How to prove $text{Sh}_G(X)simeq text{Sh}(Gbackslash X)$ when $X$ is a free $G$-space?












4












$begingroup$


Let $k$ be a field and $X$ be a topological space. We consider Sh$(X)$, the category of sheaves of $k$-vector spaces on $X$.



Let $G$ be a topological group which act on $X$ continuously from the left. Consider the simplicial space $[Gbackslash X]_{cdot}$ where
$$
[Gbackslash X]_n=underbrace{Gtimes ldots times G}_{ntext{ copies of }Gtext{'s}}times X
$$

with structural maps
$$
d_0(g_1,ldots, g_n,x)=(g_2,ldots,g_n,g_1^{-1}x);
$$

$$
d_i(g_1,ldots, g_n,x)=(g_1,ldots, g_ig_{i+1},ldots, g_n,x), ~1leq ileq n-1;
$$

$$
d_n(g_1,ldots, g_n,x)=(g_1,ldots, g_{n-1},x);
$$

and
$$
s_0(g_1,ldots, g_n,x)=(e,g_1,ldots, g_n,x);
$$

$$
s_i(g_1,ldots, g_n,x)=(g_1,ldots, g_i,e , g_{i+1},ldots, g_nx),~1leq ileq n-1;
$$

$$
s_n(g_1,ldots, g_n,x)=(g_1,ldots, g_n,e,x).
$$



A $G$-equivariant sheaf on $X$ is a pair $(mathcal{F},theta)$, where $mathcal{F}in text{Sh}(X)$ and $theta$ is an isomorphism
$$
theta: d_0^*mathcal{F}overset{sim}{to} d_1^*mathcal{F},
$$

satisfying the cocycle condition
$$
d_2^*thetacirc d_0^*theta=d_1^*theta, text{ and } s_0^*theta=text{id}_{mathcal{F}}.
$$

We denote the category of $G$-equivariant sheaves on $X$ by $text{Sh}_G(X)$.



If the $G$-action on $X$ is free, then we should have a category equivalence
$$
text{Sh}(Gbackslash X)overset{sim}{to}text{Sh}_G(X).
$$



This result seems to be well-known and we do not require $G$ is compact.




My question is: how to prove this equivalence? Is there a reference with detailed proof?











share|cite|improve this question











$endgroup$

















    4












    $begingroup$


    Let $k$ be a field and $X$ be a topological space. We consider Sh$(X)$, the category of sheaves of $k$-vector spaces on $X$.



    Let $G$ be a topological group which act on $X$ continuously from the left. Consider the simplicial space $[Gbackslash X]_{cdot}$ where
    $$
    [Gbackslash X]_n=underbrace{Gtimes ldots times G}_{ntext{ copies of }Gtext{'s}}times X
    $$

    with structural maps
    $$
    d_0(g_1,ldots, g_n,x)=(g_2,ldots,g_n,g_1^{-1}x);
    $$

    $$
    d_i(g_1,ldots, g_n,x)=(g_1,ldots, g_ig_{i+1},ldots, g_n,x), ~1leq ileq n-1;
    $$

    $$
    d_n(g_1,ldots, g_n,x)=(g_1,ldots, g_{n-1},x);
    $$

    and
    $$
    s_0(g_1,ldots, g_n,x)=(e,g_1,ldots, g_n,x);
    $$

    $$
    s_i(g_1,ldots, g_n,x)=(g_1,ldots, g_i,e , g_{i+1},ldots, g_nx),~1leq ileq n-1;
    $$

    $$
    s_n(g_1,ldots, g_n,x)=(g_1,ldots, g_n,e,x).
    $$



    A $G$-equivariant sheaf on $X$ is a pair $(mathcal{F},theta)$, where $mathcal{F}in text{Sh}(X)$ and $theta$ is an isomorphism
    $$
    theta: d_0^*mathcal{F}overset{sim}{to} d_1^*mathcal{F},
    $$

    satisfying the cocycle condition
    $$
    d_2^*thetacirc d_0^*theta=d_1^*theta, text{ and } s_0^*theta=text{id}_{mathcal{F}}.
    $$

    We denote the category of $G$-equivariant sheaves on $X$ by $text{Sh}_G(X)$.



    If the $G$-action on $X$ is free, then we should have a category equivalence
    $$
    text{Sh}(Gbackslash X)overset{sim}{to}text{Sh}_G(X).
    $$



    This result seems to be well-known and we do not require $G$ is compact.




    My question is: how to prove this equivalence? Is there a reference with detailed proof?











    share|cite|improve this question











    $endgroup$















      4












      4








      4





      $begingroup$


      Let $k$ be a field and $X$ be a topological space. We consider Sh$(X)$, the category of sheaves of $k$-vector spaces on $X$.



      Let $G$ be a topological group which act on $X$ continuously from the left. Consider the simplicial space $[Gbackslash X]_{cdot}$ where
      $$
      [Gbackslash X]_n=underbrace{Gtimes ldots times G}_{ntext{ copies of }Gtext{'s}}times X
      $$

      with structural maps
      $$
      d_0(g_1,ldots, g_n,x)=(g_2,ldots,g_n,g_1^{-1}x);
      $$

      $$
      d_i(g_1,ldots, g_n,x)=(g_1,ldots, g_ig_{i+1},ldots, g_n,x), ~1leq ileq n-1;
      $$

      $$
      d_n(g_1,ldots, g_n,x)=(g_1,ldots, g_{n-1},x);
      $$

      and
      $$
      s_0(g_1,ldots, g_n,x)=(e,g_1,ldots, g_n,x);
      $$

      $$
      s_i(g_1,ldots, g_n,x)=(g_1,ldots, g_i,e , g_{i+1},ldots, g_nx),~1leq ileq n-1;
      $$

      $$
      s_n(g_1,ldots, g_n,x)=(g_1,ldots, g_n,e,x).
      $$



      A $G$-equivariant sheaf on $X$ is a pair $(mathcal{F},theta)$, where $mathcal{F}in text{Sh}(X)$ and $theta$ is an isomorphism
      $$
      theta: d_0^*mathcal{F}overset{sim}{to} d_1^*mathcal{F},
      $$

      satisfying the cocycle condition
      $$
      d_2^*thetacirc d_0^*theta=d_1^*theta, text{ and } s_0^*theta=text{id}_{mathcal{F}}.
      $$

      We denote the category of $G$-equivariant sheaves on $X$ by $text{Sh}_G(X)$.



      If the $G$-action on $X$ is free, then we should have a category equivalence
      $$
      text{Sh}(Gbackslash X)overset{sim}{to}text{Sh}_G(X).
      $$



      This result seems to be well-known and we do not require $G$ is compact.




      My question is: how to prove this equivalence? Is there a reference with detailed proof?











      share|cite|improve this question











      $endgroup$




      Let $k$ be a field and $X$ be a topological space. We consider Sh$(X)$, the category of sheaves of $k$-vector spaces on $X$.



      Let $G$ be a topological group which act on $X$ continuously from the left. Consider the simplicial space $[Gbackslash X]_{cdot}$ where
      $$
      [Gbackslash X]_n=underbrace{Gtimes ldots times G}_{ntext{ copies of }Gtext{'s}}times X
      $$

      with structural maps
      $$
      d_0(g_1,ldots, g_n,x)=(g_2,ldots,g_n,g_1^{-1}x);
      $$

      $$
      d_i(g_1,ldots, g_n,x)=(g_1,ldots, g_ig_{i+1},ldots, g_n,x), ~1leq ileq n-1;
      $$

      $$
      d_n(g_1,ldots, g_n,x)=(g_1,ldots, g_{n-1},x);
      $$

      and
      $$
      s_0(g_1,ldots, g_n,x)=(e,g_1,ldots, g_n,x);
      $$

      $$
      s_i(g_1,ldots, g_n,x)=(g_1,ldots, g_i,e , g_{i+1},ldots, g_nx),~1leq ileq n-1;
      $$

      $$
      s_n(g_1,ldots, g_n,x)=(g_1,ldots, g_n,e,x).
      $$



      A $G$-equivariant sheaf on $X$ is a pair $(mathcal{F},theta)$, where $mathcal{F}in text{Sh}(X)$ and $theta$ is an isomorphism
      $$
      theta: d_0^*mathcal{F}overset{sim}{to} d_1^*mathcal{F},
      $$

      satisfying the cocycle condition
      $$
      d_2^*thetacirc d_0^*theta=d_1^*theta, text{ and } s_0^*theta=text{id}_{mathcal{F}}.
      $$

      We denote the category of $G$-equivariant sheaves on $X$ by $text{Sh}_G(X)$.



      If the $G$-action on $X$ is free, then we should have a category equivalence
      $$
      text{Sh}(Gbackslash X)overset{sim}{to}text{Sh}_G(X).
      $$



      This result seems to be well-known and we do not require $G$ is compact.




      My question is: how to prove this equivalence? Is there a reference with detailed proof?








      reference-request representation-theory sheaf-theory group-actions






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 1 at 20:17









      Shaun

      9,804113684




      9,804113684










      asked Jan 1 at 19:50









      Zhaoting WeiZhaoting Wei

      37418




      37418






















          0






          active

          oldest

          votes












          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058814%2fhow-to-prove-textsh-gx-simeq-textshg-backslash-x-when-x-is-a-free%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058814%2fhow-to-prove-textsh-gx-simeq-textshg-backslash-x-when-x-is-a-free%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Wiesbaden

          Marschland

          Dieringhausen