Solve the following eq [closed]












0












$begingroup$


Solve following integral $int ze^{2z} sin z dz$.



I am unable to solve this problem. Can anyone help me in solving it.










share|cite|improve this question











$endgroup$



closed as off-topic by mrtaurho, Namaste, Eevee Trainer, Carl Schildkraut, Brian Borchers Dec 26 '18 at 1:47


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – mrtaurho, Namaste, Eevee Trainer, Carl Schildkraut, Brian Borchers

If this question can be reworded to fit the rules in the help center, please edit the question.
















  • $begingroup$
    Use integration by parts two times
    $endgroup$
    – Dr. Sonnhard Graubner
    Dec 25 '18 at 11:39






  • 3




    $begingroup$
    Well what have you tried? Please show us your attempts, in MathJax, even if they are incorrect or don't lead anywhere. Perhaps you should start with integrating $zsin z$ first.
    $endgroup$
    – TheSimpliFire
    Dec 25 '18 at 11:39


















0












$begingroup$


Solve following integral $int ze^{2z} sin z dz$.



I am unable to solve this problem. Can anyone help me in solving it.










share|cite|improve this question











$endgroup$



closed as off-topic by mrtaurho, Namaste, Eevee Trainer, Carl Schildkraut, Brian Borchers Dec 26 '18 at 1:47


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – mrtaurho, Namaste, Eevee Trainer, Carl Schildkraut, Brian Borchers

If this question can be reworded to fit the rules in the help center, please edit the question.
















  • $begingroup$
    Use integration by parts two times
    $endgroup$
    – Dr. Sonnhard Graubner
    Dec 25 '18 at 11:39






  • 3




    $begingroup$
    Well what have you tried? Please show us your attempts, in MathJax, even if they are incorrect or don't lead anywhere. Perhaps you should start with integrating $zsin z$ first.
    $endgroup$
    – TheSimpliFire
    Dec 25 '18 at 11:39
















0












0








0


0



$begingroup$


Solve following integral $int ze^{2z} sin z dz$.



I am unable to solve this problem. Can anyone help me in solving it.










share|cite|improve this question











$endgroup$




Solve following integral $int ze^{2z} sin z dz$.



I am unable to solve this problem. Can anyone help me in solving it.







integration






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 25 '18 at 13:14









t.ysn

1397




1397










asked Dec 25 '18 at 11:38









ABCDABCD

93




93




closed as off-topic by mrtaurho, Namaste, Eevee Trainer, Carl Schildkraut, Brian Borchers Dec 26 '18 at 1:47


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – mrtaurho, Namaste, Eevee Trainer, Carl Schildkraut, Brian Borchers

If this question can be reworded to fit the rules in the help center, please edit the question.







closed as off-topic by mrtaurho, Namaste, Eevee Trainer, Carl Schildkraut, Brian Borchers Dec 26 '18 at 1:47


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – mrtaurho, Namaste, Eevee Trainer, Carl Schildkraut, Brian Borchers

If this question can be reworded to fit the rules in the help center, please edit the question.












  • $begingroup$
    Use integration by parts two times
    $endgroup$
    – Dr. Sonnhard Graubner
    Dec 25 '18 at 11:39






  • 3




    $begingroup$
    Well what have you tried? Please show us your attempts, in MathJax, even if they are incorrect or don't lead anywhere. Perhaps you should start with integrating $zsin z$ first.
    $endgroup$
    – TheSimpliFire
    Dec 25 '18 at 11:39




















  • $begingroup$
    Use integration by parts two times
    $endgroup$
    – Dr. Sonnhard Graubner
    Dec 25 '18 at 11:39






  • 3




    $begingroup$
    Well what have you tried? Please show us your attempts, in MathJax, even if they are incorrect or don't lead anywhere. Perhaps you should start with integrating $zsin z$ first.
    $endgroup$
    – TheSimpliFire
    Dec 25 '18 at 11:39


















$begingroup$
Use integration by parts two times
$endgroup$
– Dr. Sonnhard Graubner
Dec 25 '18 at 11:39




$begingroup$
Use integration by parts two times
$endgroup$
– Dr. Sonnhard Graubner
Dec 25 '18 at 11:39




3




3




$begingroup$
Well what have you tried? Please show us your attempts, in MathJax, even if they are incorrect or don't lead anywhere. Perhaps you should start with integrating $zsin z$ first.
$endgroup$
– TheSimpliFire
Dec 25 '18 at 11:39






$begingroup$
Well what have you tried? Please show us your attempts, in MathJax, even if they are incorrect or don't lead anywhere. Perhaps you should start with integrating $zsin z$ first.
$endgroup$
– TheSimpliFire
Dec 25 '18 at 11:39












2 Answers
2






active

oldest

votes


















2












$begingroup$

Integrate by parts: $int fg' = fg - int f'g$.



$f=x rightarrow f'=1$ and $g=e^{2x} sin{x} rightarrow g'= frac{2e^{2x} sin{x}-e^{2x} cos{x}}{5}$



So we have:
${displaystyleint}xmathrm{e}^{2x}sinleft(xright),mathrm{d}x=dfrac{xleft(2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)right)}{5}-{displaystyleint}dfrac{2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)}{5},mathrm{d}x$



Now solving: ${displaystyleint}dfrac{2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)}{5},mathrm{d}x$



Apply linearity: $=class{steps-node}{cssId{steps-node-1}{dfrac{2}{5}}}{displaystyleint}mathrm{e}^{2x}sinleft(xright),mathrm{d}x-class{steps-node}{cssId{steps-node-2}{dfrac{1}{5}}}{displaystyleint}mathrm{e}^{2x}cosleft(xright),mathrm{d}x$.



Now solving:${displaystyleint}mathrm{e}^{2x}sinleft(xright),mathrm{d}x$, We will integrate by parts twice in a row, so we have:
$$=dfrac{mathrm{e}^{2x}sinleft(xright)}{2}-{displaystyleint}dfrac{mathrm{e}^{2x}cosleft(xright)}{2},mathrm{d}x$$
$$=dfrac{mathrm{e}^{2x}sinleft(xright)}{2}-left(dfrac{mathrm{e}^{2x}cosleft(xright)}{4}-{displaystyleint}-dfrac{mathrm{e}^{2x}sinleft(xright)}{4},mathrm{d}xright)$$
$$=dfrac{mathrm{e}^{2x}sinleft(xright)}{2}-left(dfrac{mathrm{e}^{2x}cosleft(xright)}{4}+class{steps-node}{cssId{steps-node-4}{dfrac{1}{4}}}{displaystyleint}mathrm{e}^{2x}sinleft(xright),mathrm{d}xright)$$



The integral ${displaystyleint}mathrm{e}^{2x}sinleft(xright),mathrm{d}x$ appears again on the right side of the equation, we can solve for it:
$$=dfrac{2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)}{5}$$



Now solving ${displaystyleint}mathrm{e}^{2x}cosleft(xright),mathrm{d}x$ same as above, we have:
$${displaystyleint}mathrm{e}^{2x}cosleft(xright),mathrm{d}x=dfrac{mathrm{e}^{2x}cosleft(xright)}{2}-{displaystyleint}-dfrac{mathrm{e}^{2x}sinleft(xright)}{2},mathrm{d}x=dfrac{mathrm{e}^{2x}cosleft(xright)}{2}-left(-dfrac{mathrm{e}^{2x}sinleft(xright)}{4}-{displaystyleint}-dfrac{mathrm{e}^{2x}cosleft(xright)}{4},mathrm{d}xright)=dfrac{mathrm{e}^{2x}cosleft(xright)}{2}-left(-dfrac{mathrm{e}^{2x}sinleft(xright)}{4}+class{steps-node}{cssId{steps-node-6}{dfrac{1}{4}}}{displaystyleint}mathrm{e}^{2x}cosleft(xright),mathrm{d}xright)=dfrac{mathrm{e}^{2x}sinleft(xright)+2mathrm{e}^{2x}cosleft(xright)}{5}$$



Plug in solved integrals:
$$class{steps-node}{cssId{steps-node-7}{dfrac{2}{5}}}{displaystyleint}mathrm{e}^{2x}sinleft(xright),mathrm{d}x-class{steps-node}{cssId{steps-node-8}{dfrac{1}{5}}}{displaystyleint}mathrm{e}^{2x}cosleft(xright),mathrm{d}x=dfrac{2left(2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)right)}{25}-dfrac{mathrm{e}^{2x}sinleft(xright)+2mathrm{e}^{2x}cosleft(xright)}{25}$$



and:
$$dfrac{xleft(2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)right)}{5}-{displaystyleint}dfrac{2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)}{5},mathrm{d}x=dfrac{xleft(2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)right)}{5}-dfrac{2left(2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)right)}{25}+dfrac{mathrm{e}^{2x}sinleft(xright)+2mathrm{e}^{2x}cosleft(xright)}{25}$$



The problem is solved:
$${displaystyleint}xmathrm{e}^{2x}sinleft(xright),mathrm{d}x=dfrac{xleft(2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)right)}{5}-dfrac{2left(2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)right)}{25}+dfrac{mathrm{e}^{2x}sinleft(xright)+2mathrm{e}^{2x}cosleft(xright)}{25}+C=dfrac{mathrm{e}^{2x}left(left(10x-3right)sinleft(xright)+left(4-5xright)cosleft(xright)right)}{25}+C$$






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    Note that



    $$ int ze^{2z}sin z dz = operatorname{Im}left{int ze^{(2+i)z} dz right} $$



    Using integration by parts



    begin{align}
    int z e^{(2+i)z} dz &= frac{1}{2+i}ze^{(2+i)z}- frac{1}{2+i}int e^{(2+i)z}dz \
    &= frac{1}{2+i}ze^{(2+i)z} - frac{1}{(2+i)^2}e^{(2+i)z} + C \
    &= frac{2-i}{5}ze^{(2+i)z} - frac{3-4i}{25}e^{(2+i)z} + C
    end{align}



    Taking the imaginary part of the above, we obtain



    $$ operatorname{Re}left{ frac{2-i}{5}ze^{(2+i)z} - frac{3-4i}{25}e^{(2+i)z}right} = frac25 ze^{2z}sin z - frac15 ze^{2z}cos z - frac{3}{25}e^{2z}sin z + frac{4}{25}e^{2z}cos z $$






    share|cite|improve this answer









    $endgroup$




















      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      Integrate by parts: $int fg' = fg - int f'g$.



      $f=x rightarrow f'=1$ and $g=e^{2x} sin{x} rightarrow g'= frac{2e^{2x} sin{x}-e^{2x} cos{x}}{5}$



      So we have:
      ${displaystyleint}xmathrm{e}^{2x}sinleft(xright),mathrm{d}x=dfrac{xleft(2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)right)}{5}-{displaystyleint}dfrac{2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)}{5},mathrm{d}x$



      Now solving: ${displaystyleint}dfrac{2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)}{5},mathrm{d}x$



      Apply linearity: $=class{steps-node}{cssId{steps-node-1}{dfrac{2}{5}}}{displaystyleint}mathrm{e}^{2x}sinleft(xright),mathrm{d}x-class{steps-node}{cssId{steps-node-2}{dfrac{1}{5}}}{displaystyleint}mathrm{e}^{2x}cosleft(xright),mathrm{d}x$.



      Now solving:${displaystyleint}mathrm{e}^{2x}sinleft(xright),mathrm{d}x$, We will integrate by parts twice in a row, so we have:
      $$=dfrac{mathrm{e}^{2x}sinleft(xright)}{2}-{displaystyleint}dfrac{mathrm{e}^{2x}cosleft(xright)}{2},mathrm{d}x$$
      $$=dfrac{mathrm{e}^{2x}sinleft(xright)}{2}-left(dfrac{mathrm{e}^{2x}cosleft(xright)}{4}-{displaystyleint}-dfrac{mathrm{e}^{2x}sinleft(xright)}{4},mathrm{d}xright)$$
      $$=dfrac{mathrm{e}^{2x}sinleft(xright)}{2}-left(dfrac{mathrm{e}^{2x}cosleft(xright)}{4}+class{steps-node}{cssId{steps-node-4}{dfrac{1}{4}}}{displaystyleint}mathrm{e}^{2x}sinleft(xright),mathrm{d}xright)$$



      The integral ${displaystyleint}mathrm{e}^{2x}sinleft(xright),mathrm{d}x$ appears again on the right side of the equation, we can solve for it:
      $$=dfrac{2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)}{5}$$



      Now solving ${displaystyleint}mathrm{e}^{2x}cosleft(xright),mathrm{d}x$ same as above, we have:
      $${displaystyleint}mathrm{e}^{2x}cosleft(xright),mathrm{d}x=dfrac{mathrm{e}^{2x}cosleft(xright)}{2}-{displaystyleint}-dfrac{mathrm{e}^{2x}sinleft(xright)}{2},mathrm{d}x=dfrac{mathrm{e}^{2x}cosleft(xright)}{2}-left(-dfrac{mathrm{e}^{2x}sinleft(xright)}{4}-{displaystyleint}-dfrac{mathrm{e}^{2x}cosleft(xright)}{4},mathrm{d}xright)=dfrac{mathrm{e}^{2x}cosleft(xright)}{2}-left(-dfrac{mathrm{e}^{2x}sinleft(xright)}{4}+class{steps-node}{cssId{steps-node-6}{dfrac{1}{4}}}{displaystyleint}mathrm{e}^{2x}cosleft(xright),mathrm{d}xright)=dfrac{mathrm{e}^{2x}sinleft(xright)+2mathrm{e}^{2x}cosleft(xright)}{5}$$



      Plug in solved integrals:
      $$class{steps-node}{cssId{steps-node-7}{dfrac{2}{5}}}{displaystyleint}mathrm{e}^{2x}sinleft(xright),mathrm{d}x-class{steps-node}{cssId{steps-node-8}{dfrac{1}{5}}}{displaystyleint}mathrm{e}^{2x}cosleft(xright),mathrm{d}x=dfrac{2left(2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)right)}{25}-dfrac{mathrm{e}^{2x}sinleft(xright)+2mathrm{e}^{2x}cosleft(xright)}{25}$$



      and:
      $$dfrac{xleft(2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)right)}{5}-{displaystyleint}dfrac{2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)}{5},mathrm{d}x=dfrac{xleft(2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)right)}{5}-dfrac{2left(2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)right)}{25}+dfrac{mathrm{e}^{2x}sinleft(xright)+2mathrm{e}^{2x}cosleft(xright)}{25}$$



      The problem is solved:
      $${displaystyleint}xmathrm{e}^{2x}sinleft(xright),mathrm{d}x=dfrac{xleft(2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)right)}{5}-dfrac{2left(2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)right)}{25}+dfrac{mathrm{e}^{2x}sinleft(xright)+2mathrm{e}^{2x}cosleft(xright)}{25}+C=dfrac{mathrm{e}^{2x}left(left(10x-3right)sinleft(xright)+left(4-5xright)cosleft(xright)right)}{25}+C$$






      share|cite|improve this answer









      $endgroup$


















        2












        $begingroup$

        Integrate by parts: $int fg' = fg - int f'g$.



        $f=x rightarrow f'=1$ and $g=e^{2x} sin{x} rightarrow g'= frac{2e^{2x} sin{x}-e^{2x} cos{x}}{5}$



        So we have:
        ${displaystyleint}xmathrm{e}^{2x}sinleft(xright),mathrm{d}x=dfrac{xleft(2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)right)}{5}-{displaystyleint}dfrac{2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)}{5},mathrm{d}x$



        Now solving: ${displaystyleint}dfrac{2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)}{5},mathrm{d}x$



        Apply linearity: $=class{steps-node}{cssId{steps-node-1}{dfrac{2}{5}}}{displaystyleint}mathrm{e}^{2x}sinleft(xright),mathrm{d}x-class{steps-node}{cssId{steps-node-2}{dfrac{1}{5}}}{displaystyleint}mathrm{e}^{2x}cosleft(xright),mathrm{d}x$.



        Now solving:${displaystyleint}mathrm{e}^{2x}sinleft(xright),mathrm{d}x$, We will integrate by parts twice in a row, so we have:
        $$=dfrac{mathrm{e}^{2x}sinleft(xright)}{2}-{displaystyleint}dfrac{mathrm{e}^{2x}cosleft(xright)}{2},mathrm{d}x$$
        $$=dfrac{mathrm{e}^{2x}sinleft(xright)}{2}-left(dfrac{mathrm{e}^{2x}cosleft(xright)}{4}-{displaystyleint}-dfrac{mathrm{e}^{2x}sinleft(xright)}{4},mathrm{d}xright)$$
        $$=dfrac{mathrm{e}^{2x}sinleft(xright)}{2}-left(dfrac{mathrm{e}^{2x}cosleft(xright)}{4}+class{steps-node}{cssId{steps-node-4}{dfrac{1}{4}}}{displaystyleint}mathrm{e}^{2x}sinleft(xright),mathrm{d}xright)$$



        The integral ${displaystyleint}mathrm{e}^{2x}sinleft(xright),mathrm{d}x$ appears again on the right side of the equation, we can solve for it:
        $$=dfrac{2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)}{5}$$



        Now solving ${displaystyleint}mathrm{e}^{2x}cosleft(xright),mathrm{d}x$ same as above, we have:
        $${displaystyleint}mathrm{e}^{2x}cosleft(xright),mathrm{d}x=dfrac{mathrm{e}^{2x}cosleft(xright)}{2}-{displaystyleint}-dfrac{mathrm{e}^{2x}sinleft(xright)}{2},mathrm{d}x=dfrac{mathrm{e}^{2x}cosleft(xright)}{2}-left(-dfrac{mathrm{e}^{2x}sinleft(xright)}{4}-{displaystyleint}-dfrac{mathrm{e}^{2x}cosleft(xright)}{4},mathrm{d}xright)=dfrac{mathrm{e}^{2x}cosleft(xright)}{2}-left(-dfrac{mathrm{e}^{2x}sinleft(xright)}{4}+class{steps-node}{cssId{steps-node-6}{dfrac{1}{4}}}{displaystyleint}mathrm{e}^{2x}cosleft(xright),mathrm{d}xright)=dfrac{mathrm{e}^{2x}sinleft(xright)+2mathrm{e}^{2x}cosleft(xright)}{5}$$



        Plug in solved integrals:
        $$class{steps-node}{cssId{steps-node-7}{dfrac{2}{5}}}{displaystyleint}mathrm{e}^{2x}sinleft(xright),mathrm{d}x-class{steps-node}{cssId{steps-node-8}{dfrac{1}{5}}}{displaystyleint}mathrm{e}^{2x}cosleft(xright),mathrm{d}x=dfrac{2left(2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)right)}{25}-dfrac{mathrm{e}^{2x}sinleft(xright)+2mathrm{e}^{2x}cosleft(xright)}{25}$$



        and:
        $$dfrac{xleft(2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)right)}{5}-{displaystyleint}dfrac{2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)}{5},mathrm{d}x=dfrac{xleft(2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)right)}{5}-dfrac{2left(2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)right)}{25}+dfrac{mathrm{e}^{2x}sinleft(xright)+2mathrm{e}^{2x}cosleft(xright)}{25}$$



        The problem is solved:
        $${displaystyleint}xmathrm{e}^{2x}sinleft(xright),mathrm{d}x=dfrac{xleft(2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)right)}{5}-dfrac{2left(2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)right)}{25}+dfrac{mathrm{e}^{2x}sinleft(xright)+2mathrm{e}^{2x}cosleft(xright)}{25}+C=dfrac{mathrm{e}^{2x}left(left(10x-3right)sinleft(xright)+left(4-5xright)cosleft(xright)right)}{25}+C$$






        share|cite|improve this answer









        $endgroup$
















          2












          2








          2





          $begingroup$

          Integrate by parts: $int fg' = fg - int f'g$.



          $f=x rightarrow f'=1$ and $g=e^{2x} sin{x} rightarrow g'= frac{2e^{2x} sin{x}-e^{2x} cos{x}}{5}$



          So we have:
          ${displaystyleint}xmathrm{e}^{2x}sinleft(xright),mathrm{d}x=dfrac{xleft(2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)right)}{5}-{displaystyleint}dfrac{2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)}{5},mathrm{d}x$



          Now solving: ${displaystyleint}dfrac{2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)}{5},mathrm{d}x$



          Apply linearity: $=class{steps-node}{cssId{steps-node-1}{dfrac{2}{5}}}{displaystyleint}mathrm{e}^{2x}sinleft(xright),mathrm{d}x-class{steps-node}{cssId{steps-node-2}{dfrac{1}{5}}}{displaystyleint}mathrm{e}^{2x}cosleft(xright),mathrm{d}x$.



          Now solving:${displaystyleint}mathrm{e}^{2x}sinleft(xright),mathrm{d}x$, We will integrate by parts twice in a row, so we have:
          $$=dfrac{mathrm{e}^{2x}sinleft(xright)}{2}-{displaystyleint}dfrac{mathrm{e}^{2x}cosleft(xright)}{2},mathrm{d}x$$
          $$=dfrac{mathrm{e}^{2x}sinleft(xright)}{2}-left(dfrac{mathrm{e}^{2x}cosleft(xright)}{4}-{displaystyleint}-dfrac{mathrm{e}^{2x}sinleft(xright)}{4},mathrm{d}xright)$$
          $$=dfrac{mathrm{e}^{2x}sinleft(xright)}{2}-left(dfrac{mathrm{e}^{2x}cosleft(xright)}{4}+class{steps-node}{cssId{steps-node-4}{dfrac{1}{4}}}{displaystyleint}mathrm{e}^{2x}sinleft(xright),mathrm{d}xright)$$



          The integral ${displaystyleint}mathrm{e}^{2x}sinleft(xright),mathrm{d}x$ appears again on the right side of the equation, we can solve for it:
          $$=dfrac{2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)}{5}$$



          Now solving ${displaystyleint}mathrm{e}^{2x}cosleft(xright),mathrm{d}x$ same as above, we have:
          $${displaystyleint}mathrm{e}^{2x}cosleft(xright),mathrm{d}x=dfrac{mathrm{e}^{2x}cosleft(xright)}{2}-{displaystyleint}-dfrac{mathrm{e}^{2x}sinleft(xright)}{2},mathrm{d}x=dfrac{mathrm{e}^{2x}cosleft(xright)}{2}-left(-dfrac{mathrm{e}^{2x}sinleft(xright)}{4}-{displaystyleint}-dfrac{mathrm{e}^{2x}cosleft(xright)}{4},mathrm{d}xright)=dfrac{mathrm{e}^{2x}cosleft(xright)}{2}-left(-dfrac{mathrm{e}^{2x}sinleft(xright)}{4}+class{steps-node}{cssId{steps-node-6}{dfrac{1}{4}}}{displaystyleint}mathrm{e}^{2x}cosleft(xright),mathrm{d}xright)=dfrac{mathrm{e}^{2x}sinleft(xright)+2mathrm{e}^{2x}cosleft(xright)}{5}$$



          Plug in solved integrals:
          $$class{steps-node}{cssId{steps-node-7}{dfrac{2}{5}}}{displaystyleint}mathrm{e}^{2x}sinleft(xright),mathrm{d}x-class{steps-node}{cssId{steps-node-8}{dfrac{1}{5}}}{displaystyleint}mathrm{e}^{2x}cosleft(xright),mathrm{d}x=dfrac{2left(2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)right)}{25}-dfrac{mathrm{e}^{2x}sinleft(xright)+2mathrm{e}^{2x}cosleft(xright)}{25}$$



          and:
          $$dfrac{xleft(2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)right)}{5}-{displaystyleint}dfrac{2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)}{5},mathrm{d}x=dfrac{xleft(2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)right)}{5}-dfrac{2left(2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)right)}{25}+dfrac{mathrm{e}^{2x}sinleft(xright)+2mathrm{e}^{2x}cosleft(xright)}{25}$$



          The problem is solved:
          $${displaystyleint}xmathrm{e}^{2x}sinleft(xright),mathrm{d}x=dfrac{xleft(2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)right)}{5}-dfrac{2left(2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)right)}{25}+dfrac{mathrm{e}^{2x}sinleft(xright)+2mathrm{e}^{2x}cosleft(xright)}{25}+C=dfrac{mathrm{e}^{2x}left(left(10x-3right)sinleft(xright)+left(4-5xright)cosleft(xright)right)}{25}+C$$






          share|cite|improve this answer









          $endgroup$



          Integrate by parts: $int fg' = fg - int f'g$.



          $f=x rightarrow f'=1$ and $g=e^{2x} sin{x} rightarrow g'= frac{2e^{2x} sin{x}-e^{2x} cos{x}}{5}$



          So we have:
          ${displaystyleint}xmathrm{e}^{2x}sinleft(xright),mathrm{d}x=dfrac{xleft(2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)right)}{5}-{displaystyleint}dfrac{2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)}{5},mathrm{d}x$



          Now solving: ${displaystyleint}dfrac{2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)}{5},mathrm{d}x$



          Apply linearity: $=class{steps-node}{cssId{steps-node-1}{dfrac{2}{5}}}{displaystyleint}mathrm{e}^{2x}sinleft(xright),mathrm{d}x-class{steps-node}{cssId{steps-node-2}{dfrac{1}{5}}}{displaystyleint}mathrm{e}^{2x}cosleft(xright),mathrm{d}x$.



          Now solving:${displaystyleint}mathrm{e}^{2x}sinleft(xright),mathrm{d}x$, We will integrate by parts twice in a row, so we have:
          $$=dfrac{mathrm{e}^{2x}sinleft(xright)}{2}-{displaystyleint}dfrac{mathrm{e}^{2x}cosleft(xright)}{2},mathrm{d}x$$
          $$=dfrac{mathrm{e}^{2x}sinleft(xright)}{2}-left(dfrac{mathrm{e}^{2x}cosleft(xright)}{4}-{displaystyleint}-dfrac{mathrm{e}^{2x}sinleft(xright)}{4},mathrm{d}xright)$$
          $$=dfrac{mathrm{e}^{2x}sinleft(xright)}{2}-left(dfrac{mathrm{e}^{2x}cosleft(xright)}{4}+class{steps-node}{cssId{steps-node-4}{dfrac{1}{4}}}{displaystyleint}mathrm{e}^{2x}sinleft(xright),mathrm{d}xright)$$



          The integral ${displaystyleint}mathrm{e}^{2x}sinleft(xright),mathrm{d}x$ appears again on the right side of the equation, we can solve for it:
          $$=dfrac{2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)}{5}$$



          Now solving ${displaystyleint}mathrm{e}^{2x}cosleft(xright),mathrm{d}x$ same as above, we have:
          $${displaystyleint}mathrm{e}^{2x}cosleft(xright),mathrm{d}x=dfrac{mathrm{e}^{2x}cosleft(xright)}{2}-{displaystyleint}-dfrac{mathrm{e}^{2x}sinleft(xright)}{2},mathrm{d}x=dfrac{mathrm{e}^{2x}cosleft(xright)}{2}-left(-dfrac{mathrm{e}^{2x}sinleft(xright)}{4}-{displaystyleint}-dfrac{mathrm{e}^{2x}cosleft(xright)}{4},mathrm{d}xright)=dfrac{mathrm{e}^{2x}cosleft(xright)}{2}-left(-dfrac{mathrm{e}^{2x}sinleft(xright)}{4}+class{steps-node}{cssId{steps-node-6}{dfrac{1}{4}}}{displaystyleint}mathrm{e}^{2x}cosleft(xright),mathrm{d}xright)=dfrac{mathrm{e}^{2x}sinleft(xright)+2mathrm{e}^{2x}cosleft(xright)}{5}$$



          Plug in solved integrals:
          $$class{steps-node}{cssId{steps-node-7}{dfrac{2}{5}}}{displaystyleint}mathrm{e}^{2x}sinleft(xright),mathrm{d}x-class{steps-node}{cssId{steps-node-8}{dfrac{1}{5}}}{displaystyleint}mathrm{e}^{2x}cosleft(xright),mathrm{d}x=dfrac{2left(2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)right)}{25}-dfrac{mathrm{e}^{2x}sinleft(xright)+2mathrm{e}^{2x}cosleft(xright)}{25}$$



          and:
          $$dfrac{xleft(2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)right)}{5}-{displaystyleint}dfrac{2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)}{5},mathrm{d}x=dfrac{xleft(2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)right)}{5}-dfrac{2left(2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)right)}{25}+dfrac{mathrm{e}^{2x}sinleft(xright)+2mathrm{e}^{2x}cosleft(xright)}{25}$$



          The problem is solved:
          $${displaystyleint}xmathrm{e}^{2x}sinleft(xright),mathrm{d}x=dfrac{xleft(2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)right)}{5}-dfrac{2left(2mathrm{e}^{2x}sinleft(xright)-mathrm{e}^{2x}cosleft(xright)right)}{25}+dfrac{mathrm{e}^{2x}sinleft(xright)+2mathrm{e}^{2x}cosleft(xright)}{25}+C=dfrac{mathrm{e}^{2x}left(left(10x-3right)sinleft(xright)+left(4-5xright)cosleft(xright)right)}{25}+C$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 25 '18 at 13:08









          t.ysnt.ysn

          1397




          1397























              1












              $begingroup$

              Note that



              $$ int ze^{2z}sin z dz = operatorname{Im}left{int ze^{(2+i)z} dz right} $$



              Using integration by parts



              begin{align}
              int z e^{(2+i)z} dz &= frac{1}{2+i}ze^{(2+i)z}- frac{1}{2+i}int e^{(2+i)z}dz \
              &= frac{1}{2+i}ze^{(2+i)z} - frac{1}{(2+i)^2}e^{(2+i)z} + C \
              &= frac{2-i}{5}ze^{(2+i)z} - frac{3-4i}{25}e^{(2+i)z} + C
              end{align}



              Taking the imaginary part of the above, we obtain



              $$ operatorname{Re}left{ frac{2-i}{5}ze^{(2+i)z} - frac{3-4i}{25}e^{(2+i)z}right} = frac25 ze^{2z}sin z - frac15 ze^{2z}cos z - frac{3}{25}e^{2z}sin z + frac{4}{25}e^{2z}cos z $$






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                Note that



                $$ int ze^{2z}sin z dz = operatorname{Im}left{int ze^{(2+i)z} dz right} $$



                Using integration by parts



                begin{align}
                int z e^{(2+i)z} dz &= frac{1}{2+i}ze^{(2+i)z}- frac{1}{2+i}int e^{(2+i)z}dz \
                &= frac{1}{2+i}ze^{(2+i)z} - frac{1}{(2+i)^2}e^{(2+i)z} + C \
                &= frac{2-i}{5}ze^{(2+i)z} - frac{3-4i}{25}e^{(2+i)z} + C
                end{align}



                Taking the imaginary part of the above, we obtain



                $$ operatorname{Re}left{ frac{2-i}{5}ze^{(2+i)z} - frac{3-4i}{25}e^{(2+i)z}right} = frac25 ze^{2z}sin z - frac15 ze^{2z}cos z - frac{3}{25}e^{2z}sin z + frac{4}{25}e^{2z}cos z $$






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Note that



                  $$ int ze^{2z}sin z dz = operatorname{Im}left{int ze^{(2+i)z} dz right} $$



                  Using integration by parts



                  begin{align}
                  int z e^{(2+i)z} dz &= frac{1}{2+i}ze^{(2+i)z}- frac{1}{2+i}int e^{(2+i)z}dz \
                  &= frac{1}{2+i}ze^{(2+i)z} - frac{1}{(2+i)^2}e^{(2+i)z} + C \
                  &= frac{2-i}{5}ze^{(2+i)z} - frac{3-4i}{25}e^{(2+i)z} + C
                  end{align}



                  Taking the imaginary part of the above, we obtain



                  $$ operatorname{Re}left{ frac{2-i}{5}ze^{(2+i)z} - frac{3-4i}{25}e^{(2+i)z}right} = frac25 ze^{2z}sin z - frac15 ze^{2z}cos z - frac{3}{25}e^{2z}sin z + frac{4}{25}e^{2z}cos z $$






                  share|cite|improve this answer









                  $endgroup$



                  Note that



                  $$ int ze^{2z}sin z dz = operatorname{Im}left{int ze^{(2+i)z} dz right} $$



                  Using integration by parts



                  begin{align}
                  int z e^{(2+i)z} dz &= frac{1}{2+i}ze^{(2+i)z}- frac{1}{2+i}int e^{(2+i)z}dz \
                  &= frac{1}{2+i}ze^{(2+i)z} - frac{1}{(2+i)^2}e^{(2+i)z} + C \
                  &= frac{2-i}{5}ze^{(2+i)z} - frac{3-4i}{25}e^{(2+i)z} + C
                  end{align}



                  Taking the imaginary part of the above, we obtain



                  $$ operatorname{Re}left{ frac{2-i}{5}ze^{(2+i)z} - frac{3-4i}{25}e^{(2+i)z}right} = frac25 ze^{2z}sin z - frac15 ze^{2z}cos z - frac{3}{25}e^{2z}sin z + frac{4}{25}e^{2z}cos z $$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 25 '18 at 13:29









                  DylanDylan

                  13.7k31027




                  13.7k31027















                      Popular posts from this blog

                      Wiesbaden

                      Marschland

                      Dieringhausen