Markov inequality question












0












$begingroup$


Let $x$ be a random variable and let $m = sqrt[3]{Bbb E[X^3]}.$
Show that, for each $a gt 0$, then $Bbb P[X geq acdot m] leq frac{1}{a^3}.$



If anyone could help I'll appreciate.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Notice $mathbf{E}(X) = mathbf{E}(X; X leq a m) + mathbf{E}(X; X > am),$ where the $;$ stands for "integrating on the set" (that is to say, multiplication by an indicator function). Realise that $X > c$ and $X^3 > c^3$ are equivalent relations.
    $endgroup$
    – Will M.
    Jan 1 at 20:30






  • 1




    $begingroup$
    Do we need $X$ to be a nonnegative random variable?
    $endgroup$
    – angryavian
    Jan 1 at 20:30










  • $begingroup$
    Yes X should be a nonnegative random variable
    $endgroup$
    – user610402
    Jan 1 at 20:37
















0












$begingroup$


Let $x$ be a random variable and let $m = sqrt[3]{Bbb E[X^3]}.$
Show that, for each $a gt 0$, then $Bbb P[X geq acdot m] leq frac{1}{a^3}.$



If anyone could help I'll appreciate.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Notice $mathbf{E}(X) = mathbf{E}(X; X leq a m) + mathbf{E}(X; X > am),$ where the $;$ stands for "integrating on the set" (that is to say, multiplication by an indicator function). Realise that $X > c$ and $X^3 > c^3$ are equivalent relations.
    $endgroup$
    – Will M.
    Jan 1 at 20:30






  • 1




    $begingroup$
    Do we need $X$ to be a nonnegative random variable?
    $endgroup$
    – angryavian
    Jan 1 at 20:30










  • $begingroup$
    Yes X should be a nonnegative random variable
    $endgroup$
    – user610402
    Jan 1 at 20:37














0












0








0





$begingroup$


Let $x$ be a random variable and let $m = sqrt[3]{Bbb E[X^3]}.$
Show that, for each $a gt 0$, then $Bbb P[X geq acdot m] leq frac{1}{a^3}.$



If anyone could help I'll appreciate.










share|cite|improve this question











$endgroup$




Let $x$ be a random variable and let $m = sqrt[3]{Bbb E[X^3]}.$
Show that, for each $a gt 0$, then $Bbb P[X geq acdot m] leq frac{1}{a^3}.$



If anyone could help I'll appreciate.







probability probability-theory






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 1 at 20:33









Namaste

1




1










asked Jan 1 at 20:12









user610402user610402

215




215








  • 1




    $begingroup$
    Notice $mathbf{E}(X) = mathbf{E}(X; X leq a m) + mathbf{E}(X; X > am),$ where the $;$ stands for "integrating on the set" (that is to say, multiplication by an indicator function). Realise that $X > c$ and $X^3 > c^3$ are equivalent relations.
    $endgroup$
    – Will M.
    Jan 1 at 20:30






  • 1




    $begingroup$
    Do we need $X$ to be a nonnegative random variable?
    $endgroup$
    – angryavian
    Jan 1 at 20:30










  • $begingroup$
    Yes X should be a nonnegative random variable
    $endgroup$
    – user610402
    Jan 1 at 20:37














  • 1




    $begingroup$
    Notice $mathbf{E}(X) = mathbf{E}(X; X leq a m) + mathbf{E}(X; X > am),$ where the $;$ stands for "integrating on the set" (that is to say, multiplication by an indicator function). Realise that $X > c$ and $X^3 > c^3$ are equivalent relations.
    $endgroup$
    – Will M.
    Jan 1 at 20:30






  • 1




    $begingroup$
    Do we need $X$ to be a nonnegative random variable?
    $endgroup$
    – angryavian
    Jan 1 at 20:30










  • $begingroup$
    Yes X should be a nonnegative random variable
    $endgroup$
    – user610402
    Jan 1 at 20:37








1




1




$begingroup$
Notice $mathbf{E}(X) = mathbf{E}(X; X leq a m) + mathbf{E}(X; X > am),$ where the $;$ stands for "integrating on the set" (that is to say, multiplication by an indicator function). Realise that $X > c$ and $X^3 > c^3$ are equivalent relations.
$endgroup$
– Will M.
Jan 1 at 20:30




$begingroup$
Notice $mathbf{E}(X) = mathbf{E}(X; X leq a m) + mathbf{E}(X; X > am),$ where the $;$ stands for "integrating on the set" (that is to say, multiplication by an indicator function). Realise that $X > c$ and $X^3 > c^3$ are equivalent relations.
$endgroup$
– Will M.
Jan 1 at 20:30




1




1




$begingroup$
Do we need $X$ to be a nonnegative random variable?
$endgroup$
– angryavian
Jan 1 at 20:30




$begingroup$
Do we need $X$ to be a nonnegative random variable?
$endgroup$
– angryavian
Jan 1 at 20:30












$begingroup$
Yes X should be a nonnegative random variable
$endgroup$
– user610402
Jan 1 at 20:37




$begingroup$
Yes X should be a nonnegative random variable
$endgroup$
– user610402
Jan 1 at 20:37










1 Answer
1






active

oldest

votes


















1












$begingroup$

With Markov you have
$$P[Xgeq a]leq frac{E[X]}{a}$$
and so
$$P[Xgeq acdot m]leq P[X^3geq a^3m^3]leq frac{E[X^3]}{a^3cdot (E[X^3])}=frac{1}{a^3}.$$






share|cite|improve this answer









$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058831%2fmarkov-inequality-question%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    With Markov you have
    $$P[Xgeq a]leq frac{E[X]}{a}$$
    and so
    $$P[Xgeq acdot m]leq P[X^3geq a^3m^3]leq frac{E[X^3]}{a^3cdot (E[X^3])}=frac{1}{a^3}.$$






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      With Markov you have
      $$P[Xgeq a]leq frac{E[X]}{a}$$
      and so
      $$P[Xgeq acdot m]leq P[X^3geq a^3m^3]leq frac{E[X^3]}{a^3cdot (E[X^3])}=frac{1}{a^3}.$$






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        With Markov you have
        $$P[Xgeq a]leq frac{E[X]}{a}$$
        and so
        $$P[Xgeq acdot m]leq P[X^3geq a^3m^3]leq frac{E[X^3]}{a^3cdot (E[X^3])}=frac{1}{a^3}.$$






        share|cite|improve this answer









        $endgroup$



        With Markov you have
        $$P[Xgeq a]leq frac{E[X]}{a}$$
        and so
        $$P[Xgeq acdot m]leq P[X^3geq a^3m^3]leq frac{E[X^3]}{a^3cdot (E[X^3])}=frac{1}{a^3}.$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 1 at 20:29









        model_checkermodel_checker

        4,34121931




        4,34121931






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058831%2fmarkov-inequality-question%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Wiesbaden

            Marschland

            Dieringhausen