Evaluate $int_0^pi frac{sin^2 nx}{sin^2 x}dx$












1












$begingroup$


How do I evaluate this definite integral, I'm not even getting a slightest idea on how to approach this. Tried converting into cos using double angle property but that didn't help.



$$int_0^pi frac{sin^2 nx}{sin^2 x}dx$$










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    How do I evaluate this definite integral, I'm not even getting a slightest idea on how to approach this. Tried converting into cos using double angle property but that didn't help.



    $$int_0^pi frac{sin^2 nx}{sin^2 x}dx$$










    share|cite|improve this question











    $endgroup$















      1












      1








      1


      1



      $begingroup$


      How do I evaluate this definite integral, I'm not even getting a slightest idea on how to approach this. Tried converting into cos using double angle property but that didn't help.



      $$int_0^pi frac{sin^2 nx}{sin^2 x}dx$$










      share|cite|improve this question











      $endgroup$




      How do I evaluate this definite integral, I'm not even getting a slightest idea on how to approach this. Tried converting into cos using double angle property but that didn't help.



      $$int_0^pi frac{sin^2 nx}{sin^2 x}dx$$







      definite-integrals






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited May 20 '18 at 4:04









      John Glenn

      1,958524




      1,958524










      asked May 20 '18 at 2:24









      Aryan VermaAryan Verma

      111




      111






















          3 Answers
          3






          active

          oldest

          votes


















          3












          $begingroup$

          $$frac{sin nx}{sin x}=frac{e^{inx}-e^{-inx}}{e^{ix}-e^{-ix}}
          =sum_{r=1}^ne^{i(n+1-2r)x}$$
          $$frac{sin^2 nx}{sin^2 x}
          =n+sum_{(r,s)in A}e^{i(2n+2-2r-2s)x}
          =n+sum_{(r,s)in A}cos(2n+2-2r-2s)x
          $$
          where $A$ is the set of $(r,s)$ with $r$, $sin{1,2,ldots,n}$
          with $r+sne n+1$. The details of this are not important
          as $int_0^pi cos mx,dx=0$ for nonzero integers $m$. Therefore
          $$int_0^pifrac{sin^2 nx}{sin^2 x},dx=npi.$$






          share|cite|improve this answer









          $endgroup$





















            1












            $begingroup$

            Let $$I_{n}=int_{0}^{pi}frac{sin^2nx}{sin^2x} dx$$



            $$I_{n+1}-2I_{n}+I_{n-1}=0$$



            Thus $I_{1},I_{2},I_{3},...$ are in A.P



            $I_{1}=pi$



            $I_{2}=2pi$



            So, $I_{n}=npi$






            share|cite|improve this answer









            $endgroup$





















              0












              $begingroup$

              Hint:



              De Moivre's Formula: https://en.wikipedia.org/wiki/De_Moivre%27s_formula turns this integral into a rational function of sines and cosines.



              Then you can use Weierstrass' tangent half-angle substitution: https://en.wikipedia.org/wiki/Tangent_half-angle_substitution.






              share|cite|improve this answer









              $endgroup$













                Your Answer





                StackExchange.ifUsing("editor", function () {
                return StackExchange.using("mathjaxEditing", function () {
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                });
                });
                }, "mathjax-editing");

                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "69"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });














                draft saved

                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2788172%2fevaluate-int-0-pi-frac-sin2-nx-sin2-xdx%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown

























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                3












                $begingroup$

                $$frac{sin nx}{sin x}=frac{e^{inx}-e^{-inx}}{e^{ix}-e^{-ix}}
                =sum_{r=1}^ne^{i(n+1-2r)x}$$
                $$frac{sin^2 nx}{sin^2 x}
                =n+sum_{(r,s)in A}e^{i(2n+2-2r-2s)x}
                =n+sum_{(r,s)in A}cos(2n+2-2r-2s)x
                $$
                where $A$ is the set of $(r,s)$ with $r$, $sin{1,2,ldots,n}$
                with $r+sne n+1$. The details of this are not important
                as $int_0^pi cos mx,dx=0$ for nonzero integers $m$. Therefore
                $$int_0^pifrac{sin^2 nx}{sin^2 x},dx=npi.$$






                share|cite|improve this answer









                $endgroup$


















                  3












                  $begingroup$

                  $$frac{sin nx}{sin x}=frac{e^{inx}-e^{-inx}}{e^{ix}-e^{-ix}}
                  =sum_{r=1}^ne^{i(n+1-2r)x}$$
                  $$frac{sin^2 nx}{sin^2 x}
                  =n+sum_{(r,s)in A}e^{i(2n+2-2r-2s)x}
                  =n+sum_{(r,s)in A}cos(2n+2-2r-2s)x
                  $$
                  where $A$ is the set of $(r,s)$ with $r$, $sin{1,2,ldots,n}$
                  with $r+sne n+1$. The details of this are not important
                  as $int_0^pi cos mx,dx=0$ for nonzero integers $m$. Therefore
                  $$int_0^pifrac{sin^2 nx}{sin^2 x},dx=npi.$$






                  share|cite|improve this answer









                  $endgroup$
















                    3












                    3








                    3





                    $begingroup$

                    $$frac{sin nx}{sin x}=frac{e^{inx}-e^{-inx}}{e^{ix}-e^{-ix}}
                    =sum_{r=1}^ne^{i(n+1-2r)x}$$
                    $$frac{sin^2 nx}{sin^2 x}
                    =n+sum_{(r,s)in A}e^{i(2n+2-2r-2s)x}
                    =n+sum_{(r,s)in A}cos(2n+2-2r-2s)x
                    $$
                    where $A$ is the set of $(r,s)$ with $r$, $sin{1,2,ldots,n}$
                    with $r+sne n+1$. The details of this are not important
                    as $int_0^pi cos mx,dx=0$ for nonzero integers $m$. Therefore
                    $$int_0^pifrac{sin^2 nx}{sin^2 x},dx=npi.$$






                    share|cite|improve this answer









                    $endgroup$



                    $$frac{sin nx}{sin x}=frac{e^{inx}-e^{-inx}}{e^{ix}-e^{-ix}}
                    =sum_{r=1}^ne^{i(n+1-2r)x}$$
                    $$frac{sin^2 nx}{sin^2 x}
                    =n+sum_{(r,s)in A}e^{i(2n+2-2r-2s)x}
                    =n+sum_{(r,s)in A}cos(2n+2-2r-2s)x
                    $$
                    where $A$ is the set of $(r,s)$ with $r$, $sin{1,2,ldots,n}$
                    with $r+sne n+1$. The details of this are not important
                    as $int_0^pi cos mx,dx=0$ for nonzero integers $m$. Therefore
                    $$int_0^pifrac{sin^2 nx}{sin^2 x},dx=npi.$$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered May 20 '18 at 5:14









                    Lord Shark the UnknownLord Shark the Unknown

                    107k1161133




                    107k1161133























                        1












                        $begingroup$

                        Let $$I_{n}=int_{0}^{pi}frac{sin^2nx}{sin^2x} dx$$



                        $$I_{n+1}-2I_{n}+I_{n-1}=0$$



                        Thus $I_{1},I_{2},I_{3},...$ are in A.P



                        $I_{1}=pi$



                        $I_{2}=2pi$



                        So, $I_{n}=npi$






                        share|cite|improve this answer









                        $endgroup$


















                          1












                          $begingroup$

                          Let $$I_{n}=int_{0}^{pi}frac{sin^2nx}{sin^2x} dx$$



                          $$I_{n+1}-2I_{n}+I_{n-1}=0$$



                          Thus $I_{1},I_{2},I_{3},...$ are in A.P



                          $I_{1}=pi$



                          $I_{2}=2pi$



                          So, $I_{n}=npi$






                          share|cite|improve this answer









                          $endgroup$
















                            1












                            1








                            1





                            $begingroup$

                            Let $$I_{n}=int_{0}^{pi}frac{sin^2nx}{sin^2x} dx$$



                            $$I_{n+1}-2I_{n}+I_{n-1}=0$$



                            Thus $I_{1},I_{2},I_{3},...$ are in A.P



                            $I_{1}=pi$



                            $I_{2}=2pi$



                            So, $I_{n}=npi$






                            share|cite|improve this answer









                            $endgroup$



                            Let $$I_{n}=int_{0}^{pi}frac{sin^2nx}{sin^2x} dx$$



                            $$I_{n+1}-2I_{n}+I_{n-1}=0$$



                            Thus $I_{1},I_{2},I_{3},...$ are in A.P



                            $I_{1}=pi$



                            $I_{2}=2pi$



                            So, $I_{n}=npi$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Dec 30 '18 at 15:49









                            MaverickMaverick

                            2,101621




                            2,101621























                                0












                                $begingroup$

                                Hint:



                                De Moivre's Formula: https://en.wikipedia.org/wiki/De_Moivre%27s_formula turns this integral into a rational function of sines and cosines.



                                Then you can use Weierstrass' tangent half-angle substitution: https://en.wikipedia.org/wiki/Tangent_half-angle_substitution.






                                share|cite|improve this answer









                                $endgroup$


















                                  0












                                  $begingroup$

                                  Hint:



                                  De Moivre's Formula: https://en.wikipedia.org/wiki/De_Moivre%27s_formula turns this integral into a rational function of sines and cosines.



                                  Then you can use Weierstrass' tangent half-angle substitution: https://en.wikipedia.org/wiki/Tangent_half-angle_substitution.






                                  share|cite|improve this answer









                                  $endgroup$
















                                    0












                                    0








                                    0





                                    $begingroup$

                                    Hint:



                                    De Moivre's Formula: https://en.wikipedia.org/wiki/De_Moivre%27s_formula turns this integral into a rational function of sines and cosines.



                                    Then you can use Weierstrass' tangent half-angle substitution: https://en.wikipedia.org/wiki/Tangent_half-angle_substitution.






                                    share|cite|improve this answer









                                    $endgroup$



                                    Hint:



                                    De Moivre's Formula: https://en.wikipedia.org/wiki/De_Moivre%27s_formula turns this integral into a rational function of sines and cosines.



                                    Then you can use Weierstrass' tangent half-angle substitution: https://en.wikipedia.org/wiki/Tangent_half-angle_substitution.







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered May 20 '18 at 3:36









                                    DzoooksDzoooks

                                    905416




                                    905416






























                                        draft saved

                                        draft discarded




















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function () {
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2788172%2fevaluate-int-0-pi-frac-sin2-nx-sin2-xdx%23new-answer', 'question_page');
                                        }
                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        Wiesbaden

                                        Marschland

                                        Dieringhausen