Evaluate $int_0^pi frac{sin^2 nx}{sin^2 x}dx$
$begingroup$
How do I evaluate this definite integral, I'm not even getting a slightest idea on how to approach this. Tried converting into cos using double angle property but that didn't help.
$$int_0^pi frac{sin^2 nx}{sin^2 x}dx$$
definite-integrals
$endgroup$
add a comment |
$begingroup$
How do I evaluate this definite integral, I'm not even getting a slightest idea on how to approach this. Tried converting into cos using double angle property but that didn't help.
$$int_0^pi frac{sin^2 nx}{sin^2 x}dx$$
definite-integrals
$endgroup$
add a comment |
$begingroup$
How do I evaluate this definite integral, I'm not even getting a slightest idea on how to approach this. Tried converting into cos using double angle property but that didn't help.
$$int_0^pi frac{sin^2 nx}{sin^2 x}dx$$
definite-integrals
$endgroup$
How do I evaluate this definite integral, I'm not even getting a slightest idea on how to approach this. Tried converting into cos using double angle property but that didn't help.
$$int_0^pi frac{sin^2 nx}{sin^2 x}dx$$
definite-integrals
definite-integrals
edited May 20 '18 at 4:04
John Glenn
1,958524
1,958524
asked May 20 '18 at 2:24
Aryan VermaAryan Verma
111
111
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
$$frac{sin nx}{sin x}=frac{e^{inx}-e^{-inx}}{e^{ix}-e^{-ix}}
=sum_{r=1}^ne^{i(n+1-2r)x}$$
$$frac{sin^2 nx}{sin^2 x}
=n+sum_{(r,s)in A}e^{i(2n+2-2r-2s)x}
=n+sum_{(r,s)in A}cos(2n+2-2r-2s)x
$$
where $A$ is the set of $(r,s)$ with $r$, $sin{1,2,ldots,n}$
with $r+sne n+1$. The details of this are not important
as $int_0^pi cos mx,dx=0$ for nonzero integers $m$. Therefore
$$int_0^pifrac{sin^2 nx}{sin^2 x},dx=npi.$$
$endgroup$
add a comment |
$begingroup$
Let $$I_{n}=int_{0}^{pi}frac{sin^2nx}{sin^2x} dx$$
$$I_{n+1}-2I_{n}+I_{n-1}=0$$
Thus $I_{1},I_{2},I_{3},...$ are in A.P
$I_{1}=pi$
$I_{2}=2pi$
So, $I_{n}=npi$
$endgroup$
add a comment |
$begingroup$
Hint:
De Moivre's Formula: https://en.wikipedia.org/wiki/De_Moivre%27s_formula turns this integral into a rational function of sines and cosines.
Then you can use Weierstrass' tangent half-angle substitution: https://en.wikipedia.org/wiki/Tangent_half-angle_substitution.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2788172%2fevaluate-int-0-pi-frac-sin2-nx-sin2-xdx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$frac{sin nx}{sin x}=frac{e^{inx}-e^{-inx}}{e^{ix}-e^{-ix}}
=sum_{r=1}^ne^{i(n+1-2r)x}$$
$$frac{sin^2 nx}{sin^2 x}
=n+sum_{(r,s)in A}e^{i(2n+2-2r-2s)x}
=n+sum_{(r,s)in A}cos(2n+2-2r-2s)x
$$
where $A$ is the set of $(r,s)$ with $r$, $sin{1,2,ldots,n}$
with $r+sne n+1$. The details of this are not important
as $int_0^pi cos mx,dx=0$ for nonzero integers $m$. Therefore
$$int_0^pifrac{sin^2 nx}{sin^2 x},dx=npi.$$
$endgroup$
add a comment |
$begingroup$
$$frac{sin nx}{sin x}=frac{e^{inx}-e^{-inx}}{e^{ix}-e^{-ix}}
=sum_{r=1}^ne^{i(n+1-2r)x}$$
$$frac{sin^2 nx}{sin^2 x}
=n+sum_{(r,s)in A}e^{i(2n+2-2r-2s)x}
=n+sum_{(r,s)in A}cos(2n+2-2r-2s)x
$$
where $A$ is the set of $(r,s)$ with $r$, $sin{1,2,ldots,n}$
with $r+sne n+1$. The details of this are not important
as $int_0^pi cos mx,dx=0$ for nonzero integers $m$. Therefore
$$int_0^pifrac{sin^2 nx}{sin^2 x},dx=npi.$$
$endgroup$
add a comment |
$begingroup$
$$frac{sin nx}{sin x}=frac{e^{inx}-e^{-inx}}{e^{ix}-e^{-ix}}
=sum_{r=1}^ne^{i(n+1-2r)x}$$
$$frac{sin^2 nx}{sin^2 x}
=n+sum_{(r,s)in A}e^{i(2n+2-2r-2s)x}
=n+sum_{(r,s)in A}cos(2n+2-2r-2s)x
$$
where $A$ is the set of $(r,s)$ with $r$, $sin{1,2,ldots,n}$
with $r+sne n+1$. The details of this are not important
as $int_0^pi cos mx,dx=0$ for nonzero integers $m$. Therefore
$$int_0^pifrac{sin^2 nx}{sin^2 x},dx=npi.$$
$endgroup$
$$frac{sin nx}{sin x}=frac{e^{inx}-e^{-inx}}{e^{ix}-e^{-ix}}
=sum_{r=1}^ne^{i(n+1-2r)x}$$
$$frac{sin^2 nx}{sin^2 x}
=n+sum_{(r,s)in A}e^{i(2n+2-2r-2s)x}
=n+sum_{(r,s)in A}cos(2n+2-2r-2s)x
$$
where $A$ is the set of $(r,s)$ with $r$, $sin{1,2,ldots,n}$
with $r+sne n+1$. The details of this are not important
as $int_0^pi cos mx,dx=0$ for nonzero integers $m$. Therefore
$$int_0^pifrac{sin^2 nx}{sin^2 x},dx=npi.$$
answered May 20 '18 at 5:14
Lord Shark the UnknownLord Shark the Unknown
107k1161133
107k1161133
add a comment |
add a comment |
$begingroup$
Let $$I_{n}=int_{0}^{pi}frac{sin^2nx}{sin^2x} dx$$
$$I_{n+1}-2I_{n}+I_{n-1}=0$$
Thus $I_{1},I_{2},I_{3},...$ are in A.P
$I_{1}=pi$
$I_{2}=2pi$
So, $I_{n}=npi$
$endgroup$
add a comment |
$begingroup$
Let $$I_{n}=int_{0}^{pi}frac{sin^2nx}{sin^2x} dx$$
$$I_{n+1}-2I_{n}+I_{n-1}=0$$
Thus $I_{1},I_{2},I_{3},...$ are in A.P
$I_{1}=pi$
$I_{2}=2pi$
So, $I_{n}=npi$
$endgroup$
add a comment |
$begingroup$
Let $$I_{n}=int_{0}^{pi}frac{sin^2nx}{sin^2x} dx$$
$$I_{n+1}-2I_{n}+I_{n-1}=0$$
Thus $I_{1},I_{2},I_{3},...$ are in A.P
$I_{1}=pi$
$I_{2}=2pi$
So, $I_{n}=npi$
$endgroup$
Let $$I_{n}=int_{0}^{pi}frac{sin^2nx}{sin^2x} dx$$
$$I_{n+1}-2I_{n}+I_{n-1}=0$$
Thus $I_{1},I_{2},I_{3},...$ are in A.P
$I_{1}=pi$
$I_{2}=2pi$
So, $I_{n}=npi$
answered Dec 30 '18 at 15:49
MaverickMaverick
2,101621
2,101621
add a comment |
add a comment |
$begingroup$
Hint:
De Moivre's Formula: https://en.wikipedia.org/wiki/De_Moivre%27s_formula turns this integral into a rational function of sines and cosines.
Then you can use Weierstrass' tangent half-angle substitution: https://en.wikipedia.org/wiki/Tangent_half-angle_substitution.
$endgroup$
add a comment |
$begingroup$
Hint:
De Moivre's Formula: https://en.wikipedia.org/wiki/De_Moivre%27s_formula turns this integral into a rational function of sines and cosines.
Then you can use Weierstrass' tangent half-angle substitution: https://en.wikipedia.org/wiki/Tangent_half-angle_substitution.
$endgroup$
add a comment |
$begingroup$
Hint:
De Moivre's Formula: https://en.wikipedia.org/wiki/De_Moivre%27s_formula turns this integral into a rational function of sines and cosines.
Then you can use Weierstrass' tangent half-angle substitution: https://en.wikipedia.org/wiki/Tangent_half-angle_substitution.
$endgroup$
Hint:
De Moivre's Formula: https://en.wikipedia.org/wiki/De_Moivre%27s_formula turns this integral into a rational function of sines and cosines.
Then you can use Weierstrass' tangent half-angle substitution: https://en.wikipedia.org/wiki/Tangent_half-angle_substitution.
answered May 20 '18 at 3:36
DzoooksDzoooks
905416
905416
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2788172%2fevaluate-int-0-pi-frac-sin2-nx-sin2-xdx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown