about the minimax and orthogonal polynomial Exponential function












0












$begingroup$


using legendre Polynomial between 0,1 for the exponential function you could get te following series
$$e^{-frac{p}{2}}=sum _{n=0}^{infty } sqrt{frac{pi }{2}} (-1)^{ n} (2 n+1) I_{n+frac{1}{2}}(1) P_nleft(frac{p}{2}right)$$ it is suppose that t is a good aproximation using only m=2 you get the error



$$e^{-frac{p}{2}}simeq -frac{5}{8} sqrt{frac{pi }{2}} left(3 p^2-4right) I_{frac{5}{2}}(1)+frac{3}{2} sqrt{frac{pi }{2}} p I_{frac{3}{2}}(1)+left(-sqrt{frac{pi }{2}}right) I_{frac{1}{2}}(1)$$ for p=1 the error it is about
0.027875
it is suppose that this series could be improve ( maybe get it better improve using chevyshef series) but de following series
$$e^{-frac{p}{2}}simeq frac{3 pi (4 p+7) I_{frac{3}{4}}left(frac{p}{2}right)}{8 p^{3/4} Gamma left(frac{1}{4}right)}-frac{15 pi sqrt[4]{p} I_{-frac{1}{4}}left(frac{p}{2}right)}{8 Gamma left(frac{1}{4}right)}$$
for m=2 (usin two terms) gives te error -0.00286246 10 times better
how it is possible? it is suppose that Legendre it is orthogonal polinomial










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    using legendre Polynomial between 0,1 for the exponential function you could get te following series
    $$e^{-frac{p}{2}}=sum _{n=0}^{infty } sqrt{frac{pi }{2}} (-1)^{ n} (2 n+1) I_{n+frac{1}{2}}(1) P_nleft(frac{p}{2}right)$$ it is suppose that t is a good aproximation using only m=2 you get the error



    $$e^{-frac{p}{2}}simeq -frac{5}{8} sqrt{frac{pi }{2}} left(3 p^2-4right) I_{frac{5}{2}}(1)+frac{3}{2} sqrt{frac{pi }{2}} p I_{frac{3}{2}}(1)+left(-sqrt{frac{pi }{2}}right) I_{frac{1}{2}}(1)$$ for p=1 the error it is about
    0.027875
    it is suppose that this series could be improve ( maybe get it better improve using chevyshef series) but de following series
    $$e^{-frac{p}{2}}simeq frac{3 pi (4 p+7) I_{frac{3}{4}}left(frac{p}{2}right)}{8 p^{3/4} Gamma left(frac{1}{4}right)}-frac{15 pi sqrt[4]{p} I_{-frac{1}{4}}left(frac{p}{2}right)}{8 Gamma left(frac{1}{4}right)}$$
    for m=2 (usin two terms) gives te error -0.00286246 10 times better
    how it is possible? it is suppose that Legendre it is orthogonal polinomial










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      using legendre Polynomial between 0,1 for the exponential function you could get te following series
      $$e^{-frac{p}{2}}=sum _{n=0}^{infty } sqrt{frac{pi }{2}} (-1)^{ n} (2 n+1) I_{n+frac{1}{2}}(1) P_nleft(frac{p}{2}right)$$ it is suppose that t is a good aproximation using only m=2 you get the error



      $$e^{-frac{p}{2}}simeq -frac{5}{8} sqrt{frac{pi }{2}} left(3 p^2-4right) I_{frac{5}{2}}(1)+frac{3}{2} sqrt{frac{pi }{2}} p I_{frac{3}{2}}(1)+left(-sqrt{frac{pi }{2}}right) I_{frac{1}{2}}(1)$$ for p=1 the error it is about
      0.027875
      it is suppose that this series could be improve ( maybe get it better improve using chevyshef series) but de following series
      $$e^{-frac{p}{2}}simeq frac{3 pi (4 p+7) I_{frac{3}{4}}left(frac{p}{2}right)}{8 p^{3/4} Gamma left(frac{1}{4}right)}-frac{15 pi sqrt[4]{p} I_{-frac{1}{4}}left(frac{p}{2}right)}{8 Gamma left(frac{1}{4}right)}$$
      for m=2 (usin two terms) gives te error -0.00286246 10 times better
      how it is possible? it is suppose that Legendre it is orthogonal polinomial










      share|cite|improve this question









      $endgroup$




      using legendre Polynomial between 0,1 for the exponential function you could get te following series
      $$e^{-frac{p}{2}}=sum _{n=0}^{infty } sqrt{frac{pi }{2}} (-1)^{ n} (2 n+1) I_{n+frac{1}{2}}(1) P_nleft(frac{p}{2}right)$$ it is suppose that t is a good aproximation using only m=2 you get the error



      $$e^{-frac{p}{2}}simeq -frac{5}{8} sqrt{frac{pi }{2}} left(3 p^2-4right) I_{frac{5}{2}}(1)+frac{3}{2} sqrt{frac{pi }{2}} p I_{frac{3}{2}}(1)+left(-sqrt{frac{pi }{2}}right) I_{frac{1}{2}}(1)$$ for p=1 the error it is about
      0.027875
      it is suppose that this series could be improve ( maybe get it better improve using chevyshef series) but de following series
      $$e^{-frac{p}{2}}simeq frac{3 pi (4 p+7) I_{frac{3}{4}}left(frac{p}{2}right)}{8 p^{3/4} Gamma left(frac{1}{4}right)}-frac{15 pi sqrt[4]{p} I_{-frac{1}{4}}left(frac{p}{2}right)}{8 Gamma left(frac{1}{4}right)}$$
      for m=2 (usin two terms) gives te error -0.00286246 10 times better
      how it is possible? it is suppose that Legendre it is orthogonal polinomial







      calculus






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 25 '18 at 12:36









      CLERKRAMACLERKRAMA

      84




      84






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052077%2fabout-the-minimax-and-orthogonal-polynomial-exponential-function%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052077%2fabout-the-minimax-and-orthogonal-polynomial-exponential-function%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Wiesbaden

          Marschland

          Dieringhausen