Computation: an integral depending on parameters
Compute
$$
I(a) = int_0^{+infty} frac {log^2(1+ax^2)}{x^4},mathrm dx,
$$
where $a > 0$.
Attempts
Easy to see that this integral converges. Also easy to see that the following integrals are convergent as well, so we could take derivatives:
$$
I'(a) = int_0^{+infty} frac {2 log(1+ax^2)}{x^2(1+ax^2)} ,mathrm dx,
$$
and
$$
frac 12 I''(a) =int_0^{+infty}frac 1{(1+ax^2)} ,mathrm dx - int_0^{+infty} frac {log(1+ax^2)}{(1+ax^2)^2},mathrm dx =: J(a) - K(a).
$$
Now for $J$, I compute as follows:
begin{align*}
J(a)&= int_{+infty}^0 frac {t^4,mathrm d(t^{-1})}{(t^2+a)^2}\
&= int_0^{+infty} frac {mathrm dt}{t^2+a} -int_0^{+infty}frac {a,mathrm dt}{(t^2+a)^2} \
&= frac pi 2cdot frac 1{sqrt a} - aint_0^{+infty} frac {mathrm dt}{(t^2+a)^2},
end{align*}
where
$$
int_0^{+infty}frac {mathrm dt}{(t^2+a)} = int_0^{+infty} -frac partial {partial a} frac 1{t^2+a} ,mathrm dt = -frac partial {partial a} left(frac pi 2 cdot frac 1{sqrt a}right) = frac pi { 4asqrt a},
$$
so
$$
J(a) = frac pi {4 sqrt a}.
$$
Difficulty
How to calculate $K(a)$ then? By using Wolfram|Alpha, I get
$$
K(a) = frac {pi(2log 2 -1)}{4sqrt a},
$$
but I do not know what I can do to reach this result. Also the indefinite integral seems awful.
Any help is appreciated, including other possible methods to compute $I$. Thanks in advance!
real-analysis calculus integration analysis definite-integrals
add a comment |
Compute
$$
I(a) = int_0^{+infty} frac {log^2(1+ax^2)}{x^4},mathrm dx,
$$
where $a > 0$.
Attempts
Easy to see that this integral converges. Also easy to see that the following integrals are convergent as well, so we could take derivatives:
$$
I'(a) = int_0^{+infty} frac {2 log(1+ax^2)}{x^2(1+ax^2)} ,mathrm dx,
$$
and
$$
frac 12 I''(a) =int_0^{+infty}frac 1{(1+ax^2)} ,mathrm dx - int_0^{+infty} frac {log(1+ax^2)}{(1+ax^2)^2},mathrm dx =: J(a) - K(a).
$$
Now for $J$, I compute as follows:
begin{align*}
J(a)&= int_{+infty}^0 frac {t^4,mathrm d(t^{-1})}{(t^2+a)^2}\
&= int_0^{+infty} frac {mathrm dt}{t^2+a} -int_0^{+infty}frac {a,mathrm dt}{(t^2+a)^2} \
&= frac pi 2cdot frac 1{sqrt a} - aint_0^{+infty} frac {mathrm dt}{(t^2+a)^2},
end{align*}
where
$$
int_0^{+infty}frac {mathrm dt}{(t^2+a)} = int_0^{+infty} -frac partial {partial a} frac 1{t^2+a} ,mathrm dt = -frac partial {partial a} left(frac pi 2 cdot frac 1{sqrt a}right) = frac pi { 4asqrt a},
$$
so
$$
J(a) = frac pi {4 sqrt a}.
$$
Difficulty
How to calculate $K(a)$ then? By using Wolfram|Alpha, I get
$$
K(a) = frac {pi(2log 2 -1)}{4sqrt a},
$$
but I do not know what I can do to reach this result. Also the indefinite integral seems awful.
Any help is appreciated, including other possible methods to compute $I$. Thanks in advance!
real-analysis calculus integration analysis definite-integrals
add a comment |
Compute
$$
I(a) = int_0^{+infty} frac {log^2(1+ax^2)}{x^4},mathrm dx,
$$
where $a > 0$.
Attempts
Easy to see that this integral converges. Also easy to see that the following integrals are convergent as well, so we could take derivatives:
$$
I'(a) = int_0^{+infty} frac {2 log(1+ax^2)}{x^2(1+ax^2)} ,mathrm dx,
$$
and
$$
frac 12 I''(a) =int_0^{+infty}frac 1{(1+ax^2)} ,mathrm dx - int_0^{+infty} frac {log(1+ax^2)}{(1+ax^2)^2},mathrm dx =: J(a) - K(a).
$$
Now for $J$, I compute as follows:
begin{align*}
J(a)&= int_{+infty}^0 frac {t^4,mathrm d(t^{-1})}{(t^2+a)^2}\
&= int_0^{+infty} frac {mathrm dt}{t^2+a} -int_0^{+infty}frac {a,mathrm dt}{(t^2+a)^2} \
&= frac pi 2cdot frac 1{sqrt a} - aint_0^{+infty} frac {mathrm dt}{(t^2+a)^2},
end{align*}
where
$$
int_0^{+infty}frac {mathrm dt}{(t^2+a)} = int_0^{+infty} -frac partial {partial a} frac 1{t^2+a} ,mathrm dt = -frac partial {partial a} left(frac pi 2 cdot frac 1{sqrt a}right) = frac pi { 4asqrt a},
$$
so
$$
J(a) = frac pi {4 sqrt a}.
$$
Difficulty
How to calculate $K(a)$ then? By using Wolfram|Alpha, I get
$$
K(a) = frac {pi(2log 2 -1)}{4sqrt a},
$$
but I do not know what I can do to reach this result. Also the indefinite integral seems awful.
Any help is appreciated, including other possible methods to compute $I$. Thanks in advance!
real-analysis calculus integration analysis definite-integrals
Compute
$$
I(a) = int_0^{+infty} frac {log^2(1+ax^2)}{x^4},mathrm dx,
$$
where $a > 0$.
Attempts
Easy to see that this integral converges. Also easy to see that the following integrals are convergent as well, so we could take derivatives:
$$
I'(a) = int_0^{+infty} frac {2 log(1+ax^2)}{x^2(1+ax^2)} ,mathrm dx,
$$
and
$$
frac 12 I''(a) =int_0^{+infty}frac 1{(1+ax^2)} ,mathrm dx - int_0^{+infty} frac {log(1+ax^2)}{(1+ax^2)^2},mathrm dx =: J(a) - K(a).
$$
Now for $J$, I compute as follows:
begin{align*}
J(a)&= int_{+infty}^0 frac {t^4,mathrm d(t^{-1})}{(t^2+a)^2}\
&= int_0^{+infty} frac {mathrm dt}{t^2+a} -int_0^{+infty}frac {a,mathrm dt}{(t^2+a)^2} \
&= frac pi 2cdot frac 1{sqrt a} - aint_0^{+infty} frac {mathrm dt}{(t^2+a)^2},
end{align*}
where
$$
int_0^{+infty}frac {mathrm dt}{(t^2+a)} = int_0^{+infty} -frac partial {partial a} frac 1{t^2+a} ,mathrm dt = -frac partial {partial a} left(frac pi 2 cdot frac 1{sqrt a}right) = frac pi { 4asqrt a},
$$
so
$$
J(a) = frac pi {4 sqrt a}.
$$
Difficulty
How to calculate $K(a)$ then? By using Wolfram|Alpha, I get
$$
K(a) = frac {pi(2log 2 -1)}{4sqrt a},
$$
but I do not know what I can do to reach this result. Also the indefinite integral seems awful.
Any help is appreciated, including other possible methods to compute $I$. Thanks in advance!
real-analysis calculus integration analysis definite-integrals
real-analysis calculus integration analysis definite-integrals
edited Dec 8 at 5:02
DavidG
1,557619
1,557619
asked Nov 29 at 15:09
xbh
5,6551522
5,6551522
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
OK, I have solved this by myself.
Solution. $blacktriangleleft$ First we integrate by parts
begin{align*}
I(a) &= int_0^{+infty} frac 13 log^2(1 + ax^2) ,mathrm dleft(x^{-3}right) \
&= left.frac {log^2 (1 +ax^2)}{3x^3}right|_{+infty}^0 - int_{+infty}^0 frac 13 x^{-3} cdot 2log(1 + ax^2) cdot frac {2ax}{1 + ax^2}, mathrm dx \
&= int_0^{+infty} frac {4a log(1 + ax^2)}{3x^2 (1 + ax^2)} ,mathrm dx.
end{align*}
Now taking the derivatives for $I(a)$, we have
$$
I'(a) = int_0^{+infty} frac {2 log(1 + ax^2)x^2}{x^4(1 + ax^2)}, mathrm dx = int_0^{+infty} frac {2 log(1 + ax^2)}{x^2 (1+ ax^2)},mathrm dx,
$$
thus we have
$$
I(a) = frac 23 aI'(a).
$$
Now we determine the initial value. Consider computing $I'(1)$:
begin{align*}
I'(1) &= 2 int_0^{+infty} frac {log(1 + x^2)}{x^2(1+x^2)} , mathrm dx = 2int_0^{+infty} frac {log(1+ x^2 )}{x^2} ,mathrm dx - 2 int_0^{+infty} frac {log(1 +x^2)}{1+x^2} ,mathrm dx, \
int_0^{+infty} frac {log(1+ x^2)}{x^2} , mathrm dx &= int_{+infty}^0 log(1 + x^2) ,mathrm d(x^{-1})\
&= left. frac {log(1+x^2)}xright|_{+infty}^0 +int_0^{+infty} frac {2,mathrm dx}{1+ x^2} = pi.
end{align*}
For the 2nd integral, we consider another integral with a parameter
$$
K(b) = int_0^{+infty} frac {log(1 + bx^2)}{1+x^2},mathrm dx,
$$
then $K(0) = 0$. Taking the derivative, we have
begin{align*}
K'(b) &= int_0^{+infty} frac {x^2}{(1 + x^2) (1 +bx^2)} ,mathrm dx = int_0^{+infty} frac {t^{-2} ,mathrm (t^{-1})}{(1 + t^{-2}) (1+bt^{-2})}\
&= int_0^{+infty} frac 1 {b-1}left(frac 1 {1+x^2} - frac 1{b + x^2} right) , mathrm dx \
&= frac 1 {b-1} cdot frac pi 2 left(1 - frac 1{b^{1/2}}right).
end{align*}
So by the fundamental theorem of Calculus,
begin{align*}
K(1) &= K(0) + frac pi 2int_0^1 frac {sqrt b - 1}{(b-1) sqrt b} ,mathrm db = frac pi 2int_0^1 frac {mathrm db}{sqrt b(sqrt b+1)} \
&= frac pi 2 int_0^1 frac {2 ,mathrm du}{u + 1} = pi log 2.
end{align*}
Thus
$$
I'(1) = 2 times pi - 2 K(1) = 2pi (1 - log 2).
$$
Now solve the initial problem
$$
begin{cases}
I'(a) = frac 3{2a} I(a),\
I'(1) = 2pi (1 -log 2),
end{cases}
$$
we have
$$
boxed{I(a) = frac 43 a^{3/2}pi (1 - log 2)}. blacktriangleright
$$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3018743%2fcomputation-an-integral-depending-on-parameters%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
OK, I have solved this by myself.
Solution. $blacktriangleleft$ First we integrate by parts
begin{align*}
I(a) &= int_0^{+infty} frac 13 log^2(1 + ax^2) ,mathrm dleft(x^{-3}right) \
&= left.frac {log^2 (1 +ax^2)}{3x^3}right|_{+infty}^0 - int_{+infty}^0 frac 13 x^{-3} cdot 2log(1 + ax^2) cdot frac {2ax}{1 + ax^2}, mathrm dx \
&= int_0^{+infty} frac {4a log(1 + ax^2)}{3x^2 (1 + ax^2)} ,mathrm dx.
end{align*}
Now taking the derivatives for $I(a)$, we have
$$
I'(a) = int_0^{+infty} frac {2 log(1 + ax^2)x^2}{x^4(1 + ax^2)}, mathrm dx = int_0^{+infty} frac {2 log(1 + ax^2)}{x^2 (1+ ax^2)},mathrm dx,
$$
thus we have
$$
I(a) = frac 23 aI'(a).
$$
Now we determine the initial value. Consider computing $I'(1)$:
begin{align*}
I'(1) &= 2 int_0^{+infty} frac {log(1 + x^2)}{x^2(1+x^2)} , mathrm dx = 2int_0^{+infty} frac {log(1+ x^2 )}{x^2} ,mathrm dx - 2 int_0^{+infty} frac {log(1 +x^2)}{1+x^2} ,mathrm dx, \
int_0^{+infty} frac {log(1+ x^2)}{x^2} , mathrm dx &= int_{+infty}^0 log(1 + x^2) ,mathrm d(x^{-1})\
&= left. frac {log(1+x^2)}xright|_{+infty}^0 +int_0^{+infty} frac {2,mathrm dx}{1+ x^2} = pi.
end{align*}
For the 2nd integral, we consider another integral with a parameter
$$
K(b) = int_0^{+infty} frac {log(1 + bx^2)}{1+x^2},mathrm dx,
$$
then $K(0) = 0$. Taking the derivative, we have
begin{align*}
K'(b) &= int_0^{+infty} frac {x^2}{(1 + x^2) (1 +bx^2)} ,mathrm dx = int_0^{+infty} frac {t^{-2} ,mathrm (t^{-1})}{(1 + t^{-2}) (1+bt^{-2})}\
&= int_0^{+infty} frac 1 {b-1}left(frac 1 {1+x^2} - frac 1{b + x^2} right) , mathrm dx \
&= frac 1 {b-1} cdot frac pi 2 left(1 - frac 1{b^{1/2}}right).
end{align*}
So by the fundamental theorem of Calculus,
begin{align*}
K(1) &= K(0) + frac pi 2int_0^1 frac {sqrt b - 1}{(b-1) sqrt b} ,mathrm db = frac pi 2int_0^1 frac {mathrm db}{sqrt b(sqrt b+1)} \
&= frac pi 2 int_0^1 frac {2 ,mathrm du}{u + 1} = pi log 2.
end{align*}
Thus
$$
I'(1) = 2 times pi - 2 K(1) = 2pi (1 - log 2).
$$
Now solve the initial problem
$$
begin{cases}
I'(a) = frac 3{2a} I(a),\
I'(1) = 2pi (1 -log 2),
end{cases}
$$
we have
$$
boxed{I(a) = frac 43 a^{3/2}pi (1 - log 2)}. blacktriangleright
$$
add a comment |
OK, I have solved this by myself.
Solution. $blacktriangleleft$ First we integrate by parts
begin{align*}
I(a) &= int_0^{+infty} frac 13 log^2(1 + ax^2) ,mathrm dleft(x^{-3}right) \
&= left.frac {log^2 (1 +ax^2)}{3x^3}right|_{+infty}^0 - int_{+infty}^0 frac 13 x^{-3} cdot 2log(1 + ax^2) cdot frac {2ax}{1 + ax^2}, mathrm dx \
&= int_0^{+infty} frac {4a log(1 + ax^2)}{3x^2 (1 + ax^2)} ,mathrm dx.
end{align*}
Now taking the derivatives for $I(a)$, we have
$$
I'(a) = int_0^{+infty} frac {2 log(1 + ax^2)x^2}{x^4(1 + ax^2)}, mathrm dx = int_0^{+infty} frac {2 log(1 + ax^2)}{x^2 (1+ ax^2)},mathrm dx,
$$
thus we have
$$
I(a) = frac 23 aI'(a).
$$
Now we determine the initial value. Consider computing $I'(1)$:
begin{align*}
I'(1) &= 2 int_0^{+infty} frac {log(1 + x^2)}{x^2(1+x^2)} , mathrm dx = 2int_0^{+infty} frac {log(1+ x^2 )}{x^2} ,mathrm dx - 2 int_0^{+infty} frac {log(1 +x^2)}{1+x^2} ,mathrm dx, \
int_0^{+infty} frac {log(1+ x^2)}{x^2} , mathrm dx &= int_{+infty}^0 log(1 + x^2) ,mathrm d(x^{-1})\
&= left. frac {log(1+x^2)}xright|_{+infty}^0 +int_0^{+infty} frac {2,mathrm dx}{1+ x^2} = pi.
end{align*}
For the 2nd integral, we consider another integral with a parameter
$$
K(b) = int_0^{+infty} frac {log(1 + bx^2)}{1+x^2},mathrm dx,
$$
then $K(0) = 0$. Taking the derivative, we have
begin{align*}
K'(b) &= int_0^{+infty} frac {x^2}{(1 + x^2) (1 +bx^2)} ,mathrm dx = int_0^{+infty} frac {t^{-2} ,mathrm (t^{-1})}{(1 + t^{-2}) (1+bt^{-2})}\
&= int_0^{+infty} frac 1 {b-1}left(frac 1 {1+x^2} - frac 1{b + x^2} right) , mathrm dx \
&= frac 1 {b-1} cdot frac pi 2 left(1 - frac 1{b^{1/2}}right).
end{align*}
So by the fundamental theorem of Calculus,
begin{align*}
K(1) &= K(0) + frac pi 2int_0^1 frac {sqrt b - 1}{(b-1) sqrt b} ,mathrm db = frac pi 2int_0^1 frac {mathrm db}{sqrt b(sqrt b+1)} \
&= frac pi 2 int_0^1 frac {2 ,mathrm du}{u + 1} = pi log 2.
end{align*}
Thus
$$
I'(1) = 2 times pi - 2 K(1) = 2pi (1 - log 2).
$$
Now solve the initial problem
$$
begin{cases}
I'(a) = frac 3{2a} I(a),\
I'(1) = 2pi (1 -log 2),
end{cases}
$$
we have
$$
boxed{I(a) = frac 43 a^{3/2}pi (1 - log 2)}. blacktriangleright
$$
add a comment |
OK, I have solved this by myself.
Solution. $blacktriangleleft$ First we integrate by parts
begin{align*}
I(a) &= int_0^{+infty} frac 13 log^2(1 + ax^2) ,mathrm dleft(x^{-3}right) \
&= left.frac {log^2 (1 +ax^2)}{3x^3}right|_{+infty}^0 - int_{+infty}^0 frac 13 x^{-3} cdot 2log(1 + ax^2) cdot frac {2ax}{1 + ax^2}, mathrm dx \
&= int_0^{+infty} frac {4a log(1 + ax^2)}{3x^2 (1 + ax^2)} ,mathrm dx.
end{align*}
Now taking the derivatives for $I(a)$, we have
$$
I'(a) = int_0^{+infty} frac {2 log(1 + ax^2)x^2}{x^4(1 + ax^2)}, mathrm dx = int_0^{+infty} frac {2 log(1 + ax^2)}{x^2 (1+ ax^2)},mathrm dx,
$$
thus we have
$$
I(a) = frac 23 aI'(a).
$$
Now we determine the initial value. Consider computing $I'(1)$:
begin{align*}
I'(1) &= 2 int_0^{+infty} frac {log(1 + x^2)}{x^2(1+x^2)} , mathrm dx = 2int_0^{+infty} frac {log(1+ x^2 )}{x^2} ,mathrm dx - 2 int_0^{+infty} frac {log(1 +x^2)}{1+x^2} ,mathrm dx, \
int_0^{+infty} frac {log(1+ x^2)}{x^2} , mathrm dx &= int_{+infty}^0 log(1 + x^2) ,mathrm d(x^{-1})\
&= left. frac {log(1+x^2)}xright|_{+infty}^0 +int_0^{+infty} frac {2,mathrm dx}{1+ x^2} = pi.
end{align*}
For the 2nd integral, we consider another integral with a parameter
$$
K(b) = int_0^{+infty} frac {log(1 + bx^2)}{1+x^2},mathrm dx,
$$
then $K(0) = 0$. Taking the derivative, we have
begin{align*}
K'(b) &= int_0^{+infty} frac {x^2}{(1 + x^2) (1 +bx^2)} ,mathrm dx = int_0^{+infty} frac {t^{-2} ,mathrm (t^{-1})}{(1 + t^{-2}) (1+bt^{-2})}\
&= int_0^{+infty} frac 1 {b-1}left(frac 1 {1+x^2} - frac 1{b + x^2} right) , mathrm dx \
&= frac 1 {b-1} cdot frac pi 2 left(1 - frac 1{b^{1/2}}right).
end{align*}
So by the fundamental theorem of Calculus,
begin{align*}
K(1) &= K(0) + frac pi 2int_0^1 frac {sqrt b - 1}{(b-1) sqrt b} ,mathrm db = frac pi 2int_0^1 frac {mathrm db}{sqrt b(sqrt b+1)} \
&= frac pi 2 int_0^1 frac {2 ,mathrm du}{u + 1} = pi log 2.
end{align*}
Thus
$$
I'(1) = 2 times pi - 2 K(1) = 2pi (1 - log 2).
$$
Now solve the initial problem
$$
begin{cases}
I'(a) = frac 3{2a} I(a),\
I'(1) = 2pi (1 -log 2),
end{cases}
$$
we have
$$
boxed{I(a) = frac 43 a^{3/2}pi (1 - log 2)}. blacktriangleright
$$
OK, I have solved this by myself.
Solution. $blacktriangleleft$ First we integrate by parts
begin{align*}
I(a) &= int_0^{+infty} frac 13 log^2(1 + ax^2) ,mathrm dleft(x^{-3}right) \
&= left.frac {log^2 (1 +ax^2)}{3x^3}right|_{+infty}^0 - int_{+infty}^0 frac 13 x^{-3} cdot 2log(1 + ax^2) cdot frac {2ax}{1 + ax^2}, mathrm dx \
&= int_0^{+infty} frac {4a log(1 + ax^2)}{3x^2 (1 + ax^2)} ,mathrm dx.
end{align*}
Now taking the derivatives for $I(a)$, we have
$$
I'(a) = int_0^{+infty} frac {2 log(1 + ax^2)x^2}{x^4(1 + ax^2)}, mathrm dx = int_0^{+infty} frac {2 log(1 + ax^2)}{x^2 (1+ ax^2)},mathrm dx,
$$
thus we have
$$
I(a) = frac 23 aI'(a).
$$
Now we determine the initial value. Consider computing $I'(1)$:
begin{align*}
I'(1) &= 2 int_0^{+infty} frac {log(1 + x^2)}{x^2(1+x^2)} , mathrm dx = 2int_0^{+infty} frac {log(1+ x^2 )}{x^2} ,mathrm dx - 2 int_0^{+infty} frac {log(1 +x^2)}{1+x^2} ,mathrm dx, \
int_0^{+infty} frac {log(1+ x^2)}{x^2} , mathrm dx &= int_{+infty}^0 log(1 + x^2) ,mathrm d(x^{-1})\
&= left. frac {log(1+x^2)}xright|_{+infty}^0 +int_0^{+infty} frac {2,mathrm dx}{1+ x^2} = pi.
end{align*}
For the 2nd integral, we consider another integral with a parameter
$$
K(b) = int_0^{+infty} frac {log(1 + bx^2)}{1+x^2},mathrm dx,
$$
then $K(0) = 0$. Taking the derivative, we have
begin{align*}
K'(b) &= int_0^{+infty} frac {x^2}{(1 + x^2) (1 +bx^2)} ,mathrm dx = int_0^{+infty} frac {t^{-2} ,mathrm (t^{-1})}{(1 + t^{-2}) (1+bt^{-2})}\
&= int_0^{+infty} frac 1 {b-1}left(frac 1 {1+x^2} - frac 1{b + x^2} right) , mathrm dx \
&= frac 1 {b-1} cdot frac pi 2 left(1 - frac 1{b^{1/2}}right).
end{align*}
So by the fundamental theorem of Calculus,
begin{align*}
K(1) &= K(0) + frac pi 2int_0^1 frac {sqrt b - 1}{(b-1) sqrt b} ,mathrm db = frac pi 2int_0^1 frac {mathrm db}{sqrt b(sqrt b+1)} \
&= frac pi 2 int_0^1 frac {2 ,mathrm du}{u + 1} = pi log 2.
end{align*}
Thus
$$
I'(1) = 2 times pi - 2 K(1) = 2pi (1 - log 2).
$$
Now solve the initial problem
$$
begin{cases}
I'(a) = frac 3{2a} I(a),\
I'(1) = 2pi (1 -log 2),
end{cases}
$$
we have
$$
boxed{I(a) = frac 43 a^{3/2}pi (1 - log 2)}. blacktriangleright
$$
answered Nov 29 at 17:00
xbh
5,6551522
5,6551522
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3018743%2fcomputation-an-integral-depending-on-parameters%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown