How do you integrate $int frac{1}{a + cos x} dx$?
$begingroup$
How do you integrate $int frac{1}{a + cos x} dx$? Is it solvable by elementary methods? I was trying to do it while incorrectly solving a homework problem but I couldn't find the answer.
Thanks!
calculus
$endgroup$
add a comment |
$begingroup$
How do you integrate $int frac{1}{a + cos x} dx$? Is it solvable by elementary methods? I was trying to do it while incorrectly solving a homework problem but I couldn't find the answer.
Thanks!
calculus
$endgroup$
4
$begingroup$
The Weierstrass substitution $u=tan(x/2)$ (Wikipedia) turns it into an integrating a rational function problem.
$endgroup$
– André Nicolas
Apr 20 '12 at 23:22
$begingroup$
Wolfram|Alpha gives a surprisingly complicated antiderivative. If you click on "Show Steps", you can see how it's derived using the Weierstraß substitution that André suggested.
$endgroup$
– joriki
Apr 20 '12 at 23:25
$begingroup$
@joriki: To remove your surprise, see my answer :-)
$endgroup$
– Aryabhata
Apr 20 '12 at 23:42
$begingroup$
@Aryabhata: I'm not sure why that should lessen my surprise :-) I can see that it's complicated, either from your answer or from Wolfram|Alpha's; what I meant was that I wouldn't have expected it to be that complicated just from the integrand, which seems relatively tame at first sight.
$endgroup$
– joriki
Apr 20 '12 at 23:50
$begingroup$
@joriki: I see, I should have chosen the word 'lessen' instead of 'remove' :-)
$endgroup$
– Aryabhata
Apr 20 '12 at 23:52
add a comment |
$begingroup$
How do you integrate $int frac{1}{a + cos x} dx$? Is it solvable by elementary methods? I was trying to do it while incorrectly solving a homework problem but I couldn't find the answer.
Thanks!
calculus
$endgroup$
How do you integrate $int frac{1}{a + cos x} dx$? Is it solvable by elementary methods? I was trying to do it while incorrectly solving a homework problem but I couldn't find the answer.
Thanks!
calculus
calculus
asked Apr 20 '12 at 23:14
badatmathbadatmath
1,93932142
1,93932142
4
$begingroup$
The Weierstrass substitution $u=tan(x/2)$ (Wikipedia) turns it into an integrating a rational function problem.
$endgroup$
– André Nicolas
Apr 20 '12 at 23:22
$begingroup$
Wolfram|Alpha gives a surprisingly complicated antiderivative. If you click on "Show Steps", you can see how it's derived using the Weierstraß substitution that André suggested.
$endgroup$
– joriki
Apr 20 '12 at 23:25
$begingroup$
@joriki: To remove your surprise, see my answer :-)
$endgroup$
– Aryabhata
Apr 20 '12 at 23:42
$begingroup$
@Aryabhata: I'm not sure why that should lessen my surprise :-) I can see that it's complicated, either from your answer or from Wolfram|Alpha's; what I meant was that I wouldn't have expected it to be that complicated just from the integrand, which seems relatively tame at first sight.
$endgroup$
– joriki
Apr 20 '12 at 23:50
$begingroup$
@joriki: I see, I should have chosen the word 'lessen' instead of 'remove' :-)
$endgroup$
– Aryabhata
Apr 20 '12 at 23:52
add a comment |
4
$begingroup$
The Weierstrass substitution $u=tan(x/2)$ (Wikipedia) turns it into an integrating a rational function problem.
$endgroup$
– André Nicolas
Apr 20 '12 at 23:22
$begingroup$
Wolfram|Alpha gives a surprisingly complicated antiderivative. If you click on "Show Steps", you can see how it's derived using the Weierstraß substitution that André suggested.
$endgroup$
– joriki
Apr 20 '12 at 23:25
$begingroup$
@joriki: To remove your surprise, see my answer :-)
$endgroup$
– Aryabhata
Apr 20 '12 at 23:42
$begingroup$
@Aryabhata: I'm not sure why that should lessen my surprise :-) I can see that it's complicated, either from your answer or from Wolfram|Alpha's; what I meant was that I wouldn't have expected it to be that complicated just from the integrand, which seems relatively tame at first sight.
$endgroup$
– joriki
Apr 20 '12 at 23:50
$begingroup$
@joriki: I see, I should have chosen the word 'lessen' instead of 'remove' :-)
$endgroup$
– Aryabhata
Apr 20 '12 at 23:52
4
4
$begingroup$
The Weierstrass substitution $u=tan(x/2)$ (Wikipedia) turns it into an integrating a rational function problem.
$endgroup$
– André Nicolas
Apr 20 '12 at 23:22
$begingroup$
The Weierstrass substitution $u=tan(x/2)$ (Wikipedia) turns it into an integrating a rational function problem.
$endgroup$
– André Nicolas
Apr 20 '12 at 23:22
$begingroup$
Wolfram|Alpha gives a surprisingly complicated antiderivative. If you click on "Show Steps", you can see how it's derived using the Weierstraß substitution that André suggested.
$endgroup$
– joriki
Apr 20 '12 at 23:25
$begingroup$
Wolfram|Alpha gives a surprisingly complicated antiderivative. If you click on "Show Steps", you can see how it's derived using the Weierstraß substitution that André suggested.
$endgroup$
– joriki
Apr 20 '12 at 23:25
$begingroup$
@joriki: To remove your surprise, see my answer :-)
$endgroup$
– Aryabhata
Apr 20 '12 at 23:42
$begingroup$
@joriki: To remove your surprise, see my answer :-)
$endgroup$
– Aryabhata
Apr 20 '12 at 23:42
$begingroup$
@Aryabhata: I'm not sure why that should lessen my surprise :-) I can see that it's complicated, either from your answer or from Wolfram|Alpha's; what I meant was that I wouldn't have expected it to be that complicated just from the integrand, which seems relatively tame at first sight.
$endgroup$
– joriki
Apr 20 '12 at 23:50
$begingroup$
@Aryabhata: I'm not sure why that should lessen my surprise :-) I can see that it's complicated, either from your answer or from Wolfram|Alpha's; what I meant was that I wouldn't have expected it to be that complicated just from the integrand, which seems relatively tame at first sight.
$endgroup$
– joriki
Apr 20 '12 at 23:50
$begingroup$
@joriki: I see, I should have chosen the word 'lessen' instead of 'remove' :-)
$endgroup$
– Aryabhata
Apr 20 '12 at 23:52
$begingroup$
@joriki: I see, I should have chosen the word 'lessen' instead of 'remove' :-)
$endgroup$
– Aryabhata
Apr 20 '12 at 23:52
add a comment |
5 Answers
5
active
oldest
votes
$begingroup$
Let $ y = frac{x}{2}$.
$$frac{1}{a + cos 2y} = frac{1}{a -1 + 2cos ^2 y} = frac{sec^2 y}{(a-1)sec^2 y + 2} = frac{sec^2 y}{a + 1 + (a-1)tan^2 y} $$
Thus
$$int frac{1}{a + cos x} text{d}x = int frac{2}{a + cos 2y} text{d}y $$
$$ = int frac{ 2sec^2 y}{ a + 1 + (a-1)tan^2 y} text{d} y$$
Now make the subsitution $t = tan y$.
I remember having used the same trick before: Summing the series $ frac{1}{2n+1} + frac{1}{2} cdot frac{1}{2n+3} + cdots text{ad inf}$
$endgroup$
$begingroup$
Clever! Thanks for the solution :)
$endgroup$
– badatmath
Apr 23 '12 at 4:13
add a comment |
$begingroup$
Generalization:
Let's consider $cos x = frac{1-t^2}{1+t^2}; t = tanfrac{x}{2}; dx=frac{2}{1+t^2} dt.$ Then we get that our integral becomes:
$$J = int frac{2dt}{(a+b)+(a-b) t^2}$$
I. For the case $a>b$, consider $a+b=u^2$ and $a-b=v^2$, and obtain that:
$$J = 2int frac{dt}{u^2+v^2 t^2}=frac{2}{uv} arctanfrac{vt}{u} +C.$$
Turning back to our notation we get:
$$I=frac{2}{sqrt{a^2-b^2}} arctanleft(sqrt{frac{a-b}{a+b}} tanfrac{x}{2} right) + C.$$
II. For the case $a<b$, consider $a+b=u^2$ and $a-b=-v^2$, and obtain that:
$$J = 2int frac{dt}{u^2-v^2 t^2}=frac{1}{uv}lnfrac{u+vt}{u-vt} +C.$$
Turning back again to out initial notation and have that:
$$I=frac{2}{sqrt{b^2-a^2}} lnfrac{b+a cos x + sqrt{b^2-a^2} sin x}{a+b cos x} + C.$$
Also, note that $x$ must be different from ${+}/{-}arccos(-frac{a}{b})+2kpi$ if $|frac{a}{b}|leq1$.
Q.E.D.
$endgroup$
add a comment |
$begingroup$
This doesn't help you to evaluate the indefinite integral, but I though I would add that the definite integral $int_0^{2 pi
} frac{1}{a + cos x} dx$ can also be evaluated using methods from complex analysis. Let us make the simplifying assumption that $a > 1$ to avoid a blow up in the integral. Other values of $a$ (including complex ones!) can be made to work too.
We have
begin{align*}
int_0^{2 pi
} frac{dx}{a + cos x} &= int_0^{2 pi} frac{dx}{a + frac{e^{ix} + e^{-ix}}{2}} \
&= 2int_0^{2 pi} frac{e^{ix} dx}{2ae^{ix} + e^{2ix} + 1} && text{Let } z=e^{ix}, text{ so } dz = ie^{ix} dx. \
&= frac{2}{i} int_{|z|=1} frac{dz}{z^2 + 2az + 1} \
&= frac{2}{i} int_{|z|=1} frac{dz}{(z-z_1)(z-z_2)}
end{align*}
where the circle $|z|=1$ is parametrized counterclockwise and
begin{align*} z_1 = -a - sqrt{a^2-1} && z_2 = -a + sqrt{a^2-1}.
end{align*}
Clearly $z_1 < -a < -1$, so $z_1$ is outside of the unit circle. As for $z_2$, it is convenient to notice that
begin{align*}
z_1 z_2 = 1.
end{align*}
Thus, since $z_1$ is outside the unit circle, its inverse $z_2$ is inside the unit circle. So, applying the residue theorem, we have
begin{align*}
frac{2}{i} int_{|z|=1} frac{dz}{(z-z_1)(z-z_2)}
&= frac{2}{i} 2 pi i mathrm{Res}left( frac{1}{(z-z_1)(z-z_2)}, z_2right) \
&= 4 pi frac{1}{z_2 - z_1} \
&= 4 pi frac{1}{2 sqrt{a^2 -1}} \
&= frac{2 pi}{sqrt{a^2-1}}.
end{align*}
One can check this result against the one obtained from Arybatha's antiderivative, although a bit of care needs to be taken as an improper integral crops up while making the various substitutions.
begin{align*}
int_0^{2 pi
} frac{dx}{a + cos x}
&= int_0^pi frac{2 dy}{a+1 + (a-1) tan^2(y)} && y= frac{x}{2}\
&= int_0^infty frac{ 2 dt}{ a + 1 + (a-1)t^2} +int_{-infty}^0 frac{ 2 dt}{ a + 1 + (a-1)t^2} && t = tan(y) \
&= frac{2}{sqrt{a^2-1}} arctanleft( sqrt{ frac{a-1}{a+1}} t right) big|_0^infty + frac{2}{sqrt{a^2-1}} arctanleft( sqrt{ frac{a-1}{a+1}} t right) big|_{-infty}^0 \
&= frac{2 pi}{sqrt{a^2-1}}
end{align*}
$endgroup$
add a comment |
$begingroup$
Expanding André's comment
Say we have an integral of the form
$$int R(sin x,cos x) dx$$
Then the substitution
$$t= tanfrac x 2 $$
will change the integral into a rational function of
$$sin x = frac{2t}{1+t^2}$$
$$cos x = frac{1-t^2}{1+t^2}$$
and of course
$$dx = frac{2 dt}{1+t^2}$$
Would you like to try solve it that way or want a full solution?
$endgroup$
add a comment |
$begingroup$
Also a generalised solution, borrowing from and expanding upon user1357113's answer,
I. For the case $|a| > |b|$, note that the substitution $t=tan left( frac{x}{2} right)$ is not injective. So to retrieve a continuous antiderivative, we have as a complete answer
$$
int frac{1}{a+bcos(x)} {rm d}x
= frac{2}{sqrt{a^2-b^2}} arctan left( sqrt{frac{a-b}{a+b}}tan left( frac{x}{2} right) right) + frac{2pi}{sqrt{a^2-b^2}} leftlfloor frac{x+pi}{2pi} rightrfloor +C
$$
However, we can simplify the ugly floor function in terms of arctangents and tangents. First, we have
$$
pi leftlfloor frac{x+pi}{2pi} rightrfloor
= frac{x}{2} - arctan left( tan left( frac{x}{2} right) right)
$$
So, implementing this and then asking What is $arctan(x) + arctan(y)$? We get
$$
begin{align}
int frac{1}{a+bcos(x)} {rm d}x
& = frac{2}{sqrt{a^2-b^2}} arctan left( sqrt{frac{a-b}{a+b}}tan left( frac{x}{2} right) right) + frac{2}{sqrt{a^2-b^2}} left( frac{x}{2} - arctan left( tan left( frac{x}{2} right) right) right) +C \
& = frac{1}{sqrt{a^2-b^2}} left( x + 2arctan left( sqrt{frac{a-b}{a+b}}tan left( frac{x}{2} right) right) - 2arctan left( tan left( frac{x}{2} right) right) right) + C \
& = frac{1}{sqrt{a^2-b^2}} left( x + 2arctan left( frac{ sqrt{frac{a-b}{a+b}}tan left(frac{x}{2}right) - tan left(frac{x}{2}right) }{1 + sqrt{frac{a-b}{a+b}} tan^2 left(frac{x}{2}right) } right) right) + C \
end{align}
$$
Which ultimately simplifies to a satisfying compact
$$ int frac{1}{a+bcos(x)} {rm d}x
= frac{1}{sqrt{a^2-b^2}} left( x - 2arctan left( frac{ (sqrt{a+b}-sqrt{a-b})tan left(frac{x}{2}right) }{sqrt{a+b} + sqrt{a-b} tan^2 left(frac{x}{2}right) } right) right) + C
$$
II. And for the case $|a|<|b|$, we will have, from user1357113's partial fraction decomposition,
$$ int frac{1}{a+bcos(x)} {rm d}x
= frac{1}{sqrt{b^2-a^2}}lnleft(left|frac{b+acosleft(xright)+sqrt{b^2-a^2}sinleft(xright)}{a+bcosleft(xright)}right|right) +C
$$
III a. And for the case $a = b$, we will have
$$
begin{align}
int frac{1}{a+bcos(x)} {rm d}x
& = frac1a int frac{1}{1+cos(x)} {rm d}x \
& = frac1a int frac{1}{1+2cos^2(frac{x}{2})-1}{rm d}x \
& = frac1{2a} int sec^2 left(frac{x}{2}right) {rm d}x \
& = frac1a tanleft(frac{x}{2}right) + C
end{align}
$$
III b. Finally, for the case $a = -b$, we will have
$$
begin{align}
int frac{1}{a+bcos(x)} {rm d}x
& = frac1a int frac{1}{1-cos(x)} {rm d}x \
& = frac1a int frac{1}{1 - 1 + 2sin^2(frac{x}{2})}{rm d}x \
& = frac1{2a} int csc^2 left(frac{x}{2}right) {rm d}x \
& = frac1b cotleft(frac{x}{2}right) + C
end{align}
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f134577%2fhow-do-you-integrate-int-frac1a-cos-x-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $ y = frac{x}{2}$.
$$frac{1}{a + cos 2y} = frac{1}{a -1 + 2cos ^2 y} = frac{sec^2 y}{(a-1)sec^2 y + 2} = frac{sec^2 y}{a + 1 + (a-1)tan^2 y} $$
Thus
$$int frac{1}{a + cos x} text{d}x = int frac{2}{a + cos 2y} text{d}y $$
$$ = int frac{ 2sec^2 y}{ a + 1 + (a-1)tan^2 y} text{d} y$$
Now make the subsitution $t = tan y$.
I remember having used the same trick before: Summing the series $ frac{1}{2n+1} + frac{1}{2} cdot frac{1}{2n+3} + cdots text{ad inf}$
$endgroup$
$begingroup$
Clever! Thanks for the solution :)
$endgroup$
– badatmath
Apr 23 '12 at 4:13
add a comment |
$begingroup$
Let $ y = frac{x}{2}$.
$$frac{1}{a + cos 2y} = frac{1}{a -1 + 2cos ^2 y} = frac{sec^2 y}{(a-1)sec^2 y + 2} = frac{sec^2 y}{a + 1 + (a-1)tan^2 y} $$
Thus
$$int frac{1}{a + cos x} text{d}x = int frac{2}{a + cos 2y} text{d}y $$
$$ = int frac{ 2sec^2 y}{ a + 1 + (a-1)tan^2 y} text{d} y$$
Now make the subsitution $t = tan y$.
I remember having used the same trick before: Summing the series $ frac{1}{2n+1} + frac{1}{2} cdot frac{1}{2n+3} + cdots text{ad inf}$
$endgroup$
$begingroup$
Clever! Thanks for the solution :)
$endgroup$
– badatmath
Apr 23 '12 at 4:13
add a comment |
$begingroup$
Let $ y = frac{x}{2}$.
$$frac{1}{a + cos 2y} = frac{1}{a -1 + 2cos ^2 y} = frac{sec^2 y}{(a-1)sec^2 y + 2} = frac{sec^2 y}{a + 1 + (a-1)tan^2 y} $$
Thus
$$int frac{1}{a + cos x} text{d}x = int frac{2}{a + cos 2y} text{d}y $$
$$ = int frac{ 2sec^2 y}{ a + 1 + (a-1)tan^2 y} text{d} y$$
Now make the subsitution $t = tan y$.
I remember having used the same trick before: Summing the series $ frac{1}{2n+1} + frac{1}{2} cdot frac{1}{2n+3} + cdots text{ad inf}$
$endgroup$
Let $ y = frac{x}{2}$.
$$frac{1}{a + cos 2y} = frac{1}{a -1 + 2cos ^2 y} = frac{sec^2 y}{(a-1)sec^2 y + 2} = frac{sec^2 y}{a + 1 + (a-1)tan^2 y} $$
Thus
$$int frac{1}{a + cos x} text{d}x = int frac{2}{a + cos 2y} text{d}y $$
$$ = int frac{ 2sec^2 y}{ a + 1 + (a-1)tan^2 y} text{d} y$$
Now make the subsitution $t = tan y$.
I remember having used the same trick before: Summing the series $ frac{1}{2n+1} + frac{1}{2} cdot frac{1}{2n+3} + cdots text{ad inf}$
edited Apr 13 '17 at 12:21
Community♦
1
1
answered Apr 20 '12 at 23:41
AryabhataAryabhata
70.2k6157247
70.2k6157247
$begingroup$
Clever! Thanks for the solution :)
$endgroup$
– badatmath
Apr 23 '12 at 4:13
add a comment |
$begingroup$
Clever! Thanks for the solution :)
$endgroup$
– badatmath
Apr 23 '12 at 4:13
$begingroup$
Clever! Thanks for the solution :)
$endgroup$
– badatmath
Apr 23 '12 at 4:13
$begingroup$
Clever! Thanks for the solution :)
$endgroup$
– badatmath
Apr 23 '12 at 4:13
add a comment |
$begingroup$
Generalization:
Let's consider $cos x = frac{1-t^2}{1+t^2}; t = tanfrac{x}{2}; dx=frac{2}{1+t^2} dt.$ Then we get that our integral becomes:
$$J = int frac{2dt}{(a+b)+(a-b) t^2}$$
I. For the case $a>b$, consider $a+b=u^2$ and $a-b=v^2$, and obtain that:
$$J = 2int frac{dt}{u^2+v^2 t^2}=frac{2}{uv} arctanfrac{vt}{u} +C.$$
Turning back to our notation we get:
$$I=frac{2}{sqrt{a^2-b^2}} arctanleft(sqrt{frac{a-b}{a+b}} tanfrac{x}{2} right) + C.$$
II. For the case $a<b$, consider $a+b=u^2$ and $a-b=-v^2$, and obtain that:
$$J = 2int frac{dt}{u^2-v^2 t^2}=frac{1}{uv}lnfrac{u+vt}{u-vt} +C.$$
Turning back again to out initial notation and have that:
$$I=frac{2}{sqrt{b^2-a^2}} lnfrac{b+a cos x + sqrt{b^2-a^2} sin x}{a+b cos x} + C.$$
Also, note that $x$ must be different from ${+}/{-}arccos(-frac{a}{b})+2kpi$ if $|frac{a}{b}|leq1$.
Q.E.D.
$endgroup$
add a comment |
$begingroup$
Generalization:
Let's consider $cos x = frac{1-t^2}{1+t^2}; t = tanfrac{x}{2}; dx=frac{2}{1+t^2} dt.$ Then we get that our integral becomes:
$$J = int frac{2dt}{(a+b)+(a-b) t^2}$$
I. For the case $a>b$, consider $a+b=u^2$ and $a-b=v^2$, and obtain that:
$$J = 2int frac{dt}{u^2+v^2 t^2}=frac{2}{uv} arctanfrac{vt}{u} +C.$$
Turning back to our notation we get:
$$I=frac{2}{sqrt{a^2-b^2}} arctanleft(sqrt{frac{a-b}{a+b}} tanfrac{x}{2} right) + C.$$
II. For the case $a<b$, consider $a+b=u^2$ and $a-b=-v^2$, and obtain that:
$$J = 2int frac{dt}{u^2-v^2 t^2}=frac{1}{uv}lnfrac{u+vt}{u-vt} +C.$$
Turning back again to out initial notation and have that:
$$I=frac{2}{sqrt{b^2-a^2}} lnfrac{b+a cos x + sqrt{b^2-a^2} sin x}{a+b cos x} + C.$$
Also, note that $x$ must be different from ${+}/{-}arccos(-frac{a}{b})+2kpi$ if $|frac{a}{b}|leq1$.
Q.E.D.
$endgroup$
add a comment |
$begingroup$
Generalization:
Let's consider $cos x = frac{1-t^2}{1+t^2}; t = tanfrac{x}{2}; dx=frac{2}{1+t^2} dt.$ Then we get that our integral becomes:
$$J = int frac{2dt}{(a+b)+(a-b) t^2}$$
I. For the case $a>b$, consider $a+b=u^2$ and $a-b=v^2$, and obtain that:
$$J = 2int frac{dt}{u^2+v^2 t^2}=frac{2}{uv} arctanfrac{vt}{u} +C.$$
Turning back to our notation we get:
$$I=frac{2}{sqrt{a^2-b^2}} arctanleft(sqrt{frac{a-b}{a+b}} tanfrac{x}{2} right) + C.$$
II. For the case $a<b$, consider $a+b=u^2$ and $a-b=-v^2$, and obtain that:
$$J = 2int frac{dt}{u^2-v^2 t^2}=frac{1}{uv}lnfrac{u+vt}{u-vt} +C.$$
Turning back again to out initial notation and have that:
$$I=frac{2}{sqrt{b^2-a^2}} lnfrac{b+a cos x + sqrt{b^2-a^2} sin x}{a+b cos x} + C.$$
Also, note that $x$ must be different from ${+}/{-}arccos(-frac{a}{b})+2kpi$ if $|frac{a}{b}|leq1$.
Q.E.D.
$endgroup$
Generalization:
Let's consider $cos x = frac{1-t^2}{1+t^2}; t = tanfrac{x}{2}; dx=frac{2}{1+t^2} dt.$ Then we get that our integral becomes:
$$J = int frac{2dt}{(a+b)+(a-b) t^2}$$
I. For the case $a>b$, consider $a+b=u^2$ and $a-b=v^2$, and obtain that:
$$J = 2int frac{dt}{u^2+v^2 t^2}=frac{2}{uv} arctanfrac{vt}{u} +C.$$
Turning back to our notation we get:
$$I=frac{2}{sqrt{a^2-b^2}} arctanleft(sqrt{frac{a-b}{a+b}} tanfrac{x}{2} right) + C.$$
II. For the case $a<b$, consider $a+b=u^2$ and $a-b=-v^2$, and obtain that:
$$J = 2int frac{dt}{u^2-v^2 t^2}=frac{1}{uv}lnfrac{u+vt}{u-vt} +C.$$
Turning back again to out initial notation and have that:
$$I=frac{2}{sqrt{b^2-a^2}} lnfrac{b+a cos x + sqrt{b^2-a^2} sin x}{a+b cos x} + C.$$
Also, note that $x$ must be different from ${+}/{-}arccos(-frac{a}{b})+2kpi$ if $|frac{a}{b}|leq1$.
Q.E.D.
edited Jun 19 '12 at 9:01
answered Jun 19 '12 at 8:45
user 1357113user 1357113
22.5k878227
22.5k878227
add a comment |
add a comment |
$begingroup$
This doesn't help you to evaluate the indefinite integral, but I though I would add that the definite integral $int_0^{2 pi
} frac{1}{a + cos x} dx$ can also be evaluated using methods from complex analysis. Let us make the simplifying assumption that $a > 1$ to avoid a blow up in the integral. Other values of $a$ (including complex ones!) can be made to work too.
We have
begin{align*}
int_0^{2 pi
} frac{dx}{a + cos x} &= int_0^{2 pi} frac{dx}{a + frac{e^{ix} + e^{-ix}}{2}} \
&= 2int_0^{2 pi} frac{e^{ix} dx}{2ae^{ix} + e^{2ix} + 1} && text{Let } z=e^{ix}, text{ so } dz = ie^{ix} dx. \
&= frac{2}{i} int_{|z|=1} frac{dz}{z^2 + 2az + 1} \
&= frac{2}{i} int_{|z|=1} frac{dz}{(z-z_1)(z-z_2)}
end{align*}
where the circle $|z|=1$ is parametrized counterclockwise and
begin{align*} z_1 = -a - sqrt{a^2-1} && z_2 = -a + sqrt{a^2-1}.
end{align*}
Clearly $z_1 < -a < -1$, so $z_1$ is outside of the unit circle. As for $z_2$, it is convenient to notice that
begin{align*}
z_1 z_2 = 1.
end{align*}
Thus, since $z_1$ is outside the unit circle, its inverse $z_2$ is inside the unit circle. So, applying the residue theorem, we have
begin{align*}
frac{2}{i} int_{|z|=1} frac{dz}{(z-z_1)(z-z_2)}
&= frac{2}{i} 2 pi i mathrm{Res}left( frac{1}{(z-z_1)(z-z_2)}, z_2right) \
&= 4 pi frac{1}{z_2 - z_1} \
&= 4 pi frac{1}{2 sqrt{a^2 -1}} \
&= frac{2 pi}{sqrt{a^2-1}}.
end{align*}
One can check this result against the one obtained from Arybatha's antiderivative, although a bit of care needs to be taken as an improper integral crops up while making the various substitutions.
begin{align*}
int_0^{2 pi
} frac{dx}{a + cos x}
&= int_0^pi frac{2 dy}{a+1 + (a-1) tan^2(y)} && y= frac{x}{2}\
&= int_0^infty frac{ 2 dt}{ a + 1 + (a-1)t^2} +int_{-infty}^0 frac{ 2 dt}{ a + 1 + (a-1)t^2} && t = tan(y) \
&= frac{2}{sqrt{a^2-1}} arctanleft( sqrt{ frac{a-1}{a+1}} t right) big|_0^infty + frac{2}{sqrt{a^2-1}} arctanleft( sqrt{ frac{a-1}{a+1}} t right) big|_{-infty}^0 \
&= frac{2 pi}{sqrt{a^2-1}}
end{align*}
$endgroup$
add a comment |
$begingroup$
This doesn't help you to evaluate the indefinite integral, but I though I would add that the definite integral $int_0^{2 pi
} frac{1}{a + cos x} dx$ can also be evaluated using methods from complex analysis. Let us make the simplifying assumption that $a > 1$ to avoid a blow up in the integral. Other values of $a$ (including complex ones!) can be made to work too.
We have
begin{align*}
int_0^{2 pi
} frac{dx}{a + cos x} &= int_0^{2 pi} frac{dx}{a + frac{e^{ix} + e^{-ix}}{2}} \
&= 2int_0^{2 pi} frac{e^{ix} dx}{2ae^{ix} + e^{2ix} + 1} && text{Let } z=e^{ix}, text{ so } dz = ie^{ix} dx. \
&= frac{2}{i} int_{|z|=1} frac{dz}{z^2 + 2az + 1} \
&= frac{2}{i} int_{|z|=1} frac{dz}{(z-z_1)(z-z_2)}
end{align*}
where the circle $|z|=1$ is parametrized counterclockwise and
begin{align*} z_1 = -a - sqrt{a^2-1} && z_2 = -a + sqrt{a^2-1}.
end{align*}
Clearly $z_1 < -a < -1$, so $z_1$ is outside of the unit circle. As for $z_2$, it is convenient to notice that
begin{align*}
z_1 z_2 = 1.
end{align*}
Thus, since $z_1$ is outside the unit circle, its inverse $z_2$ is inside the unit circle. So, applying the residue theorem, we have
begin{align*}
frac{2}{i} int_{|z|=1} frac{dz}{(z-z_1)(z-z_2)}
&= frac{2}{i} 2 pi i mathrm{Res}left( frac{1}{(z-z_1)(z-z_2)}, z_2right) \
&= 4 pi frac{1}{z_2 - z_1} \
&= 4 pi frac{1}{2 sqrt{a^2 -1}} \
&= frac{2 pi}{sqrt{a^2-1}}.
end{align*}
One can check this result against the one obtained from Arybatha's antiderivative, although a bit of care needs to be taken as an improper integral crops up while making the various substitutions.
begin{align*}
int_0^{2 pi
} frac{dx}{a + cos x}
&= int_0^pi frac{2 dy}{a+1 + (a-1) tan^2(y)} && y= frac{x}{2}\
&= int_0^infty frac{ 2 dt}{ a + 1 + (a-1)t^2} +int_{-infty}^0 frac{ 2 dt}{ a + 1 + (a-1)t^2} && t = tan(y) \
&= frac{2}{sqrt{a^2-1}} arctanleft( sqrt{ frac{a-1}{a+1}} t right) big|_0^infty + frac{2}{sqrt{a^2-1}} arctanleft( sqrt{ frac{a-1}{a+1}} t right) big|_{-infty}^0 \
&= frac{2 pi}{sqrt{a^2-1}}
end{align*}
$endgroup$
add a comment |
$begingroup$
This doesn't help you to evaluate the indefinite integral, but I though I would add that the definite integral $int_0^{2 pi
} frac{1}{a + cos x} dx$ can also be evaluated using methods from complex analysis. Let us make the simplifying assumption that $a > 1$ to avoid a blow up in the integral. Other values of $a$ (including complex ones!) can be made to work too.
We have
begin{align*}
int_0^{2 pi
} frac{dx}{a + cos x} &= int_0^{2 pi} frac{dx}{a + frac{e^{ix} + e^{-ix}}{2}} \
&= 2int_0^{2 pi} frac{e^{ix} dx}{2ae^{ix} + e^{2ix} + 1} && text{Let } z=e^{ix}, text{ so } dz = ie^{ix} dx. \
&= frac{2}{i} int_{|z|=1} frac{dz}{z^2 + 2az + 1} \
&= frac{2}{i} int_{|z|=1} frac{dz}{(z-z_1)(z-z_2)}
end{align*}
where the circle $|z|=1$ is parametrized counterclockwise and
begin{align*} z_1 = -a - sqrt{a^2-1} && z_2 = -a + sqrt{a^2-1}.
end{align*}
Clearly $z_1 < -a < -1$, so $z_1$ is outside of the unit circle. As for $z_2$, it is convenient to notice that
begin{align*}
z_1 z_2 = 1.
end{align*}
Thus, since $z_1$ is outside the unit circle, its inverse $z_2$ is inside the unit circle. So, applying the residue theorem, we have
begin{align*}
frac{2}{i} int_{|z|=1} frac{dz}{(z-z_1)(z-z_2)}
&= frac{2}{i} 2 pi i mathrm{Res}left( frac{1}{(z-z_1)(z-z_2)}, z_2right) \
&= 4 pi frac{1}{z_2 - z_1} \
&= 4 pi frac{1}{2 sqrt{a^2 -1}} \
&= frac{2 pi}{sqrt{a^2-1}}.
end{align*}
One can check this result against the one obtained from Arybatha's antiderivative, although a bit of care needs to be taken as an improper integral crops up while making the various substitutions.
begin{align*}
int_0^{2 pi
} frac{dx}{a + cos x}
&= int_0^pi frac{2 dy}{a+1 + (a-1) tan^2(y)} && y= frac{x}{2}\
&= int_0^infty frac{ 2 dt}{ a + 1 + (a-1)t^2} +int_{-infty}^0 frac{ 2 dt}{ a + 1 + (a-1)t^2} && t = tan(y) \
&= frac{2}{sqrt{a^2-1}} arctanleft( sqrt{ frac{a-1}{a+1}} t right) big|_0^infty + frac{2}{sqrt{a^2-1}} arctanleft( sqrt{ frac{a-1}{a+1}} t right) big|_{-infty}^0 \
&= frac{2 pi}{sqrt{a^2-1}}
end{align*}
$endgroup$
This doesn't help you to evaluate the indefinite integral, but I though I would add that the definite integral $int_0^{2 pi
} frac{1}{a + cos x} dx$ can also be evaluated using methods from complex analysis. Let us make the simplifying assumption that $a > 1$ to avoid a blow up in the integral. Other values of $a$ (including complex ones!) can be made to work too.
We have
begin{align*}
int_0^{2 pi
} frac{dx}{a + cos x} &= int_0^{2 pi} frac{dx}{a + frac{e^{ix} + e^{-ix}}{2}} \
&= 2int_0^{2 pi} frac{e^{ix} dx}{2ae^{ix} + e^{2ix} + 1} && text{Let } z=e^{ix}, text{ so } dz = ie^{ix} dx. \
&= frac{2}{i} int_{|z|=1} frac{dz}{z^2 + 2az + 1} \
&= frac{2}{i} int_{|z|=1} frac{dz}{(z-z_1)(z-z_2)}
end{align*}
where the circle $|z|=1$ is parametrized counterclockwise and
begin{align*} z_1 = -a - sqrt{a^2-1} && z_2 = -a + sqrt{a^2-1}.
end{align*}
Clearly $z_1 < -a < -1$, so $z_1$ is outside of the unit circle. As for $z_2$, it is convenient to notice that
begin{align*}
z_1 z_2 = 1.
end{align*}
Thus, since $z_1$ is outside the unit circle, its inverse $z_2$ is inside the unit circle. So, applying the residue theorem, we have
begin{align*}
frac{2}{i} int_{|z|=1} frac{dz}{(z-z_1)(z-z_2)}
&= frac{2}{i} 2 pi i mathrm{Res}left( frac{1}{(z-z_1)(z-z_2)}, z_2right) \
&= 4 pi frac{1}{z_2 - z_1} \
&= 4 pi frac{1}{2 sqrt{a^2 -1}} \
&= frac{2 pi}{sqrt{a^2-1}}.
end{align*}
One can check this result against the one obtained from Arybatha's antiderivative, although a bit of care needs to be taken as an improper integral crops up while making the various substitutions.
begin{align*}
int_0^{2 pi
} frac{dx}{a + cos x}
&= int_0^pi frac{2 dy}{a+1 + (a-1) tan^2(y)} && y= frac{x}{2}\
&= int_0^infty frac{ 2 dt}{ a + 1 + (a-1)t^2} +int_{-infty}^0 frac{ 2 dt}{ a + 1 + (a-1)t^2} && t = tan(y) \
&= frac{2}{sqrt{a^2-1}} arctanleft( sqrt{ frac{a-1}{a+1}} t right) big|_0^infty + frac{2}{sqrt{a^2-1}} arctanleft( sqrt{ frac{a-1}{a+1}} t right) big|_{-infty}^0 \
&= frac{2 pi}{sqrt{a^2-1}}
end{align*}
answered Jun 6 '15 at 6:01
Mike FMike F
12.5k23583
12.5k23583
add a comment |
add a comment |
$begingroup$
Expanding André's comment
Say we have an integral of the form
$$int R(sin x,cos x) dx$$
Then the substitution
$$t= tanfrac x 2 $$
will change the integral into a rational function of
$$sin x = frac{2t}{1+t^2}$$
$$cos x = frac{1-t^2}{1+t^2}$$
and of course
$$dx = frac{2 dt}{1+t^2}$$
Would you like to try solve it that way or want a full solution?
$endgroup$
add a comment |
$begingroup$
Expanding André's comment
Say we have an integral of the form
$$int R(sin x,cos x) dx$$
Then the substitution
$$t= tanfrac x 2 $$
will change the integral into a rational function of
$$sin x = frac{2t}{1+t^2}$$
$$cos x = frac{1-t^2}{1+t^2}$$
and of course
$$dx = frac{2 dt}{1+t^2}$$
Would you like to try solve it that way or want a full solution?
$endgroup$
add a comment |
$begingroup$
Expanding André's comment
Say we have an integral of the form
$$int R(sin x,cos x) dx$$
Then the substitution
$$t= tanfrac x 2 $$
will change the integral into a rational function of
$$sin x = frac{2t}{1+t^2}$$
$$cos x = frac{1-t^2}{1+t^2}$$
and of course
$$dx = frac{2 dt}{1+t^2}$$
Would you like to try solve it that way or want a full solution?
$endgroup$
Expanding André's comment
Say we have an integral of the form
$$int R(sin x,cos x) dx$$
Then the substitution
$$t= tanfrac x 2 $$
will change the integral into a rational function of
$$sin x = frac{2t}{1+t^2}$$
$$cos x = frac{1-t^2}{1+t^2}$$
and of course
$$dx = frac{2 dt}{1+t^2}$$
Would you like to try solve it that way or want a full solution?
answered Apr 20 '12 at 23:29
Pedro Tamaroff♦Pedro Tamaroff
97.5k10153297
97.5k10153297
add a comment |
add a comment |
$begingroup$
Also a generalised solution, borrowing from and expanding upon user1357113's answer,
I. For the case $|a| > |b|$, note that the substitution $t=tan left( frac{x}{2} right)$ is not injective. So to retrieve a continuous antiderivative, we have as a complete answer
$$
int frac{1}{a+bcos(x)} {rm d}x
= frac{2}{sqrt{a^2-b^2}} arctan left( sqrt{frac{a-b}{a+b}}tan left( frac{x}{2} right) right) + frac{2pi}{sqrt{a^2-b^2}} leftlfloor frac{x+pi}{2pi} rightrfloor +C
$$
However, we can simplify the ugly floor function in terms of arctangents and tangents. First, we have
$$
pi leftlfloor frac{x+pi}{2pi} rightrfloor
= frac{x}{2} - arctan left( tan left( frac{x}{2} right) right)
$$
So, implementing this and then asking What is $arctan(x) + arctan(y)$? We get
$$
begin{align}
int frac{1}{a+bcos(x)} {rm d}x
& = frac{2}{sqrt{a^2-b^2}} arctan left( sqrt{frac{a-b}{a+b}}tan left( frac{x}{2} right) right) + frac{2}{sqrt{a^2-b^2}} left( frac{x}{2} - arctan left( tan left( frac{x}{2} right) right) right) +C \
& = frac{1}{sqrt{a^2-b^2}} left( x + 2arctan left( sqrt{frac{a-b}{a+b}}tan left( frac{x}{2} right) right) - 2arctan left( tan left( frac{x}{2} right) right) right) + C \
& = frac{1}{sqrt{a^2-b^2}} left( x + 2arctan left( frac{ sqrt{frac{a-b}{a+b}}tan left(frac{x}{2}right) - tan left(frac{x}{2}right) }{1 + sqrt{frac{a-b}{a+b}} tan^2 left(frac{x}{2}right) } right) right) + C \
end{align}
$$
Which ultimately simplifies to a satisfying compact
$$ int frac{1}{a+bcos(x)} {rm d}x
= frac{1}{sqrt{a^2-b^2}} left( x - 2arctan left( frac{ (sqrt{a+b}-sqrt{a-b})tan left(frac{x}{2}right) }{sqrt{a+b} + sqrt{a-b} tan^2 left(frac{x}{2}right) } right) right) + C
$$
II. And for the case $|a|<|b|$, we will have, from user1357113's partial fraction decomposition,
$$ int frac{1}{a+bcos(x)} {rm d}x
= frac{1}{sqrt{b^2-a^2}}lnleft(left|frac{b+acosleft(xright)+sqrt{b^2-a^2}sinleft(xright)}{a+bcosleft(xright)}right|right) +C
$$
III a. And for the case $a = b$, we will have
$$
begin{align}
int frac{1}{a+bcos(x)} {rm d}x
& = frac1a int frac{1}{1+cos(x)} {rm d}x \
& = frac1a int frac{1}{1+2cos^2(frac{x}{2})-1}{rm d}x \
& = frac1{2a} int sec^2 left(frac{x}{2}right) {rm d}x \
& = frac1a tanleft(frac{x}{2}right) + C
end{align}
$$
III b. Finally, for the case $a = -b$, we will have
$$
begin{align}
int frac{1}{a+bcos(x)} {rm d}x
& = frac1a int frac{1}{1-cos(x)} {rm d}x \
& = frac1a int frac{1}{1 - 1 + 2sin^2(frac{x}{2})}{rm d}x \
& = frac1{2a} int csc^2 left(frac{x}{2}right) {rm d}x \
& = frac1b cotleft(frac{x}{2}right) + C
end{align}
$$
$endgroup$
add a comment |
$begingroup$
Also a generalised solution, borrowing from and expanding upon user1357113's answer,
I. For the case $|a| > |b|$, note that the substitution $t=tan left( frac{x}{2} right)$ is not injective. So to retrieve a continuous antiderivative, we have as a complete answer
$$
int frac{1}{a+bcos(x)} {rm d}x
= frac{2}{sqrt{a^2-b^2}} arctan left( sqrt{frac{a-b}{a+b}}tan left( frac{x}{2} right) right) + frac{2pi}{sqrt{a^2-b^2}} leftlfloor frac{x+pi}{2pi} rightrfloor +C
$$
However, we can simplify the ugly floor function in terms of arctangents and tangents. First, we have
$$
pi leftlfloor frac{x+pi}{2pi} rightrfloor
= frac{x}{2} - arctan left( tan left( frac{x}{2} right) right)
$$
So, implementing this and then asking What is $arctan(x) + arctan(y)$? We get
$$
begin{align}
int frac{1}{a+bcos(x)} {rm d}x
& = frac{2}{sqrt{a^2-b^2}} arctan left( sqrt{frac{a-b}{a+b}}tan left( frac{x}{2} right) right) + frac{2}{sqrt{a^2-b^2}} left( frac{x}{2} - arctan left( tan left( frac{x}{2} right) right) right) +C \
& = frac{1}{sqrt{a^2-b^2}} left( x + 2arctan left( sqrt{frac{a-b}{a+b}}tan left( frac{x}{2} right) right) - 2arctan left( tan left( frac{x}{2} right) right) right) + C \
& = frac{1}{sqrt{a^2-b^2}} left( x + 2arctan left( frac{ sqrt{frac{a-b}{a+b}}tan left(frac{x}{2}right) - tan left(frac{x}{2}right) }{1 + sqrt{frac{a-b}{a+b}} tan^2 left(frac{x}{2}right) } right) right) + C \
end{align}
$$
Which ultimately simplifies to a satisfying compact
$$ int frac{1}{a+bcos(x)} {rm d}x
= frac{1}{sqrt{a^2-b^2}} left( x - 2arctan left( frac{ (sqrt{a+b}-sqrt{a-b})tan left(frac{x}{2}right) }{sqrt{a+b} + sqrt{a-b} tan^2 left(frac{x}{2}right) } right) right) + C
$$
II. And for the case $|a|<|b|$, we will have, from user1357113's partial fraction decomposition,
$$ int frac{1}{a+bcos(x)} {rm d}x
= frac{1}{sqrt{b^2-a^2}}lnleft(left|frac{b+acosleft(xright)+sqrt{b^2-a^2}sinleft(xright)}{a+bcosleft(xright)}right|right) +C
$$
III a. And for the case $a = b$, we will have
$$
begin{align}
int frac{1}{a+bcos(x)} {rm d}x
& = frac1a int frac{1}{1+cos(x)} {rm d}x \
& = frac1a int frac{1}{1+2cos^2(frac{x}{2})-1}{rm d}x \
& = frac1{2a} int sec^2 left(frac{x}{2}right) {rm d}x \
& = frac1a tanleft(frac{x}{2}right) + C
end{align}
$$
III b. Finally, for the case $a = -b$, we will have
$$
begin{align}
int frac{1}{a+bcos(x)} {rm d}x
& = frac1a int frac{1}{1-cos(x)} {rm d}x \
& = frac1a int frac{1}{1 - 1 + 2sin^2(frac{x}{2})}{rm d}x \
& = frac1{2a} int csc^2 left(frac{x}{2}right) {rm d}x \
& = frac1b cotleft(frac{x}{2}right) + C
end{align}
$$
$endgroup$
add a comment |
$begingroup$
Also a generalised solution, borrowing from and expanding upon user1357113's answer,
I. For the case $|a| > |b|$, note that the substitution $t=tan left( frac{x}{2} right)$ is not injective. So to retrieve a continuous antiderivative, we have as a complete answer
$$
int frac{1}{a+bcos(x)} {rm d}x
= frac{2}{sqrt{a^2-b^2}} arctan left( sqrt{frac{a-b}{a+b}}tan left( frac{x}{2} right) right) + frac{2pi}{sqrt{a^2-b^2}} leftlfloor frac{x+pi}{2pi} rightrfloor +C
$$
However, we can simplify the ugly floor function in terms of arctangents and tangents. First, we have
$$
pi leftlfloor frac{x+pi}{2pi} rightrfloor
= frac{x}{2} - arctan left( tan left( frac{x}{2} right) right)
$$
So, implementing this and then asking What is $arctan(x) + arctan(y)$? We get
$$
begin{align}
int frac{1}{a+bcos(x)} {rm d}x
& = frac{2}{sqrt{a^2-b^2}} arctan left( sqrt{frac{a-b}{a+b}}tan left( frac{x}{2} right) right) + frac{2}{sqrt{a^2-b^2}} left( frac{x}{2} - arctan left( tan left( frac{x}{2} right) right) right) +C \
& = frac{1}{sqrt{a^2-b^2}} left( x + 2arctan left( sqrt{frac{a-b}{a+b}}tan left( frac{x}{2} right) right) - 2arctan left( tan left( frac{x}{2} right) right) right) + C \
& = frac{1}{sqrt{a^2-b^2}} left( x + 2arctan left( frac{ sqrt{frac{a-b}{a+b}}tan left(frac{x}{2}right) - tan left(frac{x}{2}right) }{1 + sqrt{frac{a-b}{a+b}} tan^2 left(frac{x}{2}right) } right) right) + C \
end{align}
$$
Which ultimately simplifies to a satisfying compact
$$ int frac{1}{a+bcos(x)} {rm d}x
= frac{1}{sqrt{a^2-b^2}} left( x - 2arctan left( frac{ (sqrt{a+b}-sqrt{a-b})tan left(frac{x}{2}right) }{sqrt{a+b} + sqrt{a-b} tan^2 left(frac{x}{2}right) } right) right) + C
$$
II. And for the case $|a|<|b|$, we will have, from user1357113's partial fraction decomposition,
$$ int frac{1}{a+bcos(x)} {rm d}x
= frac{1}{sqrt{b^2-a^2}}lnleft(left|frac{b+acosleft(xright)+sqrt{b^2-a^2}sinleft(xright)}{a+bcosleft(xright)}right|right) +C
$$
III a. And for the case $a = b$, we will have
$$
begin{align}
int frac{1}{a+bcos(x)} {rm d}x
& = frac1a int frac{1}{1+cos(x)} {rm d}x \
& = frac1a int frac{1}{1+2cos^2(frac{x}{2})-1}{rm d}x \
& = frac1{2a} int sec^2 left(frac{x}{2}right) {rm d}x \
& = frac1a tanleft(frac{x}{2}right) + C
end{align}
$$
III b. Finally, for the case $a = -b$, we will have
$$
begin{align}
int frac{1}{a+bcos(x)} {rm d}x
& = frac1a int frac{1}{1-cos(x)} {rm d}x \
& = frac1a int frac{1}{1 - 1 + 2sin^2(frac{x}{2})}{rm d}x \
& = frac1{2a} int csc^2 left(frac{x}{2}right) {rm d}x \
& = frac1b cotleft(frac{x}{2}right) + C
end{align}
$$
$endgroup$
Also a generalised solution, borrowing from and expanding upon user1357113's answer,
I. For the case $|a| > |b|$, note that the substitution $t=tan left( frac{x}{2} right)$ is not injective. So to retrieve a continuous antiderivative, we have as a complete answer
$$
int frac{1}{a+bcos(x)} {rm d}x
= frac{2}{sqrt{a^2-b^2}} arctan left( sqrt{frac{a-b}{a+b}}tan left( frac{x}{2} right) right) + frac{2pi}{sqrt{a^2-b^2}} leftlfloor frac{x+pi}{2pi} rightrfloor +C
$$
However, we can simplify the ugly floor function in terms of arctangents and tangents. First, we have
$$
pi leftlfloor frac{x+pi}{2pi} rightrfloor
= frac{x}{2} - arctan left( tan left( frac{x}{2} right) right)
$$
So, implementing this and then asking What is $arctan(x) + arctan(y)$? We get
$$
begin{align}
int frac{1}{a+bcos(x)} {rm d}x
& = frac{2}{sqrt{a^2-b^2}} arctan left( sqrt{frac{a-b}{a+b}}tan left( frac{x}{2} right) right) + frac{2}{sqrt{a^2-b^2}} left( frac{x}{2} - arctan left( tan left( frac{x}{2} right) right) right) +C \
& = frac{1}{sqrt{a^2-b^2}} left( x + 2arctan left( sqrt{frac{a-b}{a+b}}tan left( frac{x}{2} right) right) - 2arctan left( tan left( frac{x}{2} right) right) right) + C \
& = frac{1}{sqrt{a^2-b^2}} left( x + 2arctan left( frac{ sqrt{frac{a-b}{a+b}}tan left(frac{x}{2}right) - tan left(frac{x}{2}right) }{1 + sqrt{frac{a-b}{a+b}} tan^2 left(frac{x}{2}right) } right) right) + C \
end{align}
$$
Which ultimately simplifies to a satisfying compact
$$ int frac{1}{a+bcos(x)} {rm d}x
= frac{1}{sqrt{a^2-b^2}} left( x - 2arctan left( frac{ (sqrt{a+b}-sqrt{a-b})tan left(frac{x}{2}right) }{sqrt{a+b} + sqrt{a-b} tan^2 left(frac{x}{2}right) } right) right) + C
$$
II. And for the case $|a|<|b|$, we will have, from user1357113's partial fraction decomposition,
$$ int frac{1}{a+bcos(x)} {rm d}x
= frac{1}{sqrt{b^2-a^2}}lnleft(left|frac{b+acosleft(xright)+sqrt{b^2-a^2}sinleft(xright)}{a+bcosleft(xright)}right|right) +C
$$
III a. And for the case $a = b$, we will have
$$
begin{align}
int frac{1}{a+bcos(x)} {rm d}x
& = frac1a int frac{1}{1+cos(x)} {rm d}x \
& = frac1a int frac{1}{1+2cos^2(frac{x}{2})-1}{rm d}x \
& = frac1{2a} int sec^2 left(frac{x}{2}right) {rm d}x \
& = frac1a tanleft(frac{x}{2}right) + C
end{align}
$$
III b. Finally, for the case $a = -b$, we will have
$$
begin{align}
int frac{1}{a+bcos(x)} {rm d}x
& = frac1a int frac{1}{1-cos(x)} {rm d}x \
& = frac1a int frac{1}{1 - 1 + 2sin^2(frac{x}{2})}{rm d}x \
& = frac1{2a} int csc^2 left(frac{x}{2}right) {rm d}x \
& = frac1b cotleft(frac{x}{2}right) + C
end{align}
$$
edited Jan 1 at 18:09
answered Jan 1 at 17:59
MintMint
5311417
5311417
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f134577%2fhow-do-you-integrate-int-frac1a-cos-x-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
4
$begingroup$
The Weierstrass substitution $u=tan(x/2)$ (Wikipedia) turns it into an integrating a rational function problem.
$endgroup$
– André Nicolas
Apr 20 '12 at 23:22
$begingroup$
Wolfram|Alpha gives a surprisingly complicated antiderivative. If you click on "Show Steps", you can see how it's derived using the Weierstraß substitution that André suggested.
$endgroup$
– joriki
Apr 20 '12 at 23:25
$begingroup$
@joriki: To remove your surprise, see my answer :-)
$endgroup$
– Aryabhata
Apr 20 '12 at 23:42
$begingroup$
@Aryabhata: I'm not sure why that should lessen my surprise :-) I can see that it's complicated, either from your answer or from Wolfram|Alpha's; what I meant was that I wouldn't have expected it to be that complicated just from the integrand, which seems relatively tame at first sight.
$endgroup$
– joriki
Apr 20 '12 at 23:50
$begingroup$
@joriki: I see, I should have chosen the word 'lessen' instead of 'remove' :-)
$endgroup$
– Aryabhata
Apr 20 '12 at 23:52