flux of $langle x,y,z^2rangle$ across unit sphere












3












$begingroup$


I'm trying to compute $iint_S Fcdot$ dS where $F=langle x,y,z^2rangle$ and $S$ is the unit sphere centered at the origin.



Here's my attempt:



On the sphere we can describe any point by $r(phi,theta)=langle sinphi costheta,sinphi costheta, costhetarangle$ and the outward normal vector to $S$ is given by $n=r.$
Therefore,



$$iint_S Fcdot dS = iint_D F(r(phi,theta))cdot n dA$$
$$=iint_D langle sinphicostheta,sinphisintheta,cos^2thetaranglecdot langle
sinphicostheta,sinphisintheta,costhetarangle dA$$

$$=iint_D sin^2phi(cos^2theta + sin^2theta)+cos^3dtheta dA = int_0^{pi}int_0^{2pi} sin^2phi +cos^3theta dtheta dphi = pi^2$$



however the answer is $frac{8}{3}pi$ and the last equals sign is correct (used Wolfram to confirm), so I guess I did something wrong in the setup.










share|cite|improve this question









$endgroup$

















    3












    $begingroup$


    I'm trying to compute $iint_S Fcdot$ dS where $F=langle x,y,z^2rangle$ and $S$ is the unit sphere centered at the origin.



    Here's my attempt:



    On the sphere we can describe any point by $r(phi,theta)=langle sinphi costheta,sinphi costheta, costhetarangle$ and the outward normal vector to $S$ is given by $n=r.$
    Therefore,



    $$iint_S Fcdot dS = iint_D F(r(phi,theta))cdot n dA$$
    $$=iint_D langle sinphicostheta,sinphisintheta,cos^2thetaranglecdot langle
    sinphicostheta,sinphisintheta,costhetarangle dA$$

    $$=iint_D sin^2phi(cos^2theta + sin^2theta)+cos^3dtheta dA = int_0^{pi}int_0^{2pi} sin^2phi +cos^3theta dtheta dphi = pi^2$$



    however the answer is $frac{8}{3}pi$ and the last equals sign is correct (used Wolfram to confirm), so I guess I did something wrong in the setup.










    share|cite|improve this question









    $endgroup$















      3












      3








      3





      $begingroup$


      I'm trying to compute $iint_S Fcdot$ dS where $F=langle x,y,z^2rangle$ and $S$ is the unit sphere centered at the origin.



      Here's my attempt:



      On the sphere we can describe any point by $r(phi,theta)=langle sinphi costheta,sinphi costheta, costhetarangle$ and the outward normal vector to $S$ is given by $n=r.$
      Therefore,



      $$iint_S Fcdot dS = iint_D F(r(phi,theta))cdot n dA$$
      $$=iint_D langle sinphicostheta,sinphisintheta,cos^2thetaranglecdot langle
      sinphicostheta,sinphisintheta,costhetarangle dA$$

      $$=iint_D sin^2phi(cos^2theta + sin^2theta)+cos^3dtheta dA = int_0^{pi}int_0^{2pi} sin^2phi +cos^3theta dtheta dphi = pi^2$$



      however the answer is $frac{8}{3}pi$ and the last equals sign is correct (used Wolfram to confirm), so I guess I did something wrong in the setup.










      share|cite|improve this question









      $endgroup$




      I'm trying to compute $iint_S Fcdot$ dS where $F=langle x,y,z^2rangle$ and $S$ is the unit sphere centered at the origin.



      Here's my attempt:



      On the sphere we can describe any point by $r(phi,theta)=langle sinphi costheta,sinphi costheta, costhetarangle$ and the outward normal vector to $S$ is given by $n=r.$
      Therefore,



      $$iint_S Fcdot dS = iint_D F(r(phi,theta))cdot n dA$$
      $$=iint_D langle sinphicostheta,sinphisintheta,cos^2thetaranglecdot langle
      sinphicostheta,sinphisintheta,costhetarangle dA$$

      $$=iint_D sin^2phi(cos^2theta + sin^2theta)+cos^3dtheta dA = int_0^{pi}int_0^{2pi} sin^2phi +cos^3theta dtheta dphi = pi^2$$



      however the answer is $frac{8}{3}pi$ and the last equals sign is correct (used Wolfram to confirm), so I guess I did something wrong in the setup.







      multivariable-calculus proof-verification vector-analysis






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 28 '18 at 23:43









      ClclstdntClclstdnt

      473414




      473414






















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          The position vector should be
          $$r(phi,theta)=langle sintheta cosphi,sintheta sinphi, costhetarangle.$$
          And the volume element should be
          $$ dA = langle sintheta cosphi,sintheta sinphi, costhetarangle sin theta dtheta dphi.$$
          So the integral should be
          $$iint_S Fcdot dA = int_{theta = 0}^{theta = pi} int_{phi = 0}^{phi = 2pi} left( sin^2 theta + cos^3 thetaright) sin theta dtheta dphi.$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            dA has a cross product in it..... Did you intend that? Or is that ordinary multiplication?
            $endgroup$
            – Clclstdnt
            Dec 29 '18 at 0:54






          • 1




            $begingroup$
            @Clclstdnt I meant ordinary multiplication. Sorry, will change the notation.
            $endgroup$
            – Kenny Wong
            Dec 29 '18 at 1:09










          • $begingroup$
            I'm confused how you got dA. This looks like dV for a triple integral in spherical coordinates. But this isn't a triple integral....... How did you get dA?
            $endgroup$
            – Clclstdnt
            Dec 29 '18 at 1:13










          • $begingroup$
            $sin theta dtheta dphi$ is the area element on the surface of a unit sphere. [… while $r^2 sin theta dr theta dphi$ is the volume element in $mathbb R^3$]
            $endgroup$
            – Kenny Wong
            Dec 29 '18 at 1:14








          • 2




            $begingroup$
            @Clclstdnt It's a good thing to learn off by heart. You can also derive it using $dvec A = frac{dvec r}{dtheta} times frac{dvec r}{dphi}dtheta dphi$. (And this time, I really do mean the cross product.)
            $endgroup$
            – Kenny Wong
            Dec 29 '18 at 1:18



















          1












          $begingroup$

          You can use the divergence theorem to simplify things. We have
          $$operatorname{div} vec{F}(x,y,z) = frac{partial F_x}{partial x} + frac{partial F_y}{partial y} + frac{partial F_z}{partial z} = 2+2z$$



          so
          $$I = iintlimits_{text{unit sphere}} vec{F}cdot dmathbf{S} = iiintlimits_{text{unit ball}} operatorname{div} vec{F} ,dV = int_{phi = 0}^{2pi} int_{theta = 0}^pi int_{r=0}^1 2(1+rcostheta)underbrace{r^2sintheta,dr,dtheta,dphi}_{dV}$$



          The integrand is independent of $phi$ so it factors out as $2pi$, and then the second integral vanishes:



          $$I = 4pileft(int_{theta = 0}^pi int_{r=0}^1 r^2sintheta,dr,dtheta + int_{theta = 0}^pi int_{r=0}^1 r^3costhetasintheta,dr,dthetaright) = frac83pi$$






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055396%2fflux-of-langle-x-y-z2-rangle-across-unit-sphere%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            The position vector should be
            $$r(phi,theta)=langle sintheta cosphi,sintheta sinphi, costhetarangle.$$
            And the volume element should be
            $$ dA = langle sintheta cosphi,sintheta sinphi, costhetarangle sin theta dtheta dphi.$$
            So the integral should be
            $$iint_S Fcdot dA = int_{theta = 0}^{theta = pi} int_{phi = 0}^{phi = 2pi} left( sin^2 theta + cos^3 thetaright) sin theta dtheta dphi.$$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              dA has a cross product in it..... Did you intend that? Or is that ordinary multiplication?
              $endgroup$
              – Clclstdnt
              Dec 29 '18 at 0:54






            • 1




              $begingroup$
              @Clclstdnt I meant ordinary multiplication. Sorry, will change the notation.
              $endgroup$
              – Kenny Wong
              Dec 29 '18 at 1:09










            • $begingroup$
              I'm confused how you got dA. This looks like dV for a triple integral in spherical coordinates. But this isn't a triple integral....... How did you get dA?
              $endgroup$
              – Clclstdnt
              Dec 29 '18 at 1:13










            • $begingroup$
              $sin theta dtheta dphi$ is the area element on the surface of a unit sphere. [… while $r^2 sin theta dr theta dphi$ is the volume element in $mathbb R^3$]
              $endgroup$
              – Kenny Wong
              Dec 29 '18 at 1:14








            • 2




              $begingroup$
              @Clclstdnt It's a good thing to learn off by heart. You can also derive it using $dvec A = frac{dvec r}{dtheta} times frac{dvec r}{dphi}dtheta dphi$. (And this time, I really do mean the cross product.)
              $endgroup$
              – Kenny Wong
              Dec 29 '18 at 1:18
















            1












            $begingroup$

            The position vector should be
            $$r(phi,theta)=langle sintheta cosphi,sintheta sinphi, costhetarangle.$$
            And the volume element should be
            $$ dA = langle sintheta cosphi,sintheta sinphi, costhetarangle sin theta dtheta dphi.$$
            So the integral should be
            $$iint_S Fcdot dA = int_{theta = 0}^{theta = pi} int_{phi = 0}^{phi = 2pi} left( sin^2 theta + cos^3 thetaright) sin theta dtheta dphi.$$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              dA has a cross product in it..... Did you intend that? Or is that ordinary multiplication?
              $endgroup$
              – Clclstdnt
              Dec 29 '18 at 0:54






            • 1




              $begingroup$
              @Clclstdnt I meant ordinary multiplication. Sorry, will change the notation.
              $endgroup$
              – Kenny Wong
              Dec 29 '18 at 1:09










            • $begingroup$
              I'm confused how you got dA. This looks like dV for a triple integral in spherical coordinates. But this isn't a triple integral....... How did you get dA?
              $endgroup$
              – Clclstdnt
              Dec 29 '18 at 1:13










            • $begingroup$
              $sin theta dtheta dphi$ is the area element on the surface of a unit sphere. [… while $r^2 sin theta dr theta dphi$ is the volume element in $mathbb R^3$]
              $endgroup$
              – Kenny Wong
              Dec 29 '18 at 1:14








            • 2




              $begingroup$
              @Clclstdnt It's a good thing to learn off by heart. You can also derive it using $dvec A = frac{dvec r}{dtheta} times frac{dvec r}{dphi}dtheta dphi$. (And this time, I really do mean the cross product.)
              $endgroup$
              – Kenny Wong
              Dec 29 '18 at 1:18














            1












            1








            1





            $begingroup$

            The position vector should be
            $$r(phi,theta)=langle sintheta cosphi,sintheta sinphi, costhetarangle.$$
            And the volume element should be
            $$ dA = langle sintheta cosphi,sintheta sinphi, costhetarangle sin theta dtheta dphi.$$
            So the integral should be
            $$iint_S Fcdot dA = int_{theta = 0}^{theta = pi} int_{phi = 0}^{phi = 2pi} left( sin^2 theta + cos^3 thetaright) sin theta dtheta dphi.$$






            share|cite|improve this answer











            $endgroup$



            The position vector should be
            $$r(phi,theta)=langle sintheta cosphi,sintheta sinphi, costhetarangle.$$
            And the volume element should be
            $$ dA = langle sintheta cosphi,sintheta sinphi, costhetarangle sin theta dtheta dphi.$$
            So the integral should be
            $$iint_S Fcdot dA = int_{theta = 0}^{theta = pi} int_{phi = 0}^{phi = 2pi} left( sin^2 theta + cos^3 thetaright) sin theta dtheta dphi.$$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Dec 29 '18 at 1:09

























            answered Dec 28 '18 at 23:50









            Kenny WongKenny Wong

            19.1k21441




            19.1k21441












            • $begingroup$
              dA has a cross product in it..... Did you intend that? Or is that ordinary multiplication?
              $endgroup$
              – Clclstdnt
              Dec 29 '18 at 0:54






            • 1




              $begingroup$
              @Clclstdnt I meant ordinary multiplication. Sorry, will change the notation.
              $endgroup$
              – Kenny Wong
              Dec 29 '18 at 1:09










            • $begingroup$
              I'm confused how you got dA. This looks like dV for a triple integral in spherical coordinates. But this isn't a triple integral....... How did you get dA?
              $endgroup$
              – Clclstdnt
              Dec 29 '18 at 1:13










            • $begingroup$
              $sin theta dtheta dphi$ is the area element on the surface of a unit sphere. [… while $r^2 sin theta dr theta dphi$ is the volume element in $mathbb R^3$]
              $endgroup$
              – Kenny Wong
              Dec 29 '18 at 1:14








            • 2




              $begingroup$
              @Clclstdnt It's a good thing to learn off by heart. You can also derive it using $dvec A = frac{dvec r}{dtheta} times frac{dvec r}{dphi}dtheta dphi$. (And this time, I really do mean the cross product.)
              $endgroup$
              – Kenny Wong
              Dec 29 '18 at 1:18


















            • $begingroup$
              dA has a cross product in it..... Did you intend that? Or is that ordinary multiplication?
              $endgroup$
              – Clclstdnt
              Dec 29 '18 at 0:54






            • 1




              $begingroup$
              @Clclstdnt I meant ordinary multiplication. Sorry, will change the notation.
              $endgroup$
              – Kenny Wong
              Dec 29 '18 at 1:09










            • $begingroup$
              I'm confused how you got dA. This looks like dV for a triple integral in spherical coordinates. But this isn't a triple integral....... How did you get dA?
              $endgroup$
              – Clclstdnt
              Dec 29 '18 at 1:13










            • $begingroup$
              $sin theta dtheta dphi$ is the area element on the surface of a unit sphere. [… while $r^2 sin theta dr theta dphi$ is the volume element in $mathbb R^3$]
              $endgroup$
              – Kenny Wong
              Dec 29 '18 at 1:14








            • 2




              $begingroup$
              @Clclstdnt It's a good thing to learn off by heart. You can also derive it using $dvec A = frac{dvec r}{dtheta} times frac{dvec r}{dphi}dtheta dphi$. (And this time, I really do mean the cross product.)
              $endgroup$
              – Kenny Wong
              Dec 29 '18 at 1:18
















            $begingroup$
            dA has a cross product in it..... Did you intend that? Or is that ordinary multiplication?
            $endgroup$
            – Clclstdnt
            Dec 29 '18 at 0:54




            $begingroup$
            dA has a cross product in it..... Did you intend that? Or is that ordinary multiplication?
            $endgroup$
            – Clclstdnt
            Dec 29 '18 at 0:54




            1




            1




            $begingroup$
            @Clclstdnt I meant ordinary multiplication. Sorry, will change the notation.
            $endgroup$
            – Kenny Wong
            Dec 29 '18 at 1:09




            $begingroup$
            @Clclstdnt I meant ordinary multiplication. Sorry, will change the notation.
            $endgroup$
            – Kenny Wong
            Dec 29 '18 at 1:09












            $begingroup$
            I'm confused how you got dA. This looks like dV for a triple integral in spherical coordinates. But this isn't a triple integral....... How did you get dA?
            $endgroup$
            – Clclstdnt
            Dec 29 '18 at 1:13




            $begingroup$
            I'm confused how you got dA. This looks like dV for a triple integral in spherical coordinates. But this isn't a triple integral....... How did you get dA?
            $endgroup$
            – Clclstdnt
            Dec 29 '18 at 1:13












            $begingroup$
            $sin theta dtheta dphi$ is the area element on the surface of a unit sphere. [… while $r^2 sin theta dr theta dphi$ is the volume element in $mathbb R^3$]
            $endgroup$
            – Kenny Wong
            Dec 29 '18 at 1:14






            $begingroup$
            $sin theta dtheta dphi$ is the area element on the surface of a unit sphere. [… while $r^2 sin theta dr theta dphi$ is the volume element in $mathbb R^3$]
            $endgroup$
            – Kenny Wong
            Dec 29 '18 at 1:14






            2




            2




            $begingroup$
            @Clclstdnt It's a good thing to learn off by heart. You can also derive it using $dvec A = frac{dvec r}{dtheta} times frac{dvec r}{dphi}dtheta dphi$. (And this time, I really do mean the cross product.)
            $endgroup$
            – Kenny Wong
            Dec 29 '18 at 1:18




            $begingroup$
            @Clclstdnt It's a good thing to learn off by heart. You can also derive it using $dvec A = frac{dvec r}{dtheta} times frac{dvec r}{dphi}dtheta dphi$. (And this time, I really do mean the cross product.)
            $endgroup$
            – Kenny Wong
            Dec 29 '18 at 1:18











            1












            $begingroup$

            You can use the divergence theorem to simplify things. We have
            $$operatorname{div} vec{F}(x,y,z) = frac{partial F_x}{partial x} + frac{partial F_y}{partial y} + frac{partial F_z}{partial z} = 2+2z$$



            so
            $$I = iintlimits_{text{unit sphere}} vec{F}cdot dmathbf{S} = iiintlimits_{text{unit ball}} operatorname{div} vec{F} ,dV = int_{phi = 0}^{2pi} int_{theta = 0}^pi int_{r=0}^1 2(1+rcostheta)underbrace{r^2sintheta,dr,dtheta,dphi}_{dV}$$



            The integrand is independent of $phi$ so it factors out as $2pi$, and then the second integral vanishes:



            $$I = 4pileft(int_{theta = 0}^pi int_{r=0}^1 r^2sintheta,dr,dtheta + int_{theta = 0}^pi int_{r=0}^1 r^3costhetasintheta,dr,dthetaright) = frac83pi$$






            share|cite|improve this answer









            $endgroup$


















              1












              $begingroup$

              You can use the divergence theorem to simplify things. We have
              $$operatorname{div} vec{F}(x,y,z) = frac{partial F_x}{partial x} + frac{partial F_y}{partial y} + frac{partial F_z}{partial z} = 2+2z$$



              so
              $$I = iintlimits_{text{unit sphere}} vec{F}cdot dmathbf{S} = iiintlimits_{text{unit ball}} operatorname{div} vec{F} ,dV = int_{phi = 0}^{2pi} int_{theta = 0}^pi int_{r=0}^1 2(1+rcostheta)underbrace{r^2sintheta,dr,dtheta,dphi}_{dV}$$



              The integrand is independent of $phi$ so it factors out as $2pi$, and then the second integral vanishes:



              $$I = 4pileft(int_{theta = 0}^pi int_{r=0}^1 r^2sintheta,dr,dtheta + int_{theta = 0}^pi int_{r=0}^1 r^3costhetasintheta,dr,dthetaright) = frac83pi$$






              share|cite|improve this answer









              $endgroup$
















                1












                1








                1





                $begingroup$

                You can use the divergence theorem to simplify things. We have
                $$operatorname{div} vec{F}(x,y,z) = frac{partial F_x}{partial x} + frac{partial F_y}{partial y} + frac{partial F_z}{partial z} = 2+2z$$



                so
                $$I = iintlimits_{text{unit sphere}} vec{F}cdot dmathbf{S} = iiintlimits_{text{unit ball}} operatorname{div} vec{F} ,dV = int_{phi = 0}^{2pi} int_{theta = 0}^pi int_{r=0}^1 2(1+rcostheta)underbrace{r^2sintheta,dr,dtheta,dphi}_{dV}$$



                The integrand is independent of $phi$ so it factors out as $2pi$, and then the second integral vanishes:



                $$I = 4pileft(int_{theta = 0}^pi int_{r=0}^1 r^2sintheta,dr,dtheta + int_{theta = 0}^pi int_{r=0}^1 r^3costhetasintheta,dr,dthetaright) = frac83pi$$






                share|cite|improve this answer









                $endgroup$



                You can use the divergence theorem to simplify things. We have
                $$operatorname{div} vec{F}(x,y,z) = frac{partial F_x}{partial x} + frac{partial F_y}{partial y} + frac{partial F_z}{partial z} = 2+2z$$



                so
                $$I = iintlimits_{text{unit sphere}} vec{F}cdot dmathbf{S} = iiintlimits_{text{unit ball}} operatorname{div} vec{F} ,dV = int_{phi = 0}^{2pi} int_{theta = 0}^pi int_{r=0}^1 2(1+rcostheta)underbrace{r^2sintheta,dr,dtheta,dphi}_{dV}$$



                The integrand is independent of $phi$ so it factors out as $2pi$, and then the second integral vanishes:



                $$I = 4pileft(int_{theta = 0}^pi int_{r=0}^1 r^2sintheta,dr,dtheta + int_{theta = 0}^pi int_{r=0}^1 r^3costhetasintheta,dr,dthetaright) = frac83pi$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 29 '18 at 17:33









                mechanodroidmechanodroid

                28.8k62548




                28.8k62548






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055396%2fflux-of-langle-x-y-z2-rangle-across-unit-sphere%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Wiesbaden

                    Marschland

                    Dieringhausen