tracial state of a orthogonal projection
$begingroup$
Suppose $Ain M_n(mathbb{C})$,$A$ has eigenvalues$lambda_1,cdots,lambda_n$,$P$ is the orthogonal projection from $mathbb{C}^n$ onto the span of eigenvectors associated with $lambda_1,cdots,lambda_n$,how to computer the tracial state of $P$.I saw a reference book,it writes:$tr_n(P)=frac{1}{n}$(cardinality of $lambda_1,cdots,lambda_n)$.I feel a little confused.
operator-theory matrix-calculus operator-algebras c-star-algebras trace
$endgroup$
add a comment |
$begingroup$
Suppose $Ain M_n(mathbb{C})$,$A$ has eigenvalues$lambda_1,cdots,lambda_n$,$P$ is the orthogonal projection from $mathbb{C}^n$ onto the span of eigenvectors associated with $lambda_1,cdots,lambda_n$,how to computer the tracial state of $P$.I saw a reference book,it writes:$tr_n(P)=frac{1}{n}$(cardinality of $lambda_1,cdots,lambda_n)$.I feel a little confused.
operator-theory matrix-calculus operator-algebras c-star-algebras trace
$endgroup$
add a comment |
$begingroup$
Suppose $Ain M_n(mathbb{C})$,$A$ has eigenvalues$lambda_1,cdots,lambda_n$,$P$ is the orthogonal projection from $mathbb{C}^n$ onto the span of eigenvectors associated with $lambda_1,cdots,lambda_n$,how to computer the tracial state of $P$.I saw a reference book,it writes:$tr_n(P)=frac{1}{n}$(cardinality of $lambda_1,cdots,lambda_n)$.I feel a little confused.
operator-theory matrix-calculus operator-algebras c-star-algebras trace
$endgroup$
Suppose $Ain M_n(mathbb{C})$,$A$ has eigenvalues$lambda_1,cdots,lambda_n$,$P$ is the orthogonal projection from $mathbb{C}^n$ onto the span of eigenvectors associated with $lambda_1,cdots,lambda_n$,how to computer the tracial state of $P$.I saw a reference book,it writes:$tr_n(P)=frac{1}{n}$(cardinality of $lambda_1,cdots,lambda_n)$.I feel a little confused.
operator-theory matrix-calculus operator-algebras c-star-algebras trace
operator-theory matrix-calculus operator-algebras c-star-algebras trace
asked Dec 5 '18 at 15:19
mathrookiemathrookie
832512
832512
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
There is no general answer to this. If $lambda_1,ldots,lambda_n$ are distinct, then the eigenvectors of $A$ span $mathbb C^n$ and so $P=I$. If $A=lambda P$, then $operatorname{tr}_n(P)=k/n$, where $k$ is the rank of $P$.
So all possible values $1/n,2/n,ldots,1$ are possible.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027187%2ftracial-state-of-a-orthogonal-projection%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
There is no general answer to this. If $lambda_1,ldots,lambda_n$ are distinct, then the eigenvectors of $A$ span $mathbb C^n$ and so $P=I$. If $A=lambda P$, then $operatorname{tr}_n(P)=k/n$, where $k$ is the rank of $P$.
So all possible values $1/n,2/n,ldots,1$ are possible.
$endgroup$
add a comment |
$begingroup$
There is no general answer to this. If $lambda_1,ldots,lambda_n$ are distinct, then the eigenvectors of $A$ span $mathbb C^n$ and so $P=I$. If $A=lambda P$, then $operatorname{tr}_n(P)=k/n$, where $k$ is the rank of $P$.
So all possible values $1/n,2/n,ldots,1$ are possible.
$endgroup$
add a comment |
$begingroup$
There is no general answer to this. If $lambda_1,ldots,lambda_n$ are distinct, then the eigenvectors of $A$ span $mathbb C^n$ and so $P=I$. If $A=lambda P$, then $operatorname{tr}_n(P)=k/n$, where $k$ is the rank of $P$.
So all possible values $1/n,2/n,ldots,1$ are possible.
$endgroup$
There is no general answer to this. If $lambda_1,ldots,lambda_n$ are distinct, then the eigenvectors of $A$ span $mathbb C^n$ and so $P=I$. If $A=lambda P$, then $operatorname{tr}_n(P)=k/n$, where $k$ is the rank of $P$.
So all possible values $1/n,2/n,ldots,1$ are possible.
answered Dec 5 '18 at 17:29
Martin ArgeramiMartin Argerami
124k1177176
124k1177176
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027187%2ftracial-state-of-a-orthogonal-projection%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown