha, I get
      $$
      K(a) = frac {pi(2log 2 -1)}{4sqrt a},
      $$

      but I do not know what I can do to reach this result. Also the indefinite integral seems awful.



      Any help is appreciated, including other possible methods to compute $I$. Thanks in advance!







      real-analysis calculus integration analysis definite-integrals






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 8 at 5:02









      DavidG

      1,557619




      1,557619










      asked Nov 29 at 15:09









      xbh

      5,6551522




      5,6551522






















          1 Answer
          1






          active

          oldest

          votes


















          1














          OK, I have solved this by myself.



          Solution. $blacktriangleleft$ First we integrate by parts
          begin{align*}
          I(a) &= int_0^{+infty} frac 13 log^2(1 + ax^2) ,mathrm dleft(x^{-3}right) \
          &= left.frac {log^2 (1 +ax^2)}{3x^3}right|_{+infty}^0 - int_{+infty}^0 frac 13 x^{-3} cdot 2log(1 + ax^2) cdot frac {2ax}{1 + ax^2}, mathrm dx \
          &= int_0^{+infty} frac {4a log(1 + ax^2)}{3x^2 (1 + ax^2)} ,mathrm dx.
          end{align*}



          Now taking the derivatives for $I(a)$, we have
          $$
          I'(a) = int_0^{+infty} frac {2 log(1 + ax^2)x^2}{x^4(1 + ax^2)}, mathrm dx = int_0^{+infty} frac {2 log(1 + ax^2)}{x^2 (1+ ax^2)},mathrm dx,
          $$

          thus we have
          $$
          I(a) = frac 23 aI'(a).
          $$

          Now we determine the initial value. Consider computing $I'(1)$:
          begin{align*}
          I'(1) &= 2 int_0^{+infty} frac {log(1 + x^2)}{x^2(1+x^2)} , mathrm dx = 2int_0^{+infty} frac {log(1+ x^2 )}{x^2} ,mathrm dx - 2 int_0^{+infty} frac {log(1 +x^2)}{1+x^2} ,mathrm dx, \
          int_0^{+infty} frac {log(1+ x^2)}{x^2} , mathrm dx &= int_{+infty}^0 log(1 + x^2) ,mathrm d(x^{-1})\
          &= left. frac {log(1+x^2)}xright|_{+infty}^0 +int_0^{+infty} frac {2,mathrm dx}{1+ x^2} = pi.
          end{align*}

          For the 2nd integral, we consider another integral with a parameter
          $$
          K(b) = int_0^{+infty} frac {log(1 + bx^2)}{1+x^2},mathrm dx,
          $$

          then $K(0) = 0$. Taking the derivative, we have
          begin{align*}
          K'(b) &= int_0^{+infty} frac {x^2}{(1 + x^2) (1 +bx^2)} ,mathrm dx = int_0^{+infty} frac {t^{-2} ,mathrm (t^{-1})}{(1 + t^{-2}) (1+bt^{-2})}\
          &= int_0^{+infty} frac 1 {b-1}left(frac 1 {1+x^2} - frac 1{b + x^2} right) , mathrm dx \
          &= frac 1 {b-1} cdot frac pi 2 left(1 - frac 1{b^{1/2}}right).
          end{align*}

          So by the fundamental theorem of Calculus,
          begin{align*}
          K(1) &= K(0) + frac pi 2int_0^1 frac {sqrt b - 1}{(b-1) sqrt b} ,mathrm db = frac pi 2int_0^1 frac {mathrm db}{sqrt b(sqrt b+1)} \
          &= frac pi 2 int_0^1 frac {2 ,mathrm du}{u + 1} = pi log 2.
          end{align*}

          Thus
          $$
          I'(1) = 2 times pi - 2 K(1) = 2pi (1 - log 2).
          $$

          Now solve the initial problem
          $$
          begin{cases}
          I'(a) = frac 3{2a} I(a),\
          I'(1) = 2pi (1 -log 2),
          end{cases}
          $$

          we have
          $$
          boxed{I(a) = frac 43 a^{3/2}pi (1 - log 2)}. blacktriangleright
          $$






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3018743%2fcomputation-an-integral-depending-on-parameters%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1














            OK, I have solved this by myself.



            Solution. $blacktriangleleft$ First we integrate by parts
            begin{align*}
            I(a) &= int_0^{+infty} frac 13 log^2(1 + ax^2) ,mathrm dleft(x^{-3}right) \
            &= left.frac {log^2 (1 +ax^2)}{3x^3}right|_{+infty}^0 - int_{+infty}^0 frac 13 x^{-3} cdot 2log(1 + ax^2) cdot frac {2ax}{1 + ax^2}, mathrm dx \
            &= int_0^{+infty} frac {4a log(1 + ax^2)}{3x^2 (1 + ax^2)} ,mathrm dx.
            end{align*}



            Now taking the derivatives for $I(a)$, we have
            $$
            I'(a) = int_0^{+infty} frac {2 log(1 + ax^2)x^2}{x^4(1 + ax^2)}, mathrm dx = int_0^{+infty} frac {2 log(1 + ax^2)}{x^2 (1+ ax^2)},mathrm dx,
            $$

            thus we have
            $$
            I(a) = frac 23 aI'(a).
            $$

            Now we determine the initial value. Consider computing $I'(1)$:
            begin{align*}
            I'(1) &= 2 int_0^{+infty} frac {log(1 + x^2)}{x^2(1+x^2)} , mathrm dx = 2int_0^{+infty} frac {log(1+ x^2 )}{x^2} ,mathrm dx - 2 int_0^{+infty} frac {log(1 +x^2)}{1+x^2} ,mathrm dx, \
            int_0^{+infty} frac {log(1+ x^2)}{x^2} , mathrm dx &= int_{+infty}^0 log(1 + x^2) ,mathrm d(x^{-1})\
            &= left. frac {log(1+x^2)}xright|_{+infty}^0 +int_0^{+infty} frac {2,mathrm dx}{1+ x^2} = pi.
            end{align*}

            For the 2nd integral, we consider another integral with a parameter
            $$
            K(b) = int_0^{+infty} frac {log(1 + bx^2)}{1+x^2},mathrm dx,
            $$

            then $K(0) = 0$. Taking the derivative, we have
            begin{align*}
            K'(b) &= int_0^{+infty} frac {x^2}{(1 + x^2) (1 +bx^2)} ,mathrm dx = int_0^{+infty} frac {t^{-2} ,mathrm (t^{-1})}{(1 + t^{-2}) (1+bt^{-2})}\
            &= int_0^{+infty} frac 1 {b-1}left(frac 1 {1+x^2} - frac 1{b + x^2} right) , mathrm dx \
            &= frac 1 {b-1} cdot frac pi 2 left(1 - frac 1{b^{1/2}}right).
            end{align*}

            So by the fundamental theorem of Calculus,
            begin{align*}
            K(1) &= K(0) + frac pi 2int_0^1 frac {sqrt b - 1}{(b-1) sqrt b} ,mathrm db = frac pi 2int_0^1 frac {mathrm db}{sqrt b(sqrt b+1)} \
            &= frac pi 2 int_0^1 frac {2 ,mathrm du}{u + 1} = pi log 2.
            end{align*}

            Thus
            $$
            I'(1) = 2 times pi - 2 K(1) = 2pi (1 - log 2).
            $$

            Now solve the initial problem
            $$
            begin{cases}
            I'(a) = frac 3{2a} I(a),\
            I'(1) = 2pi (1 -log 2),
            end{cases}
            $$

            we have
            $$
            boxed{I(a) = frac 43 a^{3/2}pi (1 - log 2)}. blacktriangleright
            $$






            share|cite|improve this answer


























              1














              OK, I have solved this by myself.



              Solution. $blacktriangleleft$ First we integrate by parts
              begin{align*}
              I(a) &= int_0^{+infty} frac 13 log^2(1 + ax^2) ,mathrm dleft(x^{-3}right) \
              &= left.frac {log^2 (1 +ax^2)}{3x^3}right|_{+infty}^0 - int_{+infty}^0 frac 13 x^{-3} cdot 2log(1 + ax^2) cdot frac {2ax}{1 + ax^2}, mathrm dx \
              &= int_0^{+infty} frac {4a log(1 + ax^2)}{3x^2 (1 + ax^2)} ,mathrm dx.
              end{align*}



              Now taking the derivatives for $I(a)$, we have
              $$
              I'(a) = int_0^{+infty} frac {2 log(1 + ax^2)x^2}{x^4(1 + ax^2)}, mathrm dx = int_0^{+infty} frac {2 log(1 + ax^2)}{x^2 (1+ ax^2)},mathrm dx,
              $$

              thus we have
              $$
              I(a) = frac 23 aI'(a).
              $$

              Now we determine the initial value. Consider computing $I'(1)$:
              begin{align*}
              I'(1) &= 2 int_0^{+infty} frac {log(1 + x^2)}{x^2(1+x^2)} , mathrm dx = 2int_0^{+infty} frac {log(1+ x^2 )}{x^2} ,mathrm dx - 2 int_0^{+infty} frac {log(1 +x^2)}{1+x^2} ,mathrm dx, \
              int_0^{+infty} frac {log(1+ x^2)}{x^2} , mathrm dx &= int_{+infty}^0 log(1 + x^2) ,mathrm d(x^{-1})\
              &= left. frac {log(1+x^2)}xright|_{+infty}^0 +int_0^{+infty} frac {2,mathrm dx}{1+ x^2} = pi.
              end{align*}

              For the 2nd integral, we consider another integral with a parameter
              $$
              K(b) = int_0^{+infty} frac {log(1 + bx^2)}{1+x^2},mathrm dx,
              $$

              then $K(0) = 0$. Taking the derivative, we have
              begin{align*}
              K'(b) &= int_0^{+infty} frac {x^2}{(1 + x^2) (1 +bx^2)} ,mathrm dx = int_0^{+infty} frac {t^{-2} ,mathrm (t^{-1})}{(1 + t^{-2}) (1+bt^{-2})}\
              &= int_0^{+infty} frac 1 {b-1}left(frac 1 {1+x^2} - frac 1{b + x^2} right) , mathrm dx \
              &= frac 1 {b-1} cdot frac pi 2 left(1 - frac 1{b^{1/2}}right).
              end{align*}

              So by the fundamental theorem of Calculus,
              begin{align*}
              K(1) &= K(0) + frac pi 2int_0^1 frac {sqrt b - 1}{(b-1) sqrt b} ,mathrm db = frac pi 2int_0^1 frac {mathrm db}{sqrt b(sqrt b+1)} \
              &= frac pi 2 int_0^1 frac {2 ,mathrm du}{u + 1} = pi log 2.
              end{align*}

              Thus
              $$
              I'(1) = 2 times pi - 2 K(1) = 2pi (1 - log 2).
              $$

              Now solve the initial problem
              $$
              begin{cases}
              I'(a) = frac 3{2a} I(a),\
              I'(1) = 2pi (1 -log 2),
              end{cases}
              $$

              we have
              $$
              boxed{I(a) = frac 43 a^{3/2}pi (1 - log 2)}. blacktriangleright
              $$






              share|cite|improve this answer
























                1












                1








                1






                OK, I have solved this by myself.



                Solution. $blacktriangleleft$ First we integrate by parts
                begin{align*}
                I(a) &= int_0^{+infty} frac 13 log^2(1 + ax^2) ,mathrm dleft(x^{-3}right) \
                &= left.frac {log^2 (1 +ax^2)}{3x^3}right|_{+infty}^0 - int_{+infty}^0 frac 13 x^{-3} cdot 2log(1 + ax^2) cdot frac {2ax}{1 + ax^2}, mathrm dx \
                &= int_0^{+infty} frac {4a log(1 + ax^2)}{3x^2 (1 + ax^2)} ,mathrm dx.
                end{align*}



                Now taking the derivatives for $I(a)$, we have
                $$
                I'(a) = int_0^{+infty} frac {2 log(1 + ax^2)x^2}{x^4(1 + ax^2)}, mathrm dx = int_0^{+infty} frac {2 log(1 + ax^2)}{x^2 (1+ ax^2)},mathrm dx,
                $$

                thus we have
                $$
                I(a) = frac 23 aI'(a).
                $$

                Now we determine the initial value. Consider computing $I'(1)$:
                begin{align*}
                I'(1) &= 2 int_0^{+infty} frac {log(1 + x^2)}{x^2(1+x^2)} , mathrm dx = 2int_0^{+infty} frac {log(1+ x^2 )}{x^2} ,mathrm dx - 2 int_0^{+infty} frac {log(1 +x^2)}{1+x^2} ,mathrm dx, \
                int_0^{+infty} frac {log(1+ x^2)}{x^2} , mathrm dx &= int_{+infty}^0 log(1 + x^2) ,mathrm d(x^{-1})\
                &= left. frac {log(1+x^2)}xright|_{+infty}^0 +int_0^{+infty} frac {2,mathrm dx}{1+ x^2} = pi.
                end{align*}

                For the 2nd integral, we consider another integral with a parameter
                $$
                K(b) = int_0^{+infty} frac {log(1 + bx^2)}{1+x^2},mathrm dx,
                $$

                then $K(0) = 0$. Taking the derivative, we have
                begin{align*}
                K'(b) &= int_0^{+infty} frac {x^2}{(1 + x^2) (1 +bx^2)} ,mathrm dx = int_0^{+infty} frac {t^{-2} ,mathrm (t^{-1})}{(1 + t^{-2}) (1+bt^{-2})}\
                &= int_0^{+infty} frac 1 {b-1}left(frac 1 {1+x^2} - frac 1{b + x^2} right) , mathrm dx \
                &= frac 1 {b-1} cdot frac pi 2 left(1 - frac 1{b^{1/2}}right).
                end{align*}

                So by the fundamental theorem of Calculus,
                begin{align*}
                K(1) &= K(0) + frac pi 2int_0^1 frac {sqrt b - 1}{(b-1) sqrt b} ,mathrm db = frac pi 2int_0^1 frac {mathrm db}{sqrt b(sqrt b+1)} \
                &= frac pi 2 int_0^1 frac {2 ,mathrm du}{u + 1} = pi log 2.
                end{align*}

                Thus
                $$
                I'(1) = 2 times pi - 2 K(1) = 2pi (1 - log 2).
                $$

                Now solve the initial problem
                $$
                begin{cases}
                I'(a) = frac 3{2a} I(a),\
                I'(1) = 2pi (1 -log 2),
                end{cases}
                $$

                we have
                $$
                boxed{I(a) = frac 43 a^{3/2}pi (1 - log 2)}. blacktriangleright
                $$






                share|cite|improve this answer












                OK, I have solved this by myself.



                Solution. $blacktriangleleft$ First we integrate by parts
                begin{align*}
                I(a) &= int_0^{+infty} frac 13 log^2(1 + ax^2) ,mathrm dleft(x^{-3}right) \
                &= left.frac {log^2 (1 +ax^2)}{3x^3}right|_{+infty}^0 - int_{+infty}^0 frac 13 x^{-3} cdot 2log(1 + ax^2) cdot frac {2ax}{1 + ax^2}, mathrm dx \
                &= int_0^{+infty} frac {4a log(1 + ax^2)}{3x^2 (1 + ax^2)} ,mathrm dx.
                end{align*}



                Now taking the derivatives for $I(a)$, we have
                $$
                I'(a) = int_0^{+infty} frac {2 log(1 + ax^2)x^2}{x^4(1 + ax^2)}, mathrm dx = int_0^{+infty} frac {2 log(1 + ax^2)}{x^2 (1+ ax^2)},mathrm dx,
                $$

                thus we have
                $$
                I(a) = frac 23 aI'(a).
                $$

                Now we determine the initial value. Consider computing $I'(1)$:
                begin{align*}
                I'(1) &= 2 int_0^{+infty} frac {log(1 + x^2)}{x^2(1+x^2)} , mathrm dx = 2int_0^{+infty} frac {log(1+ x^2 )}{x^2} ,mathrm dx - 2 int_0^{+infty} frac {log(1 +x^2)}{1+x^2} ,mathrm dx, \
                int_0^{+infty} frac {log(1+ x^2)}{x^2} , mathrm dx &= int_{+infty}^0 log(1 + x^2) ,mathrm d(x^{-1})\
                &= left. frac {log(1+x^2)}xright|_{+infty}^0 +int_0^{+infty} frac {2,mathrm dx}{1+ x^2} = pi.
                end{align*}

                For the 2nd integral, we consider another integral with a parameter
                $$
                K(b) = int_0^{+infty} frac {log(1 + bx^2)}{1+x^2},mathrm dx,
                $$

                then $K(0) = 0$. Taking the derivative, we have
                begin{align*}
                K'(b) &= int_0^{+infty} frac {x^2}{(1 + x^2) (1 +bx^2)} ,mathrm dx = int_0^{+infty} frac {t^{-2} ,mathrm (t^{-1})}{(1 + t^{-2}) (1+bt^{-2})}\
                &= int_0^{+infty} frac 1 {b-1}left(frac 1 {1+x^2} - frac 1{b + x^2} right) , mathrm dx \
                &= frac 1 {b-1} cdot frac pi 2 left(1 - frac 1{b^{1/2}}right).
                end{align*}

                So by the fundamental theorem of Calculus,
                begin{align*}
                K(1) &= K(0) + frac pi 2int_0^1 frac {sqrt b - 1}{(b-1) sqrt b} ,mathrm db = frac pi 2int_0^1 frac {mathrm db}{sqrt b(sqrt b+1)} \
                &= frac pi 2 int_0^1 frac {2 ,mathrm du}{u + 1} = pi log 2.
                end{align*}

                Thus
                $$
                I'(1) = 2 times pi - 2 K(1) = 2pi (1 - log 2).
                $$

                Now solve the initial problem
                $$
                begin{cases}
                I'(a) = frac 3{2a} I(a),\
                I'(1) = 2pi (1 -log 2),
                end{cases}
                $$

                we have
                $$
                boxed{I(a) = frac 43 a^{3/2}pi (1 - log 2)}. blacktriangleright
                $$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Nov 29 at 17:00









                xbh

                5,6551522




                5,6551522






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3018743%2fcomputation-an-integral-depending-on-parameters%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Wiesbaden

                    Marschland

                    Dieringhausen