Study the convergence of the series $sum_{n=1}^infty left( sqrt[17]{5+ frac1n} - sqrt[17]{5}right)^{a}q^n$...
$begingroup$
I have a problem with this task, because I think the most important is idea to do convergence of the series
$$
sum_{n=1}^inftyleft( sqrt[17]{5+ frac{1}{n} } - sqrt[17]{5}right)^{!a},
$$
but it is difficult for me because it is power $a$ and for $a=1$.
I can use claim about three series, but in this case I completely don't knew what can I do.
real-analysis calculus sequences-and-series convergence
$endgroup$
add a comment |
$begingroup$
I have a problem with this task, because I think the most important is idea to do convergence of the series
$$
sum_{n=1}^inftyleft( sqrt[17]{5+ frac{1}{n} } - sqrt[17]{5}right)^{!a},
$$
but it is difficult for me because it is power $a$ and for $a=1$.
I can use claim about three series, but in this case I completely don't knew what can I do.
real-analysis calculus sequences-and-series convergence
$endgroup$
add a comment |
$begingroup$
I have a problem with this task, because I think the most important is idea to do convergence of the series
$$
sum_{n=1}^inftyleft( sqrt[17]{5+ frac{1}{n} } - sqrt[17]{5}right)^{!a},
$$
but it is difficult for me because it is power $a$ and for $a=1$.
I can use claim about three series, but in this case I completely don't knew what can I do.
real-analysis calculus sequences-and-series convergence
$endgroup$
I have a problem with this task, because I think the most important is idea to do convergence of the series
$$
sum_{n=1}^inftyleft( sqrt[17]{5+ frac{1}{n} } - sqrt[17]{5}right)^{!a},
$$
but it is difficult for me because it is power $a$ and for $a=1$.
I can use claim about three series, but in this case I completely don't knew what can I do.
real-analysis calculus sequences-and-series convergence
real-analysis calculus sequences-and-series convergence
edited Jan 4 at 17:18
Yiorgos S. Smyrlis
63.6k1385165
63.6k1385165
asked Jan 1 at 20:29
MP3129MP3129
641110
641110
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint. First show that
$$
lim_{ntoinfty,}nleft(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)=frac{sqrt[17]{5}}{85},
$$
and hence
$$
left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)^aapprox left(frac{sqrt[17]{5}}{85}right)^an^{-a}
$$
Thus, we have convergence of the series if $|q|<1$, or $q=1$ and $a>1$, or $q=-1$ and $a>0$.
$endgroup$
$begingroup$
Ok, but if I have to show that $lim_{ntoinfty,}nleft(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)=frac{sqrt[17]{5}}{85}$ I should multiply by coupling $left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)$ but I think it is impossible for power $1/17$ - I can do it for example for $1/16$ but not for $1/17$
$endgroup$
– MP3129
Jan 1 at 22:59
1
$begingroup$
If I understand well, you need the following additional information: Pulling out $sqrt[17]{5}$ $left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)=left(sqrt[17]{5}sqrt[17]{1+frac{1}{5n}}-sqrt[17]{5}right)=sqrt[17]{5}left(sqrt[17]{1+frac{1}{5n}}-1right)$ Using Bernoulli's inequality you receive an upper bound: $sqrt[17]{5}left(sqrt[17]{1+frac{1}{5n}}-1right)lesqrt[17]{5}left({1+frac{1}{85n}}-1right)=frac{sqrt[17]{5}}{85n}$
$endgroup$
– JV.Stalker
Jan 2 at 4:46
$begingroup$
Ok, thanks, but I need also lower limit, but I think the only possibility is $ge left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5+frac{1}{n^{b}}}right)$ for $b>1$, but in this case I cannot show that the limit of this expression is $frac{sqrt[17]{5}}{85n}$ because here I also need 3 ranks so I should find an expression where the limit is obvious
$endgroup$
– MP3129
Jan 2 at 10:32
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058843%2fstudy-the-convergence-of-the-series-sum-n-1-infty-left-sqrt175-frac%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint. First show that
$$
lim_{ntoinfty,}nleft(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)=frac{sqrt[17]{5}}{85},
$$
and hence
$$
left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)^aapprox left(frac{sqrt[17]{5}}{85}right)^an^{-a}
$$
Thus, we have convergence of the series if $|q|<1$, or $q=1$ and $a>1$, or $q=-1$ and $a>0$.
$endgroup$
$begingroup$
Ok, but if I have to show that $lim_{ntoinfty,}nleft(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)=frac{sqrt[17]{5}}{85}$ I should multiply by coupling $left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)$ but I think it is impossible for power $1/17$ - I can do it for example for $1/16$ but not for $1/17$
$endgroup$
– MP3129
Jan 1 at 22:59
1
$begingroup$
If I understand well, you need the following additional information: Pulling out $sqrt[17]{5}$ $left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)=left(sqrt[17]{5}sqrt[17]{1+frac{1}{5n}}-sqrt[17]{5}right)=sqrt[17]{5}left(sqrt[17]{1+frac{1}{5n}}-1right)$ Using Bernoulli's inequality you receive an upper bound: $sqrt[17]{5}left(sqrt[17]{1+frac{1}{5n}}-1right)lesqrt[17]{5}left({1+frac{1}{85n}}-1right)=frac{sqrt[17]{5}}{85n}$
$endgroup$
– JV.Stalker
Jan 2 at 4:46
$begingroup$
Ok, thanks, but I need also lower limit, but I think the only possibility is $ge left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5+frac{1}{n^{b}}}right)$ for $b>1$, but in this case I cannot show that the limit of this expression is $frac{sqrt[17]{5}}{85n}$ because here I also need 3 ranks so I should find an expression where the limit is obvious
$endgroup$
– MP3129
Jan 2 at 10:32
add a comment |
$begingroup$
Hint. First show that
$$
lim_{ntoinfty,}nleft(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)=frac{sqrt[17]{5}}{85},
$$
and hence
$$
left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)^aapprox left(frac{sqrt[17]{5}}{85}right)^an^{-a}
$$
Thus, we have convergence of the series if $|q|<1$, or $q=1$ and $a>1$, or $q=-1$ and $a>0$.
$endgroup$
$begingroup$
Ok, but if I have to show that $lim_{ntoinfty,}nleft(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)=frac{sqrt[17]{5}}{85}$ I should multiply by coupling $left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)$ but I think it is impossible for power $1/17$ - I can do it for example for $1/16$ but not for $1/17$
$endgroup$
– MP3129
Jan 1 at 22:59
1
$begingroup$
If I understand well, you need the following additional information: Pulling out $sqrt[17]{5}$ $left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)=left(sqrt[17]{5}sqrt[17]{1+frac{1}{5n}}-sqrt[17]{5}right)=sqrt[17]{5}left(sqrt[17]{1+frac{1}{5n}}-1right)$ Using Bernoulli's inequality you receive an upper bound: $sqrt[17]{5}left(sqrt[17]{1+frac{1}{5n}}-1right)lesqrt[17]{5}left({1+frac{1}{85n}}-1right)=frac{sqrt[17]{5}}{85n}$
$endgroup$
– JV.Stalker
Jan 2 at 4:46
$begingroup$
Ok, thanks, but I need also lower limit, but I think the only possibility is $ge left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5+frac{1}{n^{b}}}right)$ for $b>1$, but in this case I cannot show that the limit of this expression is $frac{sqrt[17]{5}}{85n}$ because here I also need 3 ranks so I should find an expression where the limit is obvious
$endgroup$
– MP3129
Jan 2 at 10:32
add a comment |
$begingroup$
Hint. First show that
$$
lim_{ntoinfty,}nleft(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)=frac{sqrt[17]{5}}{85},
$$
and hence
$$
left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)^aapprox left(frac{sqrt[17]{5}}{85}right)^an^{-a}
$$
Thus, we have convergence of the series if $|q|<1$, or $q=1$ and $a>1$, or $q=-1$ and $a>0$.
$endgroup$
Hint. First show that
$$
lim_{ntoinfty,}nleft(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)=frac{sqrt[17]{5}}{85},
$$
and hence
$$
left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)^aapprox left(frac{sqrt[17]{5}}{85}right)^an^{-a}
$$
Thus, we have convergence of the series if $|q|<1$, or $q=1$ and $a>1$, or $q=-1$ and $a>0$.
answered Jan 1 at 20:37
Yiorgos S. SmyrlisYiorgos S. Smyrlis
63.6k1385165
63.6k1385165
$begingroup$
Ok, but if I have to show that $lim_{ntoinfty,}nleft(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)=frac{sqrt[17]{5}}{85}$ I should multiply by coupling $left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)$ but I think it is impossible for power $1/17$ - I can do it for example for $1/16$ but not for $1/17$
$endgroup$
– MP3129
Jan 1 at 22:59
1
$begingroup$
If I understand well, you need the following additional information: Pulling out $sqrt[17]{5}$ $left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)=left(sqrt[17]{5}sqrt[17]{1+frac{1}{5n}}-sqrt[17]{5}right)=sqrt[17]{5}left(sqrt[17]{1+frac{1}{5n}}-1right)$ Using Bernoulli's inequality you receive an upper bound: $sqrt[17]{5}left(sqrt[17]{1+frac{1}{5n}}-1right)lesqrt[17]{5}left({1+frac{1}{85n}}-1right)=frac{sqrt[17]{5}}{85n}$
$endgroup$
– JV.Stalker
Jan 2 at 4:46
$begingroup$
Ok, thanks, but I need also lower limit, but I think the only possibility is $ge left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5+frac{1}{n^{b}}}right)$ for $b>1$, but in this case I cannot show that the limit of this expression is $frac{sqrt[17]{5}}{85n}$ because here I also need 3 ranks so I should find an expression where the limit is obvious
$endgroup$
– MP3129
Jan 2 at 10:32
add a comment |
$begingroup$
Ok, but if I have to show that $lim_{ntoinfty,}nleft(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)=frac{sqrt[17]{5}}{85}$ I should multiply by coupling $left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)$ but I think it is impossible for power $1/17$ - I can do it for example for $1/16$ but not for $1/17$
$endgroup$
– MP3129
Jan 1 at 22:59
1
$begingroup$
If I understand well, you need the following additional information: Pulling out $sqrt[17]{5}$ $left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)=left(sqrt[17]{5}sqrt[17]{1+frac{1}{5n}}-sqrt[17]{5}right)=sqrt[17]{5}left(sqrt[17]{1+frac{1}{5n}}-1right)$ Using Bernoulli's inequality you receive an upper bound: $sqrt[17]{5}left(sqrt[17]{1+frac{1}{5n}}-1right)lesqrt[17]{5}left({1+frac{1}{85n}}-1right)=frac{sqrt[17]{5}}{85n}$
$endgroup$
– JV.Stalker
Jan 2 at 4:46
$begingroup$
Ok, thanks, but I need also lower limit, but I think the only possibility is $ge left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5+frac{1}{n^{b}}}right)$ for $b>1$, but in this case I cannot show that the limit of this expression is $frac{sqrt[17]{5}}{85n}$ because here I also need 3 ranks so I should find an expression where the limit is obvious
$endgroup$
– MP3129
Jan 2 at 10:32
$begingroup$
Ok, but if I have to show that $lim_{ntoinfty,}nleft(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)=frac{sqrt[17]{5}}{85}$ I should multiply by coupling $left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)$ but I think it is impossible for power $1/17$ - I can do it for example for $1/16$ but not for $1/17$
$endgroup$
– MP3129
Jan 1 at 22:59
$begingroup$
Ok, but if I have to show that $lim_{ntoinfty,}nleft(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)=frac{sqrt[17]{5}}{85}$ I should multiply by coupling $left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)$ but I think it is impossible for power $1/17$ - I can do it for example for $1/16$ but not for $1/17$
$endgroup$
– MP3129
Jan 1 at 22:59
1
1
$begingroup$
If I understand well, you need the following additional information: Pulling out $sqrt[17]{5}$ $left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)=left(sqrt[17]{5}sqrt[17]{1+frac{1}{5n}}-sqrt[17]{5}right)=sqrt[17]{5}left(sqrt[17]{1+frac{1}{5n}}-1right)$ Using Bernoulli's inequality you receive an upper bound: $sqrt[17]{5}left(sqrt[17]{1+frac{1}{5n}}-1right)lesqrt[17]{5}left({1+frac{1}{85n}}-1right)=frac{sqrt[17]{5}}{85n}$
$endgroup$
– JV.Stalker
Jan 2 at 4:46
$begingroup$
If I understand well, you need the following additional information: Pulling out $sqrt[17]{5}$ $left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5}right)=left(sqrt[17]{5}sqrt[17]{1+frac{1}{5n}}-sqrt[17]{5}right)=sqrt[17]{5}left(sqrt[17]{1+frac{1}{5n}}-1right)$ Using Bernoulli's inequality you receive an upper bound: $sqrt[17]{5}left(sqrt[17]{1+frac{1}{5n}}-1right)lesqrt[17]{5}left({1+frac{1}{85n}}-1right)=frac{sqrt[17]{5}}{85n}$
$endgroup$
– JV.Stalker
Jan 2 at 4:46
$begingroup$
Ok, thanks, but I need also lower limit, but I think the only possibility is $ge left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5+frac{1}{n^{b}}}right)$ for $b>1$, but in this case I cannot show that the limit of this expression is $frac{sqrt[17]{5}}{85n}$ because here I also need 3 ranks so I should find an expression where the limit is obvious
$endgroup$
– MP3129
Jan 2 at 10:32
$begingroup$
Ok, thanks, but I need also lower limit, but I think the only possibility is $ge left(sqrt[17]{5+frac{1}{n}}-sqrt[17]{5+frac{1}{n^{b}}}right)$ for $b>1$, but in this case I cannot show that the limit of this expression is $frac{sqrt[17]{5}}{85n}$ because here I also need 3 ranks so I should find an expression where the limit is obvious
$endgroup$
– MP3129
Jan 2 at 10:32
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058843%2fstudy-the-convergence-of-the-series-sum-n-1-infty-left-sqrt175-frac%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown