about the minimax and orthogonal polynomial Exponential function
$begingroup$
using legendre Polynomial between 0,1 for the exponential function you could get te following series
$$e^{-frac{p}{2}}=sum _{n=0}^{infty } sqrt{frac{pi }{2}} (-1)^{ n} (2 n+1) I_{n+frac{1}{2}}(1) P_nleft(frac{p}{2}right)$$ it is suppose that t is a good aproximation using only m=2 you get the error
$$e^{-frac{p}{2}}simeq -frac{5}{8} sqrt{frac{pi }{2}} left(3 p^2-4right) I_{frac{5}{2}}(1)+frac{3}{2} sqrt{frac{pi }{2}} p I_{frac{3}{2}}(1)+left(-sqrt{frac{pi }{2}}right) I_{frac{1}{2}}(1)$$ for p=1 the error it is about
0.027875
it is suppose that this series could be improve ( maybe get it better improve using chevyshef series) but de following series
$$e^{-frac{p}{2}}simeq frac{3 pi (4 p+7) I_{frac{3}{4}}left(frac{p}{2}right)}{8 p^{3/4} Gamma left(frac{1}{4}right)}-frac{15 pi sqrt[4]{p} I_{-frac{1}{4}}left(frac{p}{2}right)}{8 Gamma left(frac{1}{4}right)}$$
for m=2 (usin two terms) gives te error -0.00286246 10 times better
how it is possible? it is suppose that Legendre it is orthogonal polinomial
calculus
$endgroup$
add a comment |
$begingroup$
using legendre Polynomial between 0,1 for the exponential function you could get te following series
$$e^{-frac{p}{2}}=sum _{n=0}^{infty } sqrt{frac{pi }{2}} (-1)^{ n} (2 n+1) I_{n+frac{1}{2}}(1) P_nleft(frac{p}{2}right)$$ it is suppose that t is a good aproximation using only m=2 you get the error
$$e^{-frac{p}{2}}simeq -frac{5}{8} sqrt{frac{pi }{2}} left(3 p^2-4right) I_{frac{5}{2}}(1)+frac{3}{2} sqrt{frac{pi }{2}} p I_{frac{3}{2}}(1)+left(-sqrt{frac{pi }{2}}right) I_{frac{1}{2}}(1)$$ for p=1 the error it is about
0.027875
it is suppose that this series could be improve ( maybe get it better improve using chevyshef series) but de following series
$$e^{-frac{p}{2}}simeq frac{3 pi (4 p+7) I_{frac{3}{4}}left(frac{p}{2}right)}{8 p^{3/4} Gamma left(frac{1}{4}right)}-frac{15 pi sqrt[4]{p} I_{-frac{1}{4}}left(frac{p}{2}right)}{8 Gamma left(frac{1}{4}right)}$$
for m=2 (usin two terms) gives te error -0.00286246 10 times better
how it is possible? it is suppose that Legendre it is orthogonal polinomial
calculus
$endgroup$
add a comment |
$begingroup$
using legendre Polynomial between 0,1 for the exponential function you could get te following series
$$e^{-frac{p}{2}}=sum _{n=0}^{infty } sqrt{frac{pi }{2}} (-1)^{ n} (2 n+1) I_{n+frac{1}{2}}(1) P_nleft(frac{p}{2}right)$$ it is suppose that t is a good aproximation using only m=2 you get the error
$$e^{-frac{p}{2}}simeq -frac{5}{8} sqrt{frac{pi }{2}} left(3 p^2-4right) I_{frac{5}{2}}(1)+frac{3}{2} sqrt{frac{pi }{2}} p I_{frac{3}{2}}(1)+left(-sqrt{frac{pi }{2}}right) I_{frac{1}{2}}(1)$$ for p=1 the error it is about
0.027875
it is suppose that this series could be improve ( maybe get it better improve using chevyshef series) but de following series
$$e^{-frac{p}{2}}simeq frac{3 pi (4 p+7) I_{frac{3}{4}}left(frac{p}{2}right)}{8 p^{3/4} Gamma left(frac{1}{4}right)}-frac{15 pi sqrt[4]{p} I_{-frac{1}{4}}left(frac{p}{2}right)}{8 Gamma left(frac{1}{4}right)}$$
for m=2 (usin two terms) gives te error -0.00286246 10 times better
how it is possible? it is suppose that Legendre it is orthogonal polinomial
calculus
$endgroup$
using legendre Polynomial between 0,1 for the exponential function you could get te following series
$$e^{-frac{p}{2}}=sum _{n=0}^{infty } sqrt{frac{pi }{2}} (-1)^{ n} (2 n+1) I_{n+frac{1}{2}}(1) P_nleft(frac{p}{2}right)$$ it is suppose that t is a good aproximation using only m=2 you get the error
$$e^{-frac{p}{2}}simeq -frac{5}{8} sqrt{frac{pi }{2}} left(3 p^2-4right) I_{frac{5}{2}}(1)+frac{3}{2} sqrt{frac{pi }{2}} p I_{frac{3}{2}}(1)+left(-sqrt{frac{pi }{2}}right) I_{frac{1}{2}}(1)$$ for p=1 the error it is about
0.027875
it is suppose that this series could be improve ( maybe get it better improve using chevyshef series) but de following series
$$e^{-frac{p}{2}}simeq frac{3 pi (4 p+7) I_{frac{3}{4}}left(frac{p}{2}right)}{8 p^{3/4} Gamma left(frac{1}{4}right)}-frac{15 pi sqrt[4]{p} I_{-frac{1}{4}}left(frac{p}{2}right)}{8 Gamma left(frac{1}{4}right)}$$
for m=2 (usin two terms) gives te error -0.00286246 10 times better
how it is possible? it is suppose that Legendre it is orthogonal polinomial
calculus
calculus
asked Dec 25 '18 at 12:36
CLERKRAMACLERKRAMA
84
84
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052077%2fabout-the-minimax-and-orthogonal-polynomial-exponential-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052077%2fabout-the-minimax-and-orthogonal-polynomial-exponential-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown