result of this integral? $int_{|z|=3} frac{e^z}{(z-1)(z-2)}$












2












$begingroup$


I think I can solve it by taking:
$z(t)=3(cos t + i sin t)=3e^{it}$
and by using



$$int_c f(z)dz = int_c frac{dz}{dt}cdot f(z(t))$$
we have:



$displaystyleint_{|z|=3} frac{e^{3e^{it}}}{(3e^{it}-1)(3e^{it}-2)}cdot3ie^{it}$
but I can't continue this approach to find a solution without using residue theorem










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    The solution is pretty trivial using the residue theorem. Is that tool available to you at this point in your coursework?
    $endgroup$
    – Eevee Trainer
    Jan 1 at 20:48










  • $begingroup$
    no; indeed I should solve it without residue theorem
    $endgroup$
    – mohamadreza
    Jan 1 at 20:51










  • $begingroup$
    I have doubts concerning the equality $e^{it}=(sin t+i cos t)$. Should it not be $e^{it}=(cos t + i sin t)$ or am I missing something?
    $endgroup$
    – mrtaurho
    Jan 1 at 20:54










  • $begingroup$
    you are right I have a typing mistake unfortunately
    $endgroup$
    – mohamadreza
    Jan 1 at 20:56










  • $begingroup$
    The second and third integral should involve a $dt$.
    $endgroup$
    – Fakemistake
    Jan 1 at 21:30
















2












$begingroup$


I think I can solve it by taking:
$z(t)=3(cos t + i sin t)=3e^{it}$
and by using



$$int_c f(z)dz = int_c frac{dz}{dt}cdot f(z(t))$$
we have:



$displaystyleint_{|z|=3} frac{e^{3e^{it}}}{(3e^{it}-1)(3e^{it}-2)}cdot3ie^{it}$
but I can't continue this approach to find a solution without using residue theorem










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    The solution is pretty trivial using the residue theorem. Is that tool available to you at this point in your coursework?
    $endgroup$
    – Eevee Trainer
    Jan 1 at 20:48










  • $begingroup$
    no; indeed I should solve it without residue theorem
    $endgroup$
    – mohamadreza
    Jan 1 at 20:51










  • $begingroup$
    I have doubts concerning the equality $e^{it}=(sin t+i cos t)$. Should it not be $e^{it}=(cos t + i sin t)$ or am I missing something?
    $endgroup$
    – mrtaurho
    Jan 1 at 20:54










  • $begingroup$
    you are right I have a typing mistake unfortunately
    $endgroup$
    – mohamadreza
    Jan 1 at 20:56










  • $begingroup$
    The second and third integral should involve a $dt$.
    $endgroup$
    – Fakemistake
    Jan 1 at 21:30














2












2








2





$begingroup$


I think I can solve it by taking:
$z(t)=3(cos t + i sin t)=3e^{it}$
and by using



$$int_c f(z)dz = int_c frac{dz}{dt}cdot f(z(t))$$
we have:



$displaystyleint_{|z|=3} frac{e^{3e^{it}}}{(3e^{it}-1)(3e^{it}-2)}cdot3ie^{it}$
but I can't continue this approach to find a solution without using residue theorem










share|cite|improve this question











$endgroup$




I think I can solve it by taking:
$z(t)=3(cos t + i sin t)=3e^{it}$
and by using



$$int_c f(z)dz = int_c frac{dz}{dt}cdot f(z(t))$$
we have:



$displaystyleint_{|z|=3} frac{e^{3e^{it}}}{(3e^{it}-1)(3e^{it}-2)}cdot3ie^{it}$
but I can't continue this approach to find a solution without using residue theorem







complex-analysis complex-integration






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 1 at 20:55







mohamadreza

















asked Jan 1 at 20:44









mohamadrezamohamadreza

275




275








  • 2




    $begingroup$
    The solution is pretty trivial using the residue theorem. Is that tool available to you at this point in your coursework?
    $endgroup$
    – Eevee Trainer
    Jan 1 at 20:48










  • $begingroup$
    no; indeed I should solve it without residue theorem
    $endgroup$
    – mohamadreza
    Jan 1 at 20:51










  • $begingroup$
    I have doubts concerning the equality $e^{it}=(sin t+i cos t)$. Should it not be $e^{it}=(cos t + i sin t)$ or am I missing something?
    $endgroup$
    – mrtaurho
    Jan 1 at 20:54










  • $begingroup$
    you are right I have a typing mistake unfortunately
    $endgroup$
    – mohamadreza
    Jan 1 at 20:56










  • $begingroup$
    The second and third integral should involve a $dt$.
    $endgroup$
    – Fakemistake
    Jan 1 at 21:30














  • 2




    $begingroup$
    The solution is pretty trivial using the residue theorem. Is that tool available to you at this point in your coursework?
    $endgroup$
    – Eevee Trainer
    Jan 1 at 20:48










  • $begingroup$
    no; indeed I should solve it without residue theorem
    $endgroup$
    – mohamadreza
    Jan 1 at 20:51










  • $begingroup$
    I have doubts concerning the equality $e^{it}=(sin t+i cos t)$. Should it not be $e^{it}=(cos t + i sin t)$ or am I missing something?
    $endgroup$
    – mrtaurho
    Jan 1 at 20:54










  • $begingroup$
    you are right I have a typing mistake unfortunately
    $endgroup$
    – mohamadreza
    Jan 1 at 20:56










  • $begingroup$
    The second and third integral should involve a $dt$.
    $endgroup$
    – Fakemistake
    Jan 1 at 21:30








2




2




$begingroup$
The solution is pretty trivial using the residue theorem. Is that tool available to you at this point in your coursework?
$endgroup$
– Eevee Trainer
Jan 1 at 20:48




$begingroup$
The solution is pretty trivial using the residue theorem. Is that tool available to you at this point in your coursework?
$endgroup$
– Eevee Trainer
Jan 1 at 20:48












$begingroup$
no; indeed I should solve it without residue theorem
$endgroup$
– mohamadreza
Jan 1 at 20:51




$begingroup$
no; indeed I should solve it without residue theorem
$endgroup$
– mohamadreza
Jan 1 at 20:51












$begingroup$
I have doubts concerning the equality $e^{it}=(sin t+i cos t)$. Should it not be $e^{it}=(cos t + i sin t)$ or am I missing something?
$endgroup$
– mrtaurho
Jan 1 at 20:54




$begingroup$
I have doubts concerning the equality $e^{it}=(sin t+i cos t)$. Should it not be $e^{it}=(cos t + i sin t)$ or am I missing something?
$endgroup$
– mrtaurho
Jan 1 at 20:54












$begingroup$
you are right I have a typing mistake unfortunately
$endgroup$
– mohamadreza
Jan 1 at 20:56




$begingroup$
you are right I have a typing mistake unfortunately
$endgroup$
– mohamadreza
Jan 1 at 20:56












$begingroup$
The second and third integral should involve a $dt$.
$endgroup$
– Fakemistake
Jan 1 at 21:30




$begingroup$
The second and third integral should involve a $dt$.
$endgroup$
– Fakemistake
Jan 1 at 21:30










1 Answer
1






active

oldest

votes


















4












$begingroup$

Hint



$$frac{1}{(z-1)(z-2)}=frac{1}{z-2}-frac{1}{z-1}$$



Thus
$$int_{|z|=3} frac{e^z}{(z-1)(z-2)}dz=int_{|z|=3} frac{e^z}{z-2}dz-int_{|z|=3} frac{e^z}{z-1}dz$$



The answer follows easily from Cauchy Integral Formula.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    thank you.I got the answer using your hint
    $endgroup$
    – mohamadreza
    Jan 1 at 20:58










  • $begingroup$
    @mohamadreza Then accept his answer to show that it helped you ^^
    $endgroup$
    – mrtaurho
    Jan 1 at 21:05












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058859%2fresult-of-this-integral-int-z-3-fracezz-1z-2%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









4












$begingroup$

Hint



$$frac{1}{(z-1)(z-2)}=frac{1}{z-2}-frac{1}{z-1}$$



Thus
$$int_{|z|=3} frac{e^z}{(z-1)(z-2)}dz=int_{|z|=3} frac{e^z}{z-2}dz-int_{|z|=3} frac{e^z}{z-1}dz$$



The answer follows easily from Cauchy Integral Formula.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    thank you.I got the answer using your hint
    $endgroup$
    – mohamadreza
    Jan 1 at 20:58










  • $begingroup$
    @mohamadreza Then accept his answer to show that it helped you ^^
    $endgroup$
    – mrtaurho
    Jan 1 at 21:05
















4












$begingroup$

Hint



$$frac{1}{(z-1)(z-2)}=frac{1}{z-2}-frac{1}{z-1}$$



Thus
$$int_{|z|=3} frac{e^z}{(z-1)(z-2)}dz=int_{|z|=3} frac{e^z}{z-2}dz-int_{|z|=3} frac{e^z}{z-1}dz$$



The answer follows easily from Cauchy Integral Formula.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    thank you.I got the answer using your hint
    $endgroup$
    – mohamadreza
    Jan 1 at 20:58










  • $begingroup$
    @mohamadreza Then accept his answer to show that it helped you ^^
    $endgroup$
    – mrtaurho
    Jan 1 at 21:05














4












4








4





$begingroup$

Hint



$$frac{1}{(z-1)(z-2)}=frac{1}{z-2}-frac{1}{z-1}$$



Thus
$$int_{|z|=3} frac{e^z}{(z-1)(z-2)}dz=int_{|z|=3} frac{e^z}{z-2}dz-int_{|z|=3} frac{e^z}{z-1}dz$$



The answer follows easily from Cauchy Integral Formula.






share|cite|improve this answer









$endgroup$



Hint



$$frac{1}{(z-1)(z-2)}=frac{1}{z-2}-frac{1}{z-1}$$



Thus
$$int_{|z|=3} frac{e^z}{(z-1)(z-2)}dz=int_{|z|=3} frac{e^z}{z-2}dz-int_{|z|=3} frac{e^z}{z-1}dz$$



The answer follows easily from Cauchy Integral Formula.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 1 at 20:53









N. S.N. S.

105k7114210




105k7114210












  • $begingroup$
    thank you.I got the answer using your hint
    $endgroup$
    – mohamadreza
    Jan 1 at 20:58










  • $begingroup$
    @mohamadreza Then accept his answer to show that it helped you ^^
    $endgroup$
    – mrtaurho
    Jan 1 at 21:05


















  • $begingroup$
    thank you.I got the answer using your hint
    $endgroup$
    – mohamadreza
    Jan 1 at 20:58










  • $begingroup$
    @mohamadreza Then accept his answer to show that it helped you ^^
    $endgroup$
    – mrtaurho
    Jan 1 at 21:05
















$begingroup$
thank you.I got the answer using your hint
$endgroup$
– mohamadreza
Jan 1 at 20:58




$begingroup$
thank you.I got the answer using your hint
$endgroup$
– mohamadreza
Jan 1 at 20:58












$begingroup$
@mohamadreza Then accept his answer to show that it helped you ^^
$endgroup$
– mrtaurho
Jan 1 at 21:05




$begingroup$
@mohamadreza Then accept his answer to show that it helped you ^^
$endgroup$
– mrtaurho
Jan 1 at 21:05


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058859%2fresult-of-this-integral-int-z-3-fracezz-1z-2%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Wiesbaden

Marschland

Dieringhausen