Finding conditions to an equality in an integral












0












$begingroup$



First of all, a happy new year to everybody.




Well, I'm working on a problem. That problem stated that I've to find the conditions for which this equality holds:



$$mathcal{I}_text{n}left(epsilonright):=int_0^inftyfrac{sinleft(epsiloncdot xright)}{x^text{n}}spacetext{d}x=frac{pi}{2}cdotfrac{epsilon^{text{n}-1}}{Gammaleft(text{n}right)}cdotcscleft(text{n}cdotfrac{pi}{2}right)tag1$$





My work:



I proved that it is generally true for positive real numbers (atleast I think I did):



$$mathcal{I}_text{n}left(epsilonright):=int_0^inftyfrac{sinleft(epsiloncdot xright)}{x^text{n}}spacetext{d}xtag2$$



Using the 'evaluating integrals over the positive real axis' of the Laplace transform, we can write:



$$mathcal{I}_text{n}left(epsilonright)=int_0^inftymathcal{L}_xleft[sinleft(epsiloncdot xright)right]_{left(text{s}right)}cdotmathcal{L}_x^{-1}left[frac{1}{x^text{n}}right]_{left(text{s}right)}spacetext{d}text{s}tag3$$



Using the 'table of selected Laplace transforms', we can write:



$$mathcal{I}_text{n}left(epsilonright)=int_0^inftyfrac{epsilon}{epsilon^2+text{s}^2}cdotfrac{text{s}^{text{n}-1}}{Gammaleft(text{n}right)}spacetext{d}text{s}=frac{epsilon}{Gammaleft(text{n}right)}cdotint_0^inftyfrac{text{s}^{text{n}-1}}{epsilon^2+text{s}^2}spacetext{d}text{s}tag4$$



Using this answer of mine we can write:



$$mathcal{I}_text{n}left(epsilonright)=frac{epsilon}{Gammaleft(text{n}right)}cdotint_0^inftyfrac{text{s}^{text{n}-1}}{epsilon^2+text{s}^2}spacetext{d}text{s}=frac{pi}{2}cdotfrac{epsilon^{text{n}-1}}{Gammaleft(text{n}right)}cdotcscleft(text{n}cdotfrac{pi}{2}right)tag5$$










share|cite|improve this question









$endgroup$












  • $begingroup$
    If you take $epsilon = 1$ and $n = 3$ this integral diverges, but the rhs is finite. I think there must be a restriction on $n$
    $endgroup$
    – caverac
    Jan 2 at 0:23












  • $begingroup$
    @caverac I would like to know what that restriction is ;)
    $endgroup$
    – Jan
    Jan 2 at 0:32






  • 1




    $begingroup$
    Sorry, what I mean is: it is definitely not true for all positive real numbers. I just ran some numerical tests, and it seems that the integral does not converge for $n geq 2$. Not a proof, but it may give you something to start (?)
    $endgroup$
    – caverac
    Jan 2 at 0:37










  • $begingroup$
    The integral converges for $epsilon in mathbb R land 0 < operatorname{Re} n < 2$, otherwise there will be divergence either when the lower limit of integration approaches $0$ or when the upper limit approaches infinity. The equality holds under the additional condition $epsilon > 0$.
    $endgroup$
    – Maxim
    Jan 2 at 3:21
















0












$begingroup$



First of all, a happy new year to everybody.




Well, I'm working on a problem. That problem stated that I've to find the conditions for which this equality holds:



$$mathcal{I}_text{n}left(epsilonright):=int_0^inftyfrac{sinleft(epsiloncdot xright)}{x^text{n}}spacetext{d}x=frac{pi}{2}cdotfrac{epsilon^{text{n}-1}}{Gammaleft(text{n}right)}cdotcscleft(text{n}cdotfrac{pi}{2}right)tag1$$





My work:



I proved that it is generally true for positive real numbers (atleast I think I did):



$$mathcal{I}_text{n}left(epsilonright):=int_0^inftyfrac{sinleft(epsiloncdot xright)}{x^text{n}}spacetext{d}xtag2$$



Using the 'evaluating integrals over the positive real axis' of the Laplace transform, we can write:



$$mathcal{I}_text{n}left(epsilonright)=int_0^inftymathcal{L}_xleft[sinleft(epsiloncdot xright)right]_{left(text{s}right)}cdotmathcal{L}_x^{-1}left[frac{1}{x^text{n}}right]_{left(text{s}right)}spacetext{d}text{s}tag3$$



Using the 'table of selected Laplace transforms', we can write:



$$mathcal{I}_text{n}left(epsilonright)=int_0^inftyfrac{epsilon}{epsilon^2+text{s}^2}cdotfrac{text{s}^{text{n}-1}}{Gammaleft(text{n}right)}spacetext{d}text{s}=frac{epsilon}{Gammaleft(text{n}right)}cdotint_0^inftyfrac{text{s}^{text{n}-1}}{epsilon^2+text{s}^2}spacetext{d}text{s}tag4$$



Using this answer of mine we can write:



$$mathcal{I}_text{n}left(epsilonright)=frac{epsilon}{Gammaleft(text{n}right)}cdotint_0^inftyfrac{text{s}^{text{n}-1}}{epsilon^2+text{s}^2}spacetext{d}text{s}=frac{pi}{2}cdotfrac{epsilon^{text{n}-1}}{Gammaleft(text{n}right)}cdotcscleft(text{n}cdotfrac{pi}{2}right)tag5$$










share|cite|improve this question









$endgroup$












  • $begingroup$
    If you take $epsilon = 1$ and $n = 3$ this integral diverges, but the rhs is finite. I think there must be a restriction on $n$
    $endgroup$
    – caverac
    Jan 2 at 0:23












  • $begingroup$
    @caverac I would like to know what that restriction is ;)
    $endgroup$
    – Jan
    Jan 2 at 0:32






  • 1




    $begingroup$
    Sorry, what I mean is: it is definitely not true for all positive real numbers. I just ran some numerical tests, and it seems that the integral does not converge for $n geq 2$. Not a proof, but it may give you something to start (?)
    $endgroup$
    – caverac
    Jan 2 at 0:37










  • $begingroup$
    The integral converges for $epsilon in mathbb R land 0 < operatorname{Re} n < 2$, otherwise there will be divergence either when the lower limit of integration approaches $0$ or when the upper limit approaches infinity. The equality holds under the additional condition $epsilon > 0$.
    $endgroup$
    – Maxim
    Jan 2 at 3:21














0












0








0


2



$begingroup$



First of all, a happy new year to everybody.




Well, I'm working on a problem. That problem stated that I've to find the conditions for which this equality holds:



$$mathcal{I}_text{n}left(epsilonright):=int_0^inftyfrac{sinleft(epsiloncdot xright)}{x^text{n}}spacetext{d}x=frac{pi}{2}cdotfrac{epsilon^{text{n}-1}}{Gammaleft(text{n}right)}cdotcscleft(text{n}cdotfrac{pi}{2}right)tag1$$





My work:



I proved that it is generally true for positive real numbers (atleast I think I did):



$$mathcal{I}_text{n}left(epsilonright):=int_0^inftyfrac{sinleft(epsiloncdot xright)}{x^text{n}}spacetext{d}xtag2$$



Using the 'evaluating integrals over the positive real axis' of the Laplace transform, we can write:



$$mathcal{I}_text{n}left(epsilonright)=int_0^inftymathcal{L}_xleft[sinleft(epsiloncdot xright)right]_{left(text{s}right)}cdotmathcal{L}_x^{-1}left[frac{1}{x^text{n}}right]_{left(text{s}right)}spacetext{d}text{s}tag3$$



Using the 'table of selected Laplace transforms', we can write:



$$mathcal{I}_text{n}left(epsilonright)=int_0^inftyfrac{epsilon}{epsilon^2+text{s}^2}cdotfrac{text{s}^{text{n}-1}}{Gammaleft(text{n}right)}spacetext{d}text{s}=frac{epsilon}{Gammaleft(text{n}right)}cdotint_0^inftyfrac{text{s}^{text{n}-1}}{epsilon^2+text{s}^2}spacetext{d}text{s}tag4$$



Using this answer of mine we can write:



$$mathcal{I}_text{n}left(epsilonright)=frac{epsilon}{Gammaleft(text{n}right)}cdotint_0^inftyfrac{text{s}^{text{n}-1}}{epsilon^2+text{s}^2}spacetext{d}text{s}=frac{pi}{2}cdotfrac{epsilon^{text{n}-1}}{Gammaleft(text{n}right)}cdotcscleft(text{n}cdotfrac{pi}{2}right)tag5$$










share|cite|improve this question









$endgroup$





First of all, a happy new year to everybody.




Well, I'm working on a problem. That problem stated that I've to find the conditions for which this equality holds:



$$mathcal{I}_text{n}left(epsilonright):=int_0^inftyfrac{sinleft(epsiloncdot xright)}{x^text{n}}spacetext{d}x=frac{pi}{2}cdotfrac{epsilon^{text{n}-1}}{Gammaleft(text{n}right)}cdotcscleft(text{n}cdotfrac{pi}{2}right)tag1$$





My work:



I proved that it is generally true for positive real numbers (atleast I think I did):



$$mathcal{I}_text{n}left(epsilonright):=int_0^inftyfrac{sinleft(epsiloncdot xright)}{x^text{n}}spacetext{d}xtag2$$



Using the 'evaluating integrals over the positive real axis' of the Laplace transform, we can write:



$$mathcal{I}_text{n}left(epsilonright)=int_0^inftymathcal{L}_xleft[sinleft(epsiloncdot xright)right]_{left(text{s}right)}cdotmathcal{L}_x^{-1}left[frac{1}{x^text{n}}right]_{left(text{s}right)}spacetext{d}text{s}tag3$$



Using the 'table of selected Laplace transforms', we can write:



$$mathcal{I}_text{n}left(epsilonright)=int_0^inftyfrac{epsilon}{epsilon^2+text{s}^2}cdotfrac{text{s}^{text{n}-1}}{Gammaleft(text{n}right)}spacetext{d}text{s}=frac{epsilon}{Gammaleft(text{n}right)}cdotint_0^inftyfrac{text{s}^{text{n}-1}}{epsilon^2+text{s}^2}spacetext{d}text{s}tag4$$



Using this answer of mine we can write:



$$mathcal{I}_text{n}left(epsilonright)=frac{epsilon}{Gammaleft(text{n}right)}cdotint_0^inftyfrac{text{s}^{text{n}-1}}{epsilon^2+text{s}^2}spacetext{d}text{s}=frac{pi}{2}cdotfrac{epsilon^{text{n}-1}}{Gammaleft(text{n}right)}cdotcscleft(text{n}cdotfrac{pi}{2}right)tag5$$







integration trigonometry definite-integrals laplace-transform gamma-function






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 1 at 21:11









JanJan

22.1k31440




22.1k31440












  • $begingroup$
    If you take $epsilon = 1$ and $n = 3$ this integral diverges, but the rhs is finite. I think there must be a restriction on $n$
    $endgroup$
    – caverac
    Jan 2 at 0:23












  • $begingroup$
    @caverac I would like to know what that restriction is ;)
    $endgroup$
    – Jan
    Jan 2 at 0:32






  • 1




    $begingroup$
    Sorry, what I mean is: it is definitely not true for all positive real numbers. I just ran some numerical tests, and it seems that the integral does not converge for $n geq 2$. Not a proof, but it may give you something to start (?)
    $endgroup$
    – caverac
    Jan 2 at 0:37










  • $begingroup$
    The integral converges for $epsilon in mathbb R land 0 < operatorname{Re} n < 2$, otherwise there will be divergence either when the lower limit of integration approaches $0$ or when the upper limit approaches infinity. The equality holds under the additional condition $epsilon > 0$.
    $endgroup$
    – Maxim
    Jan 2 at 3:21


















  • $begingroup$
    If you take $epsilon = 1$ and $n = 3$ this integral diverges, but the rhs is finite. I think there must be a restriction on $n$
    $endgroup$
    – caverac
    Jan 2 at 0:23












  • $begingroup$
    @caverac I would like to know what that restriction is ;)
    $endgroup$
    – Jan
    Jan 2 at 0:32






  • 1




    $begingroup$
    Sorry, what I mean is: it is definitely not true for all positive real numbers. I just ran some numerical tests, and it seems that the integral does not converge for $n geq 2$. Not a proof, but it may give you something to start (?)
    $endgroup$
    – caverac
    Jan 2 at 0:37










  • $begingroup$
    The integral converges for $epsilon in mathbb R land 0 < operatorname{Re} n < 2$, otherwise there will be divergence either when the lower limit of integration approaches $0$ or when the upper limit approaches infinity. The equality holds under the additional condition $epsilon > 0$.
    $endgroup$
    – Maxim
    Jan 2 at 3:21
















$begingroup$
If you take $epsilon = 1$ and $n = 3$ this integral diverges, but the rhs is finite. I think there must be a restriction on $n$
$endgroup$
– caverac
Jan 2 at 0:23






$begingroup$
If you take $epsilon = 1$ and $n = 3$ this integral diverges, but the rhs is finite. I think there must be a restriction on $n$
$endgroup$
– caverac
Jan 2 at 0:23














$begingroup$
@caverac I would like to know what that restriction is ;)
$endgroup$
– Jan
Jan 2 at 0:32




$begingroup$
@caverac I would like to know what that restriction is ;)
$endgroup$
– Jan
Jan 2 at 0:32




1




1




$begingroup$
Sorry, what I mean is: it is definitely not true for all positive real numbers. I just ran some numerical tests, and it seems that the integral does not converge for $n geq 2$. Not a proof, but it may give you something to start (?)
$endgroup$
– caverac
Jan 2 at 0:37




$begingroup$
Sorry, what I mean is: it is definitely not true for all positive real numbers. I just ran some numerical tests, and it seems that the integral does not converge for $n geq 2$. Not a proof, but it may give you something to start (?)
$endgroup$
– caverac
Jan 2 at 0:37












$begingroup$
The integral converges for $epsilon in mathbb R land 0 < operatorname{Re} n < 2$, otherwise there will be divergence either when the lower limit of integration approaches $0$ or when the upper limit approaches infinity. The equality holds under the additional condition $epsilon > 0$.
$endgroup$
– Maxim
Jan 2 at 3:21




$begingroup$
The integral converges for $epsilon in mathbb R land 0 < operatorname{Re} n < 2$, otherwise there will be divergence either when the lower limit of integration approaches $0$ or when the upper limit approaches infinity. The equality holds under the additional condition $epsilon > 0$.
$endgroup$
– Maxim
Jan 2 at 3:21










0






active

oldest

votes












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058885%2ffinding-conditions-to-an-equality-in-an-integral%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058885%2ffinding-conditions-to-an-equality-in-an-integral%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Wiesbaden

Marschland

Dieringhausen