$(f,g) = C(X) Longleftrightarrow Z(f) cap Z(g) = emptyset$
$begingroup$
Theorem:
a: If $I$is an ideal in $C(X)$ , then the family $Z[I] = { Z(f) : f in I } $ is a $z$-filter on $X$.
b: if $mathbf{F}$ is a $z$-filter on $X$, then the family $Z^{-1} [ mathbf{F} ] = { f : Z(f) in mathbf{F} }$ is an ideal in $C(X)$.
Remark:
$(f,g) neq C(X) $ if only if $Z(f) $meet $Z(g)$, hence if only if $f^{2}+g^{2}$ is not a unit of $C(X)$.
Can you give me more information about the above result?
Why can we say" $(f,g) neq C(X) Longleftrightarrow Z(f) cap Z(g) neq emptyset$ or
$(f,g) = C(X) Longleftrightarrow Z(f) cap Z(g) = emptyset$
general-topology filters
$endgroup$
add a comment |
$begingroup$
Theorem:
a: If $I$is an ideal in $C(X)$ , then the family $Z[I] = { Z(f) : f in I } $ is a $z$-filter on $X$.
b: if $mathbf{F}$ is a $z$-filter on $X$, then the family $Z^{-1} [ mathbf{F} ] = { f : Z(f) in mathbf{F} }$ is an ideal in $C(X)$.
Remark:
$(f,g) neq C(X) $ if only if $Z(f) $meet $Z(g)$, hence if only if $f^{2}+g^{2}$ is not a unit of $C(X)$.
Can you give me more information about the above result?
Why can we say" $(f,g) neq C(X) Longleftrightarrow Z(f) cap Z(g) neq emptyset$ or
$(f,g) = C(X) Longleftrightarrow Z(f) cap Z(g) = emptyset$
general-topology filters
$endgroup$
add a comment |
$begingroup$
Theorem:
a: If $I$is an ideal in $C(X)$ , then the family $Z[I] = { Z(f) : f in I } $ is a $z$-filter on $X$.
b: if $mathbf{F}$ is a $z$-filter on $X$, then the family $Z^{-1} [ mathbf{F} ] = { f : Z(f) in mathbf{F} }$ is an ideal in $C(X)$.
Remark:
$(f,g) neq C(X) $ if only if $Z(f) $meet $Z(g)$, hence if only if $f^{2}+g^{2}$ is not a unit of $C(X)$.
Can you give me more information about the above result?
Why can we say" $(f,g) neq C(X) Longleftrightarrow Z(f) cap Z(g) neq emptyset$ or
$(f,g) = C(X) Longleftrightarrow Z(f) cap Z(g) = emptyset$
general-topology filters
$endgroup$
Theorem:
a: If $I$is an ideal in $C(X)$ , then the family $Z[I] = { Z(f) : f in I } $ is a $z$-filter on $X$.
b: if $mathbf{F}$ is a $z$-filter on $X$, then the family $Z^{-1} [ mathbf{F} ] = { f : Z(f) in mathbf{F} }$ is an ideal in $C(X)$.
Remark:
$(f,g) neq C(X) $ if only if $Z(f) $meet $Z(g)$, hence if only if $f^{2}+g^{2}$ is not a unit of $C(X)$.
Can you give me more information about the above result?
Why can we say" $(f,g) neq C(X) Longleftrightarrow Z(f) cap Z(g) neq emptyset$ or
$(f,g) = C(X) Longleftrightarrow Z(f) cap Z(g) = emptyset$
general-topology filters
general-topology filters
edited Dec 30 '18 at 16:53
Eric Wofsey
190k14216348
190k14216348
asked Dec 30 '18 at 15:57
user387219
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
I am assuming $C(X)$ denotes the set of real valued (continuous) functions on $X$.
First of all, notice that the two equivalences are equivalent, because $A$ is equivalent to $B$ if and only if $neg A$ is equivalent to $neg B$ .
Then if $(f,g) = C(X)$, there are $h,k$ such that $fh+gk =1$. If $xin Z(f)cap Z(g)$, then $0=1$. Thus $Z(f)cap Z(g)=emptyset$.
Conversely, if $Z(f)cap Z(g)=emptyset$, then $f^2 + g^2$ never vanishes (because we're considering real valued functions), so it's invertible in $C(X)$, and is in $(f,g)$ , so $(f,g) = C(X)$ .
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056956%2ff-g-cx-longleftrightarrow-zf-cap-zg-emptyset%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I am assuming $C(X)$ denotes the set of real valued (continuous) functions on $X$.
First of all, notice that the two equivalences are equivalent, because $A$ is equivalent to $B$ if and only if $neg A$ is equivalent to $neg B$ .
Then if $(f,g) = C(X)$, there are $h,k$ such that $fh+gk =1$. If $xin Z(f)cap Z(g)$, then $0=1$. Thus $Z(f)cap Z(g)=emptyset$.
Conversely, if $Z(f)cap Z(g)=emptyset$, then $f^2 + g^2$ never vanishes (because we're considering real valued functions), so it's invertible in $C(X)$, and is in $(f,g)$ , so $(f,g) = C(X)$ .
$endgroup$
add a comment |
$begingroup$
I am assuming $C(X)$ denotes the set of real valued (continuous) functions on $X$.
First of all, notice that the two equivalences are equivalent, because $A$ is equivalent to $B$ if and only if $neg A$ is equivalent to $neg B$ .
Then if $(f,g) = C(X)$, there are $h,k$ such that $fh+gk =1$. If $xin Z(f)cap Z(g)$, then $0=1$. Thus $Z(f)cap Z(g)=emptyset$.
Conversely, if $Z(f)cap Z(g)=emptyset$, then $f^2 + g^2$ never vanishes (because we're considering real valued functions), so it's invertible in $C(X)$, and is in $(f,g)$ , so $(f,g) = C(X)$ .
$endgroup$
add a comment |
$begingroup$
I am assuming $C(X)$ denotes the set of real valued (continuous) functions on $X$.
First of all, notice that the two equivalences are equivalent, because $A$ is equivalent to $B$ if and only if $neg A$ is equivalent to $neg B$ .
Then if $(f,g) = C(X)$, there are $h,k$ such that $fh+gk =1$. If $xin Z(f)cap Z(g)$, then $0=1$. Thus $Z(f)cap Z(g)=emptyset$.
Conversely, if $Z(f)cap Z(g)=emptyset$, then $f^2 + g^2$ never vanishes (because we're considering real valued functions), so it's invertible in $C(X)$, and is in $(f,g)$ , so $(f,g) = C(X)$ .
$endgroup$
I am assuming $C(X)$ denotes the set of real valued (continuous) functions on $X$.
First of all, notice that the two equivalences are equivalent, because $A$ is equivalent to $B$ if and only if $neg A$ is equivalent to $neg B$ .
Then if $(f,g) = C(X)$, there are $h,k$ such that $fh+gk =1$. If $xin Z(f)cap Z(g)$, then $0=1$. Thus $Z(f)cap Z(g)=emptyset$.
Conversely, if $Z(f)cap Z(g)=emptyset$, then $f^2 + g^2$ never vanishes (because we're considering real valued functions), so it's invertible in $C(X)$, and is in $(f,g)$ , so $(f,g) = C(X)$ .
answered Dec 30 '18 at 16:12
MaxMax
15.5k11143
15.5k11143
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056956%2ff-g-cx-longleftrightarrow-zf-cap-zg-emptyset%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown