Finding conditions to an equality in an integral
$begingroup$
First of all, a happy new year to everybody.
Well, I'm working on a problem. That problem stated that I've to find the conditions for which this equality holds:
$$mathcal{I}_text{n}left(epsilonright):=int_0^inftyfrac{sinleft(epsiloncdot xright)}{x^text{n}}spacetext{d}x=frac{pi}{2}cdotfrac{epsilon^{text{n}-1}}{Gammaleft(text{n}right)}cdotcscleft(text{n}cdotfrac{pi}{2}right)tag1$$
My work:
I proved that it is generally true for positive real numbers (atleast I think I did):
$$mathcal{I}_text{n}left(epsilonright):=int_0^inftyfrac{sinleft(epsiloncdot xright)}{x^text{n}}spacetext{d}xtag2$$
Using the 'evaluating integrals over the positive real axis' of the Laplace transform, we can write:
$$mathcal{I}_text{n}left(epsilonright)=int_0^inftymathcal{L}_xleft[sinleft(epsiloncdot xright)right]_{left(text{s}right)}cdotmathcal{L}_x^{-1}left[frac{1}{x^text{n}}right]_{left(text{s}right)}spacetext{d}text{s}tag3$$
Using the 'table of selected Laplace transforms', we can write:
$$mathcal{I}_text{n}left(epsilonright)=int_0^inftyfrac{epsilon}{epsilon^2+text{s}^2}cdotfrac{text{s}^{text{n}-1}}{Gammaleft(text{n}right)}spacetext{d}text{s}=frac{epsilon}{Gammaleft(text{n}right)}cdotint_0^inftyfrac{text{s}^{text{n}-1}}{epsilon^2+text{s}^2}spacetext{d}text{s}tag4$$
Using this answer of mine we can write:
$$mathcal{I}_text{n}left(epsilonright)=frac{epsilon}{Gammaleft(text{n}right)}cdotint_0^inftyfrac{text{s}^{text{n}-1}}{epsilon^2+text{s}^2}spacetext{d}text{s}=frac{pi}{2}cdotfrac{epsilon^{text{n}-1}}{Gammaleft(text{n}right)}cdotcscleft(text{n}cdotfrac{pi}{2}right)tag5$$
integration trigonometry definite-integrals laplace-transform gamma-function
$endgroup$
add a comment |
$begingroup$
First of all, a happy new year to everybody.
Well, I'm working on a problem. That problem stated that I've to find the conditions for which this equality holds:
$$mathcal{I}_text{n}left(epsilonright):=int_0^inftyfrac{sinleft(epsiloncdot xright)}{x^text{n}}spacetext{d}x=frac{pi}{2}cdotfrac{epsilon^{text{n}-1}}{Gammaleft(text{n}right)}cdotcscleft(text{n}cdotfrac{pi}{2}right)tag1$$
My work:
I proved that it is generally true for positive real numbers (atleast I think I did):
$$mathcal{I}_text{n}left(epsilonright):=int_0^inftyfrac{sinleft(epsiloncdot xright)}{x^text{n}}spacetext{d}xtag2$$
Using the 'evaluating integrals over the positive real axis' of the Laplace transform, we can write:
$$mathcal{I}_text{n}left(epsilonright)=int_0^inftymathcal{L}_xleft[sinleft(epsiloncdot xright)right]_{left(text{s}right)}cdotmathcal{L}_x^{-1}left[frac{1}{x^text{n}}right]_{left(text{s}right)}spacetext{d}text{s}tag3$$
Using the 'table of selected Laplace transforms', we can write:
$$mathcal{I}_text{n}left(epsilonright)=int_0^inftyfrac{epsilon}{epsilon^2+text{s}^2}cdotfrac{text{s}^{text{n}-1}}{Gammaleft(text{n}right)}spacetext{d}text{s}=frac{epsilon}{Gammaleft(text{n}right)}cdotint_0^inftyfrac{text{s}^{text{n}-1}}{epsilon^2+text{s}^2}spacetext{d}text{s}tag4$$
Using this answer of mine we can write:
$$mathcal{I}_text{n}left(epsilonright)=frac{epsilon}{Gammaleft(text{n}right)}cdotint_0^inftyfrac{text{s}^{text{n}-1}}{epsilon^2+text{s}^2}spacetext{d}text{s}=frac{pi}{2}cdotfrac{epsilon^{text{n}-1}}{Gammaleft(text{n}right)}cdotcscleft(text{n}cdotfrac{pi}{2}right)tag5$$
integration trigonometry definite-integrals laplace-transform gamma-function
$endgroup$
$begingroup$
If you take $epsilon = 1$ and $n = 3$ this integral diverges, but the rhs is finite. I think there must be a restriction on $n$
$endgroup$
– caverac
Jan 2 at 0:23
$begingroup$
@caverac I would like to know what that restriction is ;)
$endgroup$
– Jan
Jan 2 at 0:32
1
$begingroup$
Sorry, what I mean is: it is definitely not true for all positive real numbers. I just ran some numerical tests, and it seems that the integral does not converge for $n geq 2$. Not a proof, but it may give you something to start (?)
$endgroup$
– caverac
Jan 2 at 0:37
$begingroup$
The integral converges for $epsilon in mathbb R land 0 < operatorname{Re} n < 2$, otherwise there will be divergence either when the lower limit of integration approaches $0$ or when the upper limit approaches infinity. The equality holds under the additional condition $epsilon > 0$.
$endgroup$
– Maxim
Jan 2 at 3:21
add a comment |
$begingroup$
First of all, a happy new year to everybody.
Well, I'm working on a problem. That problem stated that I've to find the conditions for which this equality holds:
$$mathcal{I}_text{n}left(epsilonright):=int_0^inftyfrac{sinleft(epsiloncdot xright)}{x^text{n}}spacetext{d}x=frac{pi}{2}cdotfrac{epsilon^{text{n}-1}}{Gammaleft(text{n}right)}cdotcscleft(text{n}cdotfrac{pi}{2}right)tag1$$
My work:
I proved that it is generally true for positive real numbers (atleast I think I did):
$$mathcal{I}_text{n}left(epsilonright):=int_0^inftyfrac{sinleft(epsiloncdot xright)}{x^text{n}}spacetext{d}xtag2$$
Using the 'evaluating integrals over the positive real axis' of the Laplace transform, we can write:
$$mathcal{I}_text{n}left(epsilonright)=int_0^inftymathcal{L}_xleft[sinleft(epsiloncdot xright)right]_{left(text{s}right)}cdotmathcal{L}_x^{-1}left[frac{1}{x^text{n}}right]_{left(text{s}right)}spacetext{d}text{s}tag3$$
Using the 'table of selected Laplace transforms', we can write:
$$mathcal{I}_text{n}left(epsilonright)=int_0^inftyfrac{epsilon}{epsilon^2+text{s}^2}cdotfrac{text{s}^{text{n}-1}}{Gammaleft(text{n}right)}spacetext{d}text{s}=frac{epsilon}{Gammaleft(text{n}right)}cdotint_0^inftyfrac{text{s}^{text{n}-1}}{epsilon^2+text{s}^2}spacetext{d}text{s}tag4$$
Using this answer of mine we can write:
$$mathcal{I}_text{n}left(epsilonright)=frac{epsilon}{Gammaleft(text{n}right)}cdotint_0^inftyfrac{text{s}^{text{n}-1}}{epsilon^2+text{s}^2}spacetext{d}text{s}=frac{pi}{2}cdotfrac{epsilon^{text{n}-1}}{Gammaleft(text{n}right)}cdotcscleft(text{n}cdotfrac{pi}{2}right)tag5$$
integration trigonometry definite-integrals laplace-transform gamma-function
$endgroup$
First of all, a happy new year to everybody.
Well, I'm working on a problem. That problem stated that I've to find the conditions for which this equality holds:
$$mathcal{I}_text{n}left(epsilonright):=int_0^inftyfrac{sinleft(epsiloncdot xright)}{x^text{n}}spacetext{d}x=frac{pi}{2}cdotfrac{epsilon^{text{n}-1}}{Gammaleft(text{n}right)}cdotcscleft(text{n}cdotfrac{pi}{2}right)tag1$$
My work:
I proved that it is generally true for positive real numbers (atleast I think I did):
$$mathcal{I}_text{n}left(epsilonright):=int_0^inftyfrac{sinleft(epsiloncdot xright)}{x^text{n}}spacetext{d}xtag2$$
Using the 'evaluating integrals over the positive real axis' of the Laplace transform, we can write:
$$mathcal{I}_text{n}left(epsilonright)=int_0^inftymathcal{L}_xleft[sinleft(epsiloncdot xright)right]_{left(text{s}right)}cdotmathcal{L}_x^{-1}left[frac{1}{x^text{n}}right]_{left(text{s}right)}spacetext{d}text{s}tag3$$
Using the 'table of selected Laplace transforms', we can write:
$$mathcal{I}_text{n}left(epsilonright)=int_0^inftyfrac{epsilon}{epsilon^2+text{s}^2}cdotfrac{text{s}^{text{n}-1}}{Gammaleft(text{n}right)}spacetext{d}text{s}=frac{epsilon}{Gammaleft(text{n}right)}cdotint_0^inftyfrac{text{s}^{text{n}-1}}{epsilon^2+text{s}^2}spacetext{d}text{s}tag4$$
Using this answer of mine we can write:
$$mathcal{I}_text{n}left(epsilonright)=frac{epsilon}{Gammaleft(text{n}right)}cdotint_0^inftyfrac{text{s}^{text{n}-1}}{epsilon^2+text{s}^2}spacetext{d}text{s}=frac{pi}{2}cdotfrac{epsilon^{text{n}-1}}{Gammaleft(text{n}right)}cdotcscleft(text{n}cdotfrac{pi}{2}right)tag5$$
integration trigonometry definite-integrals laplace-transform gamma-function
integration trigonometry definite-integrals laplace-transform gamma-function
asked Jan 1 at 21:11
JanJan
22.1k31440
22.1k31440
$begingroup$
If you take $epsilon = 1$ and $n = 3$ this integral diverges, but the rhs is finite. I think there must be a restriction on $n$
$endgroup$
– caverac
Jan 2 at 0:23
$begingroup$
@caverac I would like to know what that restriction is ;)
$endgroup$
– Jan
Jan 2 at 0:32
1
$begingroup$
Sorry, what I mean is: it is definitely not true for all positive real numbers. I just ran some numerical tests, and it seems that the integral does not converge for $n geq 2$. Not a proof, but it may give you something to start (?)
$endgroup$
– caverac
Jan 2 at 0:37
$begingroup$
The integral converges for $epsilon in mathbb R land 0 < operatorname{Re} n < 2$, otherwise there will be divergence either when the lower limit of integration approaches $0$ or when the upper limit approaches infinity. The equality holds under the additional condition $epsilon > 0$.
$endgroup$
– Maxim
Jan 2 at 3:21
add a comment |
$begingroup$
If you take $epsilon = 1$ and $n = 3$ this integral diverges, but the rhs is finite. I think there must be a restriction on $n$
$endgroup$
– caverac
Jan 2 at 0:23
$begingroup$
@caverac I would like to know what that restriction is ;)
$endgroup$
– Jan
Jan 2 at 0:32
1
$begingroup$
Sorry, what I mean is: it is definitely not true for all positive real numbers. I just ran some numerical tests, and it seems that the integral does not converge for $n geq 2$. Not a proof, but it may give you something to start (?)
$endgroup$
– caverac
Jan 2 at 0:37
$begingroup$
The integral converges for $epsilon in mathbb R land 0 < operatorname{Re} n < 2$, otherwise there will be divergence either when the lower limit of integration approaches $0$ or when the upper limit approaches infinity. The equality holds under the additional condition $epsilon > 0$.
$endgroup$
– Maxim
Jan 2 at 3:21
$begingroup$
If you take $epsilon = 1$ and $n = 3$ this integral diverges, but the rhs is finite. I think there must be a restriction on $n$
$endgroup$
– caverac
Jan 2 at 0:23
$begingroup$
If you take $epsilon = 1$ and $n = 3$ this integral diverges, but the rhs is finite. I think there must be a restriction on $n$
$endgroup$
– caverac
Jan 2 at 0:23
$begingroup$
@caverac I would like to know what that restriction is ;)
$endgroup$
– Jan
Jan 2 at 0:32
$begingroup$
@caverac I would like to know what that restriction is ;)
$endgroup$
– Jan
Jan 2 at 0:32
1
1
$begingroup$
Sorry, what I mean is: it is definitely not true for all positive real numbers. I just ran some numerical tests, and it seems that the integral does not converge for $n geq 2$. Not a proof, but it may give you something to start (?)
$endgroup$
– caverac
Jan 2 at 0:37
$begingroup$
Sorry, what I mean is: it is definitely not true for all positive real numbers. I just ran some numerical tests, and it seems that the integral does not converge for $n geq 2$. Not a proof, but it may give you something to start (?)
$endgroup$
– caverac
Jan 2 at 0:37
$begingroup$
The integral converges for $epsilon in mathbb R land 0 < operatorname{Re} n < 2$, otherwise there will be divergence either when the lower limit of integration approaches $0$ or when the upper limit approaches infinity. The equality holds under the additional condition $epsilon > 0$.
$endgroup$
– Maxim
Jan 2 at 3:21
$begingroup$
The integral converges for $epsilon in mathbb R land 0 < operatorname{Re} n < 2$, otherwise there will be divergence either when the lower limit of integration approaches $0$ or when the upper limit approaches infinity. The equality holds under the additional condition $epsilon > 0$.
$endgroup$
– Maxim
Jan 2 at 3:21
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058885%2ffinding-conditions-to-an-equality-in-an-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058885%2ffinding-conditions-to-an-equality-in-an-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
If you take $epsilon = 1$ and $n = 3$ this integral diverges, but the rhs is finite. I think there must be a restriction on $n$
$endgroup$
– caverac
Jan 2 at 0:23
$begingroup$
@caverac I would like to know what that restriction is ;)
$endgroup$
– Jan
Jan 2 at 0:32
1
$begingroup$
Sorry, what I mean is: it is definitely not true for all positive real numbers. I just ran some numerical tests, and it seems that the integral does not converge for $n geq 2$. Not a proof, but it may give you something to start (?)
$endgroup$
– caverac
Jan 2 at 0:37
$begingroup$
The integral converges for $epsilon in mathbb R land 0 < operatorname{Re} n < 2$, otherwise there will be divergence either when the lower limit of integration approaches $0$ or when the upper limit approaches infinity. The equality holds under the additional condition $epsilon > 0$.
$endgroup$
– Maxim
Jan 2 at 3:21