If $ sum_{n=1}^{infty} a_n $ is convergent, then discuss the convergence or divergence of the following...
$begingroup$
If $ displaystylesum_{n=1}^{infty} a_n $ is convergent then discuss the convergence or divergence of the following series whose $n^{th}$ term is
$ a_n sin n $
$displaystyle frac {a_n}{1+| a_n |}$
If $displaystyle sum _{n=1}^{infty} a_n $ is absolutely convergent then then $displaystyle sum_{n=1}^{infty} a_n sin n $ and $displaystyle sum _{n=1}^{infty} dfrac {a_n}{1+|a_n|} $ are convergent. But what if $displaystyle sum _{n=1}^{infty} a_n $ is conditionally convergent.
A little hint would be appreciated.
Thanks in advance.
real-analysis
$endgroup$
|
show 1 more comment
$begingroup$
If $ displaystylesum_{n=1}^{infty} a_n $ is convergent then discuss the convergence or divergence of the following series whose $n^{th}$ term is
$ a_n sin n $
$displaystyle frac {a_n}{1+| a_n |}$
If $displaystyle sum _{n=1}^{infty} a_n $ is absolutely convergent then then $displaystyle sum_{n=1}^{infty} a_n sin n $ and $displaystyle sum _{n=1}^{infty} dfrac {a_n}{1+|a_n|} $ are convergent. But what if $displaystyle sum _{n=1}^{infty} a_n $ is conditionally convergent.
A little hint would be appreciated.
Thanks in advance.
real-analysis
$endgroup$
7
$begingroup$
@suchandaadhikari try $a_n = frac{sin(n)}{n}$, and you can see here for the proof that $frac{sin^2(n)}{n}$ doesn't converge
$endgroup$
– Jakobian
Dec 8 '18 at 13:09
$begingroup$
@ jakobian thank you so much ..nice example. .can u give a hint about the 2nd series. .
$endgroup$
– suchanda adhikari
Dec 8 '18 at 13:58
$begingroup$
I think other series is convergent as both have same nature as $nrightarrow infty$
$endgroup$
– neelkanth
Dec 8 '18 at 13:59
$begingroup$
If you please elaborate a little more...
$endgroup$
– suchanda adhikari
Dec 8 '18 at 14:06
$begingroup$
@Jakobian Why not an official answer?
$endgroup$
– Paul Frost
Dec 8 '18 at 16:13
|
show 1 more comment
$begingroup$
If $ displaystylesum_{n=1}^{infty} a_n $ is convergent then discuss the convergence or divergence of the following series whose $n^{th}$ term is
$ a_n sin n $
$displaystyle frac {a_n}{1+| a_n |}$
If $displaystyle sum _{n=1}^{infty} a_n $ is absolutely convergent then then $displaystyle sum_{n=1}^{infty} a_n sin n $ and $displaystyle sum _{n=1}^{infty} dfrac {a_n}{1+|a_n|} $ are convergent. But what if $displaystyle sum _{n=1}^{infty} a_n $ is conditionally convergent.
A little hint would be appreciated.
Thanks in advance.
real-analysis
$endgroup$
If $ displaystylesum_{n=1}^{infty} a_n $ is convergent then discuss the convergence or divergence of the following series whose $n^{th}$ term is
$ a_n sin n $
$displaystyle frac {a_n}{1+| a_n |}$
If $displaystyle sum _{n=1}^{infty} a_n $ is absolutely convergent then then $displaystyle sum_{n=1}^{infty} a_n sin n $ and $displaystyle sum _{n=1}^{infty} dfrac {a_n}{1+|a_n|} $ are convergent. But what if $displaystyle sum _{n=1}^{infty} a_n $ is conditionally convergent.
A little hint would be appreciated.
Thanks in advance.
real-analysis
real-analysis
edited Dec 8 '18 at 13:04
Yadati Kiran
1,749619
1,749619
asked Dec 8 '18 at 12:53
suchanda adhikarisuchanda adhikari
516
516
7
$begingroup$
@suchandaadhikari try $a_n = frac{sin(n)}{n}$, and you can see here for the proof that $frac{sin^2(n)}{n}$ doesn't converge
$endgroup$
– Jakobian
Dec 8 '18 at 13:09
$begingroup$
@ jakobian thank you so much ..nice example. .can u give a hint about the 2nd series. .
$endgroup$
– suchanda adhikari
Dec 8 '18 at 13:58
$begingroup$
I think other series is convergent as both have same nature as $nrightarrow infty$
$endgroup$
– neelkanth
Dec 8 '18 at 13:59
$begingroup$
If you please elaborate a little more...
$endgroup$
– suchanda adhikari
Dec 8 '18 at 14:06
$begingroup$
@Jakobian Why not an official answer?
$endgroup$
– Paul Frost
Dec 8 '18 at 16:13
|
show 1 more comment
7
$begingroup$
@suchandaadhikari try $a_n = frac{sin(n)}{n}$, and you can see here for the proof that $frac{sin^2(n)}{n}$ doesn't converge
$endgroup$
– Jakobian
Dec 8 '18 at 13:09
$begingroup$
@ jakobian thank you so much ..nice example. .can u give a hint about the 2nd series. .
$endgroup$
– suchanda adhikari
Dec 8 '18 at 13:58
$begingroup$
I think other series is convergent as both have same nature as $nrightarrow infty$
$endgroup$
– neelkanth
Dec 8 '18 at 13:59
$begingroup$
If you please elaborate a little more...
$endgroup$
– suchanda adhikari
Dec 8 '18 at 14:06
$begingroup$
@Jakobian Why not an official answer?
$endgroup$
– Paul Frost
Dec 8 '18 at 16:13
7
7
$begingroup$
@suchandaadhikari try $a_n = frac{sin(n)}{n}$, and you can see here for the proof that $frac{sin^2(n)}{n}$ doesn't converge
$endgroup$
– Jakobian
Dec 8 '18 at 13:09
$begingroup$
@suchandaadhikari try $a_n = frac{sin(n)}{n}$, and you can see here for the proof that $frac{sin^2(n)}{n}$ doesn't converge
$endgroup$
– Jakobian
Dec 8 '18 at 13:09
$begingroup$
@ jakobian thank you so much ..nice example. .can u give a hint about the 2nd series. .
$endgroup$
– suchanda adhikari
Dec 8 '18 at 13:58
$begingroup$
@ jakobian thank you so much ..nice example. .can u give a hint about the 2nd series. .
$endgroup$
– suchanda adhikari
Dec 8 '18 at 13:58
$begingroup$
I think other series is convergent as both have same nature as $nrightarrow infty$
$endgroup$
– neelkanth
Dec 8 '18 at 13:59
$begingroup$
I think other series is convergent as both have same nature as $nrightarrow infty$
$endgroup$
– neelkanth
Dec 8 '18 at 13:59
$begingroup$
If you please elaborate a little more...
$endgroup$
– suchanda adhikari
Dec 8 '18 at 14:06
$begingroup$
If you please elaborate a little more...
$endgroup$
– suchanda adhikari
Dec 8 '18 at 14:06
$begingroup$
@Jakobian Why not an official answer?
$endgroup$
– Paul Frost
Dec 8 '18 at 16:13
$begingroup$
@Jakobian Why not an official answer?
$endgroup$
– Paul Frost
Dec 8 '18 at 16:13
|
show 1 more comment
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031080%2fif-sum-n-1-infty-a-n-is-convergent-then-discuss-the-convergence-or-di%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031080%2fif-sum-n-1-infty-a-n-is-convergent-then-discuss-the-convergence-or-di%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
7
$begingroup$
@suchandaadhikari try $a_n = frac{sin(n)}{n}$, and you can see here for the proof that $frac{sin^2(n)}{n}$ doesn't converge
$endgroup$
– Jakobian
Dec 8 '18 at 13:09
$begingroup$
@ jakobian thank you so much ..nice example. .can u give a hint about the 2nd series. .
$endgroup$
– suchanda adhikari
Dec 8 '18 at 13:58
$begingroup$
I think other series is convergent as both have same nature as $nrightarrow infty$
$endgroup$
– neelkanth
Dec 8 '18 at 13:59
$begingroup$
If you please elaborate a little more...
$endgroup$
– suchanda adhikari
Dec 8 '18 at 14:06
$begingroup$
@Jakobian Why not an official answer?
$endgroup$
– Paul Frost
Dec 8 '18 at 16:13