Keras CNN Error: expected Sequence to have 3 dimensions, but got array with shape (500, 400)
I'm getting this error. I'm quite new to ML.
ValueError: Error when checking input: expected Sequence to have 3 dimensions, but got array with shape (500, 400)
These are the below codes that I'm using.
print(X1_Train.shape)
print(X2_Train.shape)
print(y_train.shape)
====================================
Output (here I've 500 rows in each):
(500, 400)
(500, 1500)
(500,)
400 => timesteps (below)
1500 => n (below)
====================================
timesteps = 50 * 8
n = 50 * 30
def createClassifier():
sequence = Input(shape=(timesteps, 1), name='Sequence')
features = Input(shape=(n,), name='Features')
conv = Sequential()
conv.add(Conv1D(10, 5, activation='relu', input_shape=(timesteps, 1)))
conv.add(Conv1D(10, 5, activation='relu'))
conv.add(MaxPool1D(2))
conv.add(Dropout(0.5))
conv.add(Conv1D(5, 6, activation='relu'))
conv.add(Conv1D(5, 6, activation='relu'))
conv.add(MaxPool1D(2))
conv.add(Dropout(0.5))
conv.add(Flatten())
part1 = conv(sequence)
merged = concatenate([part1, features])
final = Dense(512, activation='relu')(merged)
final = Dropout(0.5)(final)
final = Dense(num_class, activation='softmax')(final)
model = Model(inputs=[sequence, features], outputs=[final])
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
model = createClassifier()
# print(model.summary())
history = model.fit([X1_Train, X2_Train], y_train, epochs =5)
Any insight please ?
Thanks in advance.
python machine-learning keras conv-neural-network
add a comment |
I'm getting this error. I'm quite new to ML.
ValueError: Error when checking input: expected Sequence to have 3 dimensions, but got array with shape (500, 400)
These are the below codes that I'm using.
print(X1_Train.shape)
print(X2_Train.shape)
print(y_train.shape)
====================================
Output (here I've 500 rows in each):
(500, 400)
(500, 1500)
(500,)
400 => timesteps (below)
1500 => n (below)
====================================
timesteps = 50 * 8
n = 50 * 30
def createClassifier():
sequence = Input(shape=(timesteps, 1), name='Sequence')
features = Input(shape=(n,), name='Features')
conv = Sequential()
conv.add(Conv1D(10, 5, activation='relu', input_shape=(timesteps, 1)))
conv.add(Conv1D(10, 5, activation='relu'))
conv.add(MaxPool1D(2))
conv.add(Dropout(0.5))
conv.add(Conv1D(5, 6, activation='relu'))
conv.add(Conv1D(5, 6, activation='relu'))
conv.add(MaxPool1D(2))
conv.add(Dropout(0.5))
conv.add(Flatten())
part1 = conv(sequence)
merged = concatenate([part1, features])
final = Dense(512, activation='relu')(merged)
final = Dropout(0.5)(final)
final = Dense(num_class, activation='softmax')(final)
model = Model(inputs=[sequence, features], outputs=[final])
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
model = createClassifier()
# print(model.summary())
history = model.fit([X1_Train, X2_Train], y_train, epochs =5)
Any insight please ?
Thanks in advance.
python machine-learning keras conv-neural-network
add a comment |
I'm getting this error. I'm quite new to ML.
ValueError: Error when checking input: expected Sequence to have 3 dimensions, but got array with shape (500, 400)
These are the below codes that I'm using.
print(X1_Train.shape)
print(X2_Train.shape)
print(y_train.shape)
====================================
Output (here I've 500 rows in each):
(500, 400)
(500, 1500)
(500,)
400 => timesteps (below)
1500 => n (below)
====================================
timesteps = 50 * 8
n = 50 * 30
def createClassifier():
sequence = Input(shape=(timesteps, 1), name='Sequence')
features = Input(shape=(n,), name='Features')
conv = Sequential()
conv.add(Conv1D(10, 5, activation='relu', input_shape=(timesteps, 1)))
conv.add(Conv1D(10, 5, activation='relu'))
conv.add(MaxPool1D(2))
conv.add(Dropout(0.5))
conv.add(Conv1D(5, 6, activation='relu'))
conv.add(Conv1D(5, 6, activation='relu'))
conv.add(MaxPool1D(2))
conv.add(Dropout(0.5))
conv.add(Flatten())
part1 = conv(sequence)
merged = concatenate([part1, features])
final = Dense(512, activation='relu')(merged)
final = Dropout(0.5)(final)
final = Dense(num_class, activation='softmax')(final)
model = Model(inputs=[sequence, features], outputs=[final])
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
model = createClassifier()
# print(model.summary())
history = model.fit([X1_Train, X2_Train], y_train, epochs =5)
Any insight please ?
Thanks in advance.
python machine-learning keras conv-neural-network
I'm getting this error. I'm quite new to ML.
ValueError: Error when checking input: expected Sequence to have 3 dimensions, but got array with shape (500, 400)
These are the below codes that I'm using.
print(X1_Train.shape)
print(X2_Train.shape)
print(y_train.shape)
====================================
Output (here I've 500 rows in each):
(500, 400)
(500, 1500)
(500,)
400 => timesteps (below)
1500 => n (below)
====================================
timesteps = 50 * 8
n = 50 * 30
def createClassifier():
sequence = Input(shape=(timesteps, 1), name='Sequence')
features = Input(shape=(n,), name='Features')
conv = Sequential()
conv.add(Conv1D(10, 5, activation='relu', input_shape=(timesteps, 1)))
conv.add(Conv1D(10, 5, activation='relu'))
conv.add(MaxPool1D(2))
conv.add(Dropout(0.5))
conv.add(Conv1D(5, 6, activation='relu'))
conv.add(Conv1D(5, 6, activation='relu'))
conv.add(MaxPool1D(2))
conv.add(Dropout(0.5))
conv.add(Flatten())
part1 = conv(sequence)
merged = concatenate([part1, features])
final = Dense(512, activation='relu')(merged)
final = Dropout(0.5)(final)
final = Dense(num_class, activation='softmax')(final)
model = Model(inputs=[sequence, features], outputs=[final])
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
model = createClassifier()
# print(model.summary())
history = model.fit([X1_Train, X2_Train], y_train, epochs =5)
Any insight please ?
Thanks in advance.
python machine-learning keras conv-neural-network
python machine-learning keras conv-neural-network
asked Nov 25 '18 at 6:03
Temp ExptTemp Expt
244
244
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
Two things -
Conv1D layer expects input to be in the shape (batch_size, x, filters)
, in your case (500,400,1)
.
You need to reshape your input layer, add another axis, of size 1. (this does not change anything in your data).
You are trying to use multiple inputs, Sequential API is not the best choice for that. I would recommend using the Functional API
Edit:
Regarding your comment, not sure what you did wrong, but this is a working version of your code (with fake data), with a reshape:
import keras
import numpy as np
X1_Train = np.ones((500,400))
X2_Train = np.ones((500,1500))
y_train = np.ones((500))
print(X1_Train.shape)
print(X2_Train.shape)
print(y_train.shape)
num_class = 1
timesteps = 50 * 8
n = 50 * 30
def createClassifier():
sequence = keras.layers.Input(shape=(timesteps, 1), name='Sequence')
features = keras.layers.Input(shape=(n,), name='Features')
conv = keras.Sequential()
conv.add(keras.layers.Conv1D(10, 5, activation='relu', input_shape=(timesteps, 1)))
conv.add(keras.layers.Conv1D(10, 5, activation='relu'))
conv.add(keras.layers.MaxPool1D(2))
conv.add(keras.layers.Dropout(0.5))
conv.add(keras.layers.Conv1D(5, 6, activation='relu'))
conv.add(keras.layers.Conv1D(5, 6, activation='relu'))
conv.add(keras.layers.MaxPool1D(2))
conv.add(keras.layers.Dropout(0.5))
conv.add(keras.layers.Flatten())
part1 = conv(sequence)
merged = keras.layers.concatenate([part1, features])
final = keras.layers.Dense(512, activation='relu')(merged)
final = keras.layers.Dropout(0.5)(final)
final = keras.layers.Dense(num_class, activation='softmax')(final)
model = keras.Model(inputs=[sequence, features], outputs=[final])
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
model = createClassifier()
# print(model.summary())
X1_Train = X1_Train.reshape((500,400,1))
history = model.fit([X1_Train, X2_Train], y_train, epochs =5)
With output:
Using TensorFlow backend.
(500, 400)
(500, 1500)
(500,)
Epoch 1/5
500/500 [==============================] - 1s 3ms/step - loss: 1.1921e-07 - acc: 1.0000
Epoch 2/5
500/500 [==============================] - 0s 160us/step - loss: 1.1921e-07 - acc: 1.0000
Epoch 3/5
500/500 [==============================] - 0s 166us/step - loss: 1.1921e-07 - acc: 1.0000
Epoch 4/5
500/500 [==============================] - 0s 154us/step - loss: 1.1921e-07 - acc: 1.0000
Epoch 5/5
500/500 [==============================] - 0s 157us/step - loss: 1.1921e-07 - acc: 1.0000
changed accordingly to (500, 400, 1). But it didn't work. I'm still getting an error. I changed the CNN layer as per functional API. But, I'm getting the below error. tensorflow.python.framework.errors_impl.InvalidArgumentError: indices[22,330] = -1 is not in [0, 400)
– Temp Expt
Nov 25 '18 at 9:10
Not sure what you did wrong with the reshape, edited and added a working version of your code, with fake data, note that I only added the reshape line.
– Dinari
Nov 25 '18 at 9:24
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53465066%2fkeras-cnn-error-expected-sequence-to-have-3-dimensions-but-got-array-with-shap%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Two things -
Conv1D layer expects input to be in the shape (batch_size, x, filters)
, in your case (500,400,1)
.
You need to reshape your input layer, add another axis, of size 1. (this does not change anything in your data).
You are trying to use multiple inputs, Sequential API is not the best choice for that. I would recommend using the Functional API
Edit:
Regarding your comment, not sure what you did wrong, but this is a working version of your code (with fake data), with a reshape:
import keras
import numpy as np
X1_Train = np.ones((500,400))
X2_Train = np.ones((500,1500))
y_train = np.ones((500))
print(X1_Train.shape)
print(X2_Train.shape)
print(y_train.shape)
num_class = 1
timesteps = 50 * 8
n = 50 * 30
def createClassifier():
sequence = keras.layers.Input(shape=(timesteps, 1), name='Sequence')
features = keras.layers.Input(shape=(n,), name='Features')
conv = keras.Sequential()
conv.add(keras.layers.Conv1D(10, 5, activation='relu', input_shape=(timesteps, 1)))
conv.add(keras.layers.Conv1D(10, 5, activation='relu'))
conv.add(keras.layers.MaxPool1D(2))
conv.add(keras.layers.Dropout(0.5))
conv.add(keras.layers.Conv1D(5, 6, activation='relu'))
conv.add(keras.layers.Conv1D(5, 6, activation='relu'))
conv.add(keras.layers.MaxPool1D(2))
conv.add(keras.layers.Dropout(0.5))
conv.add(keras.layers.Flatten())
part1 = conv(sequence)
merged = keras.layers.concatenate([part1, features])
final = keras.layers.Dense(512, activation='relu')(merged)
final = keras.layers.Dropout(0.5)(final)
final = keras.layers.Dense(num_class, activation='softmax')(final)
model = keras.Model(inputs=[sequence, features], outputs=[final])
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
model = createClassifier()
# print(model.summary())
X1_Train = X1_Train.reshape((500,400,1))
history = model.fit([X1_Train, X2_Train], y_train, epochs =5)
With output:
Using TensorFlow backend.
(500, 400)
(500, 1500)
(500,)
Epoch 1/5
500/500 [==============================] - 1s 3ms/step - loss: 1.1921e-07 - acc: 1.0000
Epoch 2/5
500/500 [==============================] - 0s 160us/step - loss: 1.1921e-07 - acc: 1.0000
Epoch 3/5
500/500 [==============================] - 0s 166us/step - loss: 1.1921e-07 - acc: 1.0000
Epoch 4/5
500/500 [==============================] - 0s 154us/step - loss: 1.1921e-07 - acc: 1.0000
Epoch 5/5
500/500 [==============================] - 0s 157us/step - loss: 1.1921e-07 - acc: 1.0000
changed accordingly to (500, 400, 1). But it didn't work. I'm still getting an error. I changed the CNN layer as per functional API. But, I'm getting the below error. tensorflow.python.framework.errors_impl.InvalidArgumentError: indices[22,330] = -1 is not in [0, 400)
– Temp Expt
Nov 25 '18 at 9:10
Not sure what you did wrong with the reshape, edited and added a working version of your code, with fake data, note that I only added the reshape line.
– Dinari
Nov 25 '18 at 9:24
add a comment |
Two things -
Conv1D layer expects input to be in the shape (batch_size, x, filters)
, in your case (500,400,1)
.
You need to reshape your input layer, add another axis, of size 1. (this does not change anything in your data).
You are trying to use multiple inputs, Sequential API is not the best choice for that. I would recommend using the Functional API
Edit:
Regarding your comment, not sure what you did wrong, but this is a working version of your code (with fake data), with a reshape:
import keras
import numpy as np
X1_Train = np.ones((500,400))
X2_Train = np.ones((500,1500))
y_train = np.ones((500))
print(X1_Train.shape)
print(X2_Train.shape)
print(y_train.shape)
num_class = 1
timesteps = 50 * 8
n = 50 * 30
def createClassifier():
sequence = keras.layers.Input(shape=(timesteps, 1), name='Sequence')
features = keras.layers.Input(shape=(n,), name='Features')
conv = keras.Sequential()
conv.add(keras.layers.Conv1D(10, 5, activation='relu', input_shape=(timesteps, 1)))
conv.add(keras.layers.Conv1D(10, 5, activation='relu'))
conv.add(keras.layers.MaxPool1D(2))
conv.add(keras.layers.Dropout(0.5))
conv.add(keras.layers.Conv1D(5, 6, activation='relu'))
conv.add(keras.layers.Conv1D(5, 6, activation='relu'))
conv.add(keras.layers.MaxPool1D(2))
conv.add(keras.layers.Dropout(0.5))
conv.add(keras.layers.Flatten())
part1 = conv(sequence)
merged = keras.layers.concatenate([part1, features])
final = keras.layers.Dense(512, activation='relu')(merged)
final = keras.layers.Dropout(0.5)(final)
final = keras.layers.Dense(num_class, activation='softmax')(final)
model = keras.Model(inputs=[sequence, features], outputs=[final])
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
model = createClassifier()
# print(model.summary())
X1_Train = X1_Train.reshape((500,400,1))
history = model.fit([X1_Train, X2_Train], y_train, epochs =5)
With output:
Using TensorFlow backend.
(500, 400)
(500, 1500)
(500,)
Epoch 1/5
500/500 [==============================] - 1s 3ms/step - loss: 1.1921e-07 - acc: 1.0000
Epoch 2/5
500/500 [==============================] - 0s 160us/step - loss: 1.1921e-07 - acc: 1.0000
Epoch 3/5
500/500 [==============================] - 0s 166us/step - loss: 1.1921e-07 - acc: 1.0000
Epoch 4/5
500/500 [==============================] - 0s 154us/step - loss: 1.1921e-07 - acc: 1.0000
Epoch 5/5
500/500 [==============================] - 0s 157us/step - loss: 1.1921e-07 - acc: 1.0000
changed accordingly to (500, 400, 1). But it didn't work. I'm still getting an error. I changed the CNN layer as per functional API. But, I'm getting the below error. tensorflow.python.framework.errors_impl.InvalidArgumentError: indices[22,330] = -1 is not in [0, 400)
– Temp Expt
Nov 25 '18 at 9:10
Not sure what you did wrong with the reshape, edited and added a working version of your code, with fake data, note that I only added the reshape line.
– Dinari
Nov 25 '18 at 9:24
add a comment |
Two things -
Conv1D layer expects input to be in the shape (batch_size, x, filters)
, in your case (500,400,1)
.
You need to reshape your input layer, add another axis, of size 1. (this does not change anything in your data).
You are trying to use multiple inputs, Sequential API is not the best choice for that. I would recommend using the Functional API
Edit:
Regarding your comment, not sure what you did wrong, but this is a working version of your code (with fake data), with a reshape:
import keras
import numpy as np
X1_Train = np.ones((500,400))
X2_Train = np.ones((500,1500))
y_train = np.ones((500))
print(X1_Train.shape)
print(X2_Train.shape)
print(y_train.shape)
num_class = 1
timesteps = 50 * 8
n = 50 * 30
def createClassifier():
sequence = keras.layers.Input(shape=(timesteps, 1), name='Sequence')
features = keras.layers.Input(shape=(n,), name='Features')
conv = keras.Sequential()
conv.add(keras.layers.Conv1D(10, 5, activation='relu', input_shape=(timesteps, 1)))
conv.add(keras.layers.Conv1D(10, 5, activation='relu'))
conv.add(keras.layers.MaxPool1D(2))
conv.add(keras.layers.Dropout(0.5))
conv.add(keras.layers.Conv1D(5, 6, activation='relu'))
conv.add(keras.layers.Conv1D(5, 6, activation='relu'))
conv.add(keras.layers.MaxPool1D(2))
conv.add(keras.layers.Dropout(0.5))
conv.add(keras.layers.Flatten())
part1 = conv(sequence)
merged = keras.layers.concatenate([part1, features])
final = keras.layers.Dense(512, activation='relu')(merged)
final = keras.layers.Dropout(0.5)(final)
final = keras.layers.Dense(num_class, activation='softmax')(final)
model = keras.Model(inputs=[sequence, features], outputs=[final])
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
model = createClassifier()
# print(model.summary())
X1_Train = X1_Train.reshape((500,400,1))
history = model.fit([X1_Train, X2_Train], y_train, epochs =5)
With output:
Using TensorFlow backend.
(500, 400)
(500, 1500)
(500,)
Epoch 1/5
500/500 [==============================] - 1s 3ms/step - loss: 1.1921e-07 - acc: 1.0000
Epoch 2/5
500/500 [==============================] - 0s 160us/step - loss: 1.1921e-07 - acc: 1.0000
Epoch 3/5
500/500 [==============================] - 0s 166us/step - loss: 1.1921e-07 - acc: 1.0000
Epoch 4/5
500/500 [==============================] - 0s 154us/step - loss: 1.1921e-07 - acc: 1.0000
Epoch 5/5
500/500 [==============================] - 0s 157us/step - loss: 1.1921e-07 - acc: 1.0000
Two things -
Conv1D layer expects input to be in the shape (batch_size, x, filters)
, in your case (500,400,1)
.
You need to reshape your input layer, add another axis, of size 1. (this does not change anything in your data).
You are trying to use multiple inputs, Sequential API is not the best choice for that. I would recommend using the Functional API
Edit:
Regarding your comment, not sure what you did wrong, but this is a working version of your code (with fake data), with a reshape:
import keras
import numpy as np
X1_Train = np.ones((500,400))
X2_Train = np.ones((500,1500))
y_train = np.ones((500))
print(X1_Train.shape)
print(X2_Train.shape)
print(y_train.shape)
num_class = 1
timesteps = 50 * 8
n = 50 * 30
def createClassifier():
sequence = keras.layers.Input(shape=(timesteps, 1), name='Sequence')
features = keras.layers.Input(shape=(n,), name='Features')
conv = keras.Sequential()
conv.add(keras.layers.Conv1D(10, 5, activation='relu', input_shape=(timesteps, 1)))
conv.add(keras.layers.Conv1D(10, 5, activation='relu'))
conv.add(keras.layers.MaxPool1D(2))
conv.add(keras.layers.Dropout(0.5))
conv.add(keras.layers.Conv1D(5, 6, activation='relu'))
conv.add(keras.layers.Conv1D(5, 6, activation='relu'))
conv.add(keras.layers.MaxPool1D(2))
conv.add(keras.layers.Dropout(0.5))
conv.add(keras.layers.Flatten())
part1 = conv(sequence)
merged = keras.layers.concatenate([part1, features])
final = keras.layers.Dense(512, activation='relu')(merged)
final = keras.layers.Dropout(0.5)(final)
final = keras.layers.Dense(num_class, activation='softmax')(final)
model = keras.Model(inputs=[sequence, features], outputs=[final])
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
model = createClassifier()
# print(model.summary())
X1_Train = X1_Train.reshape((500,400,1))
history = model.fit([X1_Train, X2_Train], y_train, epochs =5)
With output:
Using TensorFlow backend.
(500, 400)
(500, 1500)
(500,)
Epoch 1/5
500/500 [==============================] - 1s 3ms/step - loss: 1.1921e-07 - acc: 1.0000
Epoch 2/5
500/500 [==============================] - 0s 160us/step - loss: 1.1921e-07 - acc: 1.0000
Epoch 3/5
500/500 [==============================] - 0s 166us/step - loss: 1.1921e-07 - acc: 1.0000
Epoch 4/5
500/500 [==============================] - 0s 154us/step - loss: 1.1921e-07 - acc: 1.0000
Epoch 5/5
500/500 [==============================] - 0s 157us/step - loss: 1.1921e-07 - acc: 1.0000
edited Nov 25 '18 at 9:22
answered Nov 25 '18 at 7:27
DinariDinari
1,669522
1,669522
changed accordingly to (500, 400, 1). But it didn't work. I'm still getting an error. I changed the CNN layer as per functional API. But, I'm getting the below error. tensorflow.python.framework.errors_impl.InvalidArgumentError: indices[22,330] = -1 is not in [0, 400)
– Temp Expt
Nov 25 '18 at 9:10
Not sure what you did wrong with the reshape, edited and added a working version of your code, with fake data, note that I only added the reshape line.
– Dinari
Nov 25 '18 at 9:24
add a comment |
changed accordingly to (500, 400, 1). But it didn't work. I'm still getting an error. I changed the CNN layer as per functional API. But, I'm getting the below error. tensorflow.python.framework.errors_impl.InvalidArgumentError: indices[22,330] = -1 is not in [0, 400)
– Temp Expt
Nov 25 '18 at 9:10
Not sure what you did wrong with the reshape, edited and added a working version of your code, with fake data, note that I only added the reshape line.
– Dinari
Nov 25 '18 at 9:24
changed accordingly to (500, 400, 1). But it didn't work. I'm still getting an error. I changed the CNN layer as per functional API. But, I'm getting the below error. tensorflow.python.framework.errors_impl.InvalidArgumentError: indices[22,330] = -1 is not in [0, 400)
– Temp Expt
Nov 25 '18 at 9:10
changed accordingly to (500, 400, 1). But it didn't work. I'm still getting an error. I changed the CNN layer as per functional API. But, I'm getting the below error. tensorflow.python.framework.errors_impl.InvalidArgumentError: indices[22,330] = -1 is not in [0, 400)
– Temp Expt
Nov 25 '18 at 9:10
Not sure what you did wrong with the reshape, edited and added a working version of your code, with fake data, note that I only added the reshape line.
– Dinari
Nov 25 '18 at 9:24
Not sure what you did wrong with the reshape, edited and added a working version of your code, with fake data, note that I only added the reshape line.
– Dinari
Nov 25 '18 at 9:24
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53465066%2fkeras-cnn-error-expected-sequence-to-have-3-dimensions-but-got-array-with-shap%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown