Conditional expectation $E(X_1 mid overline{X}_n)$ if $X_1,dots,X_n$ are i.i.d. Am I correct?












2












$begingroup$


Contitional expectation $E(X_1 mid overline{X}_n)$ if $X_1,dots,X_n$ are i.i.d.



Since $X_1,dots,X_n$ are i.i.d, then $E(X_1 mid overline{X}_n) = E(X_1)=overline{X}_n)$



Am I correct in thinking this?
Thanks!



(Just to overclearify $overline{X}_n$ is the sample mean)
Question is from Van Der Vaart: Asymptotic Statistics.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    The answer from @SiongThyeGoh is right. Nevertheless, is not true that $bar X_n=E(X_1)$ (and then is also not true that $E(X_1|bar X_n)=E(X_1)$ ). Check that $E(X_1|bar X_n)$ and $bar X_n$ are random variables (the same r.v., indeed), but $E(X_1)$ is a constant.
    $endgroup$
    – Alejandro Nasif Salum
    Dec 8 '18 at 14:59


















2












$begingroup$


Contitional expectation $E(X_1 mid overline{X}_n)$ if $X_1,dots,X_n$ are i.i.d.



Since $X_1,dots,X_n$ are i.i.d, then $E(X_1 mid overline{X}_n) = E(X_1)=overline{X}_n)$



Am I correct in thinking this?
Thanks!



(Just to overclearify $overline{X}_n$ is the sample mean)
Question is from Van Der Vaart: Asymptotic Statistics.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    The answer from @SiongThyeGoh is right. Nevertheless, is not true that $bar X_n=E(X_1)$ (and then is also not true that $E(X_1|bar X_n)=E(X_1)$ ). Check that $E(X_1|bar X_n)$ and $bar X_n$ are random variables (the same r.v., indeed), but $E(X_1)$ is a constant.
    $endgroup$
    – Alejandro Nasif Salum
    Dec 8 '18 at 14:59
















2












2








2


1



$begingroup$


Contitional expectation $E(X_1 mid overline{X}_n)$ if $X_1,dots,X_n$ are i.i.d.



Since $X_1,dots,X_n$ are i.i.d, then $E(X_1 mid overline{X}_n) = E(X_1)=overline{X}_n)$



Am I correct in thinking this?
Thanks!



(Just to overclearify $overline{X}_n$ is the sample mean)
Question is from Van Der Vaart: Asymptotic Statistics.










share|cite|improve this question











$endgroup$




Contitional expectation $E(X_1 mid overline{X}_n)$ if $X_1,dots,X_n$ are i.i.d.



Since $X_1,dots,X_n$ are i.i.d, then $E(X_1 mid overline{X}_n) = E(X_1)=overline{X}_n)$



Am I correct in thinking this?
Thanks!



(Just to overclearify $overline{X}_n$ is the sample mean)
Question is from Van Der Vaart: Asymptotic Statistics.







asymptotics statistical-inference






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 8 '18 at 14:31









Bernard

119k740113




119k740113










asked Dec 8 '18 at 14:14









L200123L200123

855




855








  • 1




    $begingroup$
    The answer from @SiongThyeGoh is right. Nevertheless, is not true that $bar X_n=E(X_1)$ (and then is also not true that $E(X_1|bar X_n)=E(X_1)$ ). Check that $E(X_1|bar X_n)$ and $bar X_n$ are random variables (the same r.v., indeed), but $E(X_1)$ is a constant.
    $endgroup$
    – Alejandro Nasif Salum
    Dec 8 '18 at 14:59
















  • 1




    $begingroup$
    The answer from @SiongThyeGoh is right. Nevertheless, is not true that $bar X_n=E(X_1)$ (and then is also not true that $E(X_1|bar X_n)=E(X_1)$ ). Check that $E(X_1|bar X_n)$ and $bar X_n$ are random variables (the same r.v., indeed), but $E(X_1)$ is a constant.
    $endgroup$
    – Alejandro Nasif Salum
    Dec 8 '18 at 14:59










1




1




$begingroup$
The answer from @SiongThyeGoh is right. Nevertheless, is not true that $bar X_n=E(X_1)$ (and then is also not true that $E(X_1|bar X_n)=E(X_1)$ ). Check that $E(X_1|bar X_n)$ and $bar X_n$ are random variables (the same r.v., indeed), but $E(X_1)$ is a constant.
$endgroup$
– Alejandro Nasif Salum
Dec 8 '18 at 14:59






$begingroup$
The answer from @SiongThyeGoh is right. Nevertheless, is not true that $bar X_n=E(X_1)$ (and then is also not true that $E(X_1|bar X_n)=E(X_1)$ ). Check that $E(X_1|bar X_n)$ and $bar X_n$ are random variables (the same r.v., indeed), but $E(X_1)$ is a constant.
$endgroup$
– Alejandro Nasif Salum
Dec 8 '18 at 14:59












1 Answer
1






active

oldest

votes


















3












$begingroup$

We have $$E(X_i |bar{X}_n)= E(X_j |bar{X}_n)$$



Summing them up $$sum_{i=1}^n E(X_i|bar{X}_n)=E(sum_{i=1}^n X_i|bar{X}_n)=E(nbar{X}_n|bar{X}_n)=nbar{X}_n$$



$$nE(X_1|bar{X}_n)=nbar{X}_n$$
Hence,
$$E(X_1|bar{X}_n)=bar{X}_n$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031149%2fconditional-expectation-ex-1-mid-overlinex-n-if-x-1-dots-x-n-are-i-i%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    We have $$E(X_i |bar{X}_n)= E(X_j |bar{X}_n)$$



    Summing them up $$sum_{i=1}^n E(X_i|bar{X}_n)=E(sum_{i=1}^n X_i|bar{X}_n)=E(nbar{X}_n|bar{X}_n)=nbar{X}_n$$



    $$nE(X_1|bar{X}_n)=nbar{X}_n$$
    Hence,
    $$E(X_1|bar{X}_n)=bar{X}_n$$






    share|cite|improve this answer









    $endgroup$


















      3












      $begingroup$

      We have $$E(X_i |bar{X}_n)= E(X_j |bar{X}_n)$$



      Summing them up $$sum_{i=1}^n E(X_i|bar{X}_n)=E(sum_{i=1}^n X_i|bar{X}_n)=E(nbar{X}_n|bar{X}_n)=nbar{X}_n$$



      $$nE(X_1|bar{X}_n)=nbar{X}_n$$
      Hence,
      $$E(X_1|bar{X}_n)=bar{X}_n$$






      share|cite|improve this answer









      $endgroup$
















        3












        3








        3





        $begingroup$

        We have $$E(X_i |bar{X}_n)= E(X_j |bar{X}_n)$$



        Summing them up $$sum_{i=1}^n E(X_i|bar{X}_n)=E(sum_{i=1}^n X_i|bar{X}_n)=E(nbar{X}_n|bar{X}_n)=nbar{X}_n$$



        $$nE(X_1|bar{X}_n)=nbar{X}_n$$
        Hence,
        $$E(X_1|bar{X}_n)=bar{X}_n$$






        share|cite|improve this answer









        $endgroup$



        We have $$E(X_i |bar{X}_n)= E(X_j |bar{X}_n)$$



        Summing them up $$sum_{i=1}^n E(X_i|bar{X}_n)=E(sum_{i=1}^n X_i|bar{X}_n)=E(nbar{X}_n|bar{X}_n)=nbar{X}_n$$



        $$nE(X_1|bar{X}_n)=nbar{X}_n$$
        Hence,
        $$E(X_1|bar{X}_n)=bar{X}_n$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 8 '18 at 14:18









        Siong Thye GohSiong Thye Goh

        100k1466117




        100k1466117






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031149%2fconditional-expectation-ex-1-mid-overlinex-n-if-x-1-dots-x-n-are-i-i%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Wiesbaden

            Marschland

            Dieringhausen