How has this Chebyshev expansion been reindexed?












1












$begingroup$


Just a quick question, I'm going through my lecture notes and I can't see how the author has gone from this:
$$begin{aligned} f ( x ) g ( x ) & = sum _ { m = 0 } ^ { infty } breve { f } _ { m } T _ { m } ( x ) sum _ { n = 0 } ^ { infty } breve { g } _ { n } T _ { n } ( x ) \ & = frac { 1 } { 2 } sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } left[ T _ { | m - n | } ( x ) + T _ { m + n } ( x ) right] end{aligned}$$
which is fine (the identity $T _ { m } ( x ) T _ { n } ( x ) =frac { 1 } { 2 } left[ T _ { | m - n | } ( x ) + T _ { m + n } ( x ) right]$ is separately derived), to this:
$$= frac { 1 } { 2 } sum _ { n = 0 } ^ { infty } sum _ { m = 0 } ^ { infty } breve { f } _ { m } left( breve { g } _ { | m - n | } + breve { g } _ { m + n } right) T _ { n } ( x )$$
it seems like it's just a reindex and apparently it's "elementary algebra" but I can't seem to spot it.





For context $T_n(x)$ is the $n$th Chebyshev polynomial and $f$ and $g$ have expansions of the form $$f ( x ) = sum _ { n = 0 } ^ { infty } breve { f } _ { n } T _ { n } ( x )$$










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    Just a quick question, I'm going through my lecture notes and I can't see how the author has gone from this:
    $$begin{aligned} f ( x ) g ( x ) & = sum _ { m = 0 } ^ { infty } breve { f } _ { m } T _ { m } ( x ) sum _ { n = 0 } ^ { infty } breve { g } _ { n } T _ { n } ( x ) \ & = frac { 1 } { 2 } sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } left[ T _ { | m - n | } ( x ) + T _ { m + n } ( x ) right] end{aligned}$$
    which is fine (the identity $T _ { m } ( x ) T _ { n } ( x ) =frac { 1 } { 2 } left[ T _ { | m - n | } ( x ) + T _ { m + n } ( x ) right]$ is separately derived), to this:
    $$= frac { 1 } { 2 } sum _ { n = 0 } ^ { infty } sum _ { m = 0 } ^ { infty } breve { f } _ { m } left( breve { g } _ { | m - n | } + breve { g } _ { m + n } right) T _ { n } ( x )$$
    it seems like it's just a reindex and apparently it's "elementary algebra" but I can't seem to spot it.





    For context $T_n(x)$ is the $n$th Chebyshev polynomial and $f$ and $g$ have expansions of the form $$f ( x ) = sum _ { n = 0 } ^ { infty } breve { f } _ { n } T _ { n } ( x )$$










    share|cite|improve this question











    $endgroup$















      1












      1








      1


      1



      $begingroup$


      Just a quick question, I'm going through my lecture notes and I can't see how the author has gone from this:
      $$begin{aligned} f ( x ) g ( x ) & = sum _ { m = 0 } ^ { infty } breve { f } _ { m } T _ { m } ( x ) sum _ { n = 0 } ^ { infty } breve { g } _ { n } T _ { n } ( x ) \ & = frac { 1 } { 2 } sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } left[ T _ { | m - n | } ( x ) + T _ { m + n } ( x ) right] end{aligned}$$
      which is fine (the identity $T _ { m } ( x ) T _ { n } ( x ) =frac { 1 } { 2 } left[ T _ { | m - n | } ( x ) + T _ { m + n } ( x ) right]$ is separately derived), to this:
      $$= frac { 1 } { 2 } sum _ { n = 0 } ^ { infty } sum _ { m = 0 } ^ { infty } breve { f } _ { m } left( breve { g } _ { | m - n | } + breve { g } _ { m + n } right) T _ { n } ( x )$$
      it seems like it's just a reindex and apparently it's "elementary algebra" but I can't seem to spot it.





      For context $T_n(x)$ is the $n$th Chebyshev polynomial and $f$ and $g$ have expansions of the form $$f ( x ) = sum _ { n = 0 } ^ { infty } breve { f } _ { n } T _ { n } ( x )$$










      share|cite|improve this question











      $endgroup$




      Just a quick question, I'm going through my lecture notes and I can't see how the author has gone from this:
      $$begin{aligned} f ( x ) g ( x ) & = sum _ { m = 0 } ^ { infty } breve { f } _ { m } T _ { m } ( x ) sum _ { n = 0 } ^ { infty } breve { g } _ { n } T _ { n } ( x ) \ & = frac { 1 } { 2 } sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } left[ T _ { | m - n | } ( x ) + T _ { m + n } ( x ) right] end{aligned}$$
      which is fine (the identity $T _ { m } ( x ) T _ { n } ( x ) =frac { 1 } { 2 } left[ T _ { | m - n | } ( x ) + T _ { m + n } ( x ) right]$ is separately derived), to this:
      $$= frac { 1 } { 2 } sum _ { n = 0 } ^ { infty } sum _ { m = 0 } ^ { infty } breve { f } _ { m } left( breve { g } _ { | m - n | } + breve { g } _ { m + n } right) T _ { n } ( x )$$
      it seems like it's just a reindex and apparently it's "elementary algebra" but I can't seem to spot it.





      For context $T_n(x)$ is the $n$th Chebyshev polynomial and $f$ and $g$ have expansions of the form $$f ( x ) = sum _ { n = 0 } ^ { infty } breve { f } _ { n } T _ { n } ( x )$$







      sequences-and-series summation numerical-methods chebyshev-polynomials






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 31 '18 at 9:06







      Jay

















      asked Dec 29 '18 at 0:33









      JayJay

      1,293818




      1,293818






















          2 Answers
          2






          active

          oldest

          votes


















          2





          +100







          $begingroup$

          Extend $T_j$ to negative $j$ by $T_{-j} = T_j$ so that $T_{|j|} = T_j$. And let $ breve { f } _ { m }= breve { g } _ { n }=0$ for $n,m<0$. Then,
          $$begin{eqnarray}
          sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n }T _ { | m - n | } ( x )& =& sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n }T _ { m - n } ( x )\ &=& sum _ { m = 0 } ^ { infty } sum _ { nle m} ^ { } breve { f } _ { m } breve { g } _ {m- n }T _ {n } ( x )quad (m-nmapsto n)\
          &=&sum _ { m = 0 } ^ { infty } sum _ { nge -m} ^ { } breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )quad (nmapsto -n)\
          &=&sum _ { m = 0 } ^ { infty } sum _ { nge 0} ^ { } breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )+sum _ { m = 0 } ^ { infty } sum _ { n=-m} ^ { -1} breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )\
          &=&sum _ { m = 0 } ^ { infty } sum _ { nge 0} ^ { } breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )+sum _ { m = 0 } ^ { infty } sum _ { n=1} ^ { m} breve { f } _ { m } breve { g } _ {m-n }T _ {n } ( x )\&=&sum _ { m = 0 } ^ { infty } sum _ { nge 0} ^ { } breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )+sum _ { m = 0 } ^ { infty } sum _ { n=1} ^ { m} breve { f } _ { m } breve { g } _ {|n-m| }T _ {n } ( x ).end{eqnarray}$$
          On the other hand,
          $$
          sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } T _ { m + n } ( x )=sum _ { m = 0 } ^ { infty } sum _ { nge m } breve { f } _ { m } breve { g } _ { n-m } T _ { n } ( x )=sum _ { m = 0 } ^ { infty } sum _ { n= m }^infty breve { f } _ { m } breve { g } _ { |n-m| } T _ { n } ( x )
          .
          $$
          Gathering them together, we have
          $$begin{eqnarray}
          frac { 1 } { 2 } sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } left[ T _ { | m - n | } ( x ) + T _ { m + n } ( x ) right]&=&frac { 1 } { 2 }sum _ { m = 0 } ^ { infty } sum _ { n=0} ^ {infty } breve { f } _ { m } (breve { g } _ { |n-m| } +breve { g } _ {m+ n })T _ {n } ( x )\&&+frac { 1 } { 2 }sum_{m=0}^inftyleft(breve { f } _ { m }breve { g } _ {0 }T_m(x)-breve { f } _ { m }breve { g } _ {m }T_0(x)right).
          end{eqnarray}$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            That seems to be what I got so I'm confident that it's just wrong in the textbooks. Thanks for taking the time to confirm!
            $endgroup$
            – Jay
            Dec 31 '18 at 13:41






          • 1




            $begingroup$
            I hope this will help :)
            $endgroup$
            – Song
            Dec 31 '18 at 13:42



















          1












          $begingroup$

          I've taken another look and I'm pretty sure this must just be incorrect for two reasons:





          (1) Trying to show directly:



          If we start from $$ frac { 1 } { 2 } sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } left[ T _ { | m - n | } + T _ { m + n } right]$$
          we can split the absolute value up and reaarange the terms to get
          $$frac { 1 } { 2 } sum _ { m = 0 } ^ { infty }breve { f } _ { m }left[ sum_{n=0}^m breve{ g } _ { n } T _ { m - n }+ sum_{n=m+1}^m breve{ g } _ { n } T _ { n-m }+sum_{n=0}^infty breve { g } _ { n } T _ { m+n } right]$$
          then we can reindex each sum in the square brackets according to the rules: $nto n-m$ for the first, $nto m-n$ for the second and $nto n+m$ for the third. Which results in:
          $$ frac { 1 } { 2 } sum _ { m = 0 } ^ { infty }breve { f } _ { m }left[ sum_{n=m}^infty breve{g}_{n-m}T_n+sum_{n=0}^m breve{g}_{m-n}T_n+sum_{n=1}^infty breve{g}_{n+m}T_n right] $$
          which I can force into the form given by writing this as:
          $$ frac { 1 } { 2 } sum _ { m = 0 } ^ { infty }breve { f } _ { m }left[ sum_{n=0}^infty (breve{g}_{|n-m|}+breve{g}_{n+m})T_n +breve{g}_0 T_m-breve{g}_mT_0 right] $$
          where the it only differs by those two terms.





          (2) Check equality for $T_0$ terms



          First let's look at the formula $$frac { 1 } { 2 } sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } left[ T _ { | m - n | } + T _ { m + n } right]$$
          to get the terms involving $T_0$ consider




          • Fixed $m>0$, we need $n=m$ whose terms are: $breve{f}_mbreve{g}_m (T_0)$


          • $m=0$, we need $n=m=0$ whose term is: $breve{f}_0breve{g}_0(T_0+T_0)=2breve{f}_0breve{g}_0T_0$


          This is different for the formula $$frac { 1 } { 2 } sum _ { n = 0 } ^ { infty } sum _ { m = 0 } ^ { infty } breve { f } _ { m } left( breve { g } _ { | m - n | } + breve { g } _ { m + n } right) T _ { n } ( x )$$
          since if we repeat the procedure we get:




          • Fixed $m>0$, we need $n=0$ whose terms are: $breve{f}_m(breve{g}_m+breve{g}_m) T_0=2breve{f}_mbreve{g}_m T_0$


          • $m=0$, we need $n=m=0$ with term: $breve{f}_0(breve{g}_0+breve{g}_0)T_0=2breve{f}_0breve{g}_0T_0$


          which would incidentally be fixed with the extra $-breve{g}_m T_0$ from the direct way above.





          edit: (3) Another reason



          Just from implementing in Mathematica with $f(x)=sin(x)$ and $g(x)=cos(x)$ then the one they give (labeled A) vs. the one I derived (labeled B):
          enter image description here





          This result is in two published books so I feel like I have made a mistake somewhere so if anyone spots anything please let me know.






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055422%2fhow-has-this-chebyshev-expansion-been-reindexed%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2





            +100







            $begingroup$

            Extend $T_j$ to negative $j$ by $T_{-j} = T_j$ so that $T_{|j|} = T_j$. And let $ breve { f } _ { m }= breve { g } _ { n }=0$ for $n,m<0$. Then,
            $$begin{eqnarray}
            sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n }T _ { | m - n | } ( x )& =& sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n }T _ { m - n } ( x )\ &=& sum _ { m = 0 } ^ { infty } sum _ { nle m} ^ { } breve { f } _ { m } breve { g } _ {m- n }T _ {n } ( x )quad (m-nmapsto n)\
            &=&sum _ { m = 0 } ^ { infty } sum _ { nge -m} ^ { } breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )quad (nmapsto -n)\
            &=&sum _ { m = 0 } ^ { infty } sum _ { nge 0} ^ { } breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )+sum _ { m = 0 } ^ { infty } sum _ { n=-m} ^ { -1} breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )\
            &=&sum _ { m = 0 } ^ { infty } sum _ { nge 0} ^ { } breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )+sum _ { m = 0 } ^ { infty } sum _ { n=1} ^ { m} breve { f } _ { m } breve { g } _ {m-n }T _ {n } ( x )\&=&sum _ { m = 0 } ^ { infty } sum _ { nge 0} ^ { } breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )+sum _ { m = 0 } ^ { infty } sum _ { n=1} ^ { m} breve { f } _ { m } breve { g } _ {|n-m| }T _ {n } ( x ).end{eqnarray}$$
            On the other hand,
            $$
            sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } T _ { m + n } ( x )=sum _ { m = 0 } ^ { infty } sum _ { nge m } breve { f } _ { m } breve { g } _ { n-m } T _ { n } ( x )=sum _ { m = 0 } ^ { infty } sum _ { n= m }^infty breve { f } _ { m } breve { g } _ { |n-m| } T _ { n } ( x )
            .
            $$
            Gathering them together, we have
            $$begin{eqnarray}
            frac { 1 } { 2 } sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } left[ T _ { | m - n | } ( x ) + T _ { m + n } ( x ) right]&=&frac { 1 } { 2 }sum _ { m = 0 } ^ { infty } sum _ { n=0} ^ {infty } breve { f } _ { m } (breve { g } _ { |n-m| } +breve { g } _ {m+ n })T _ {n } ( x )\&&+frac { 1 } { 2 }sum_{m=0}^inftyleft(breve { f } _ { m }breve { g } _ {0 }T_m(x)-breve { f } _ { m }breve { g } _ {m }T_0(x)right).
            end{eqnarray}$$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              That seems to be what I got so I'm confident that it's just wrong in the textbooks. Thanks for taking the time to confirm!
              $endgroup$
              – Jay
              Dec 31 '18 at 13:41






            • 1




              $begingroup$
              I hope this will help :)
              $endgroup$
              – Song
              Dec 31 '18 at 13:42
















            2





            +100







            $begingroup$

            Extend $T_j$ to negative $j$ by $T_{-j} = T_j$ so that $T_{|j|} = T_j$. And let $ breve { f } _ { m }= breve { g } _ { n }=0$ for $n,m<0$. Then,
            $$begin{eqnarray}
            sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n }T _ { | m - n | } ( x )& =& sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n }T _ { m - n } ( x )\ &=& sum _ { m = 0 } ^ { infty } sum _ { nle m} ^ { } breve { f } _ { m } breve { g } _ {m- n }T _ {n } ( x )quad (m-nmapsto n)\
            &=&sum _ { m = 0 } ^ { infty } sum _ { nge -m} ^ { } breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )quad (nmapsto -n)\
            &=&sum _ { m = 0 } ^ { infty } sum _ { nge 0} ^ { } breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )+sum _ { m = 0 } ^ { infty } sum _ { n=-m} ^ { -1} breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )\
            &=&sum _ { m = 0 } ^ { infty } sum _ { nge 0} ^ { } breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )+sum _ { m = 0 } ^ { infty } sum _ { n=1} ^ { m} breve { f } _ { m } breve { g } _ {m-n }T _ {n } ( x )\&=&sum _ { m = 0 } ^ { infty } sum _ { nge 0} ^ { } breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )+sum _ { m = 0 } ^ { infty } sum _ { n=1} ^ { m} breve { f } _ { m } breve { g } _ {|n-m| }T _ {n } ( x ).end{eqnarray}$$
            On the other hand,
            $$
            sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } T _ { m + n } ( x )=sum _ { m = 0 } ^ { infty } sum _ { nge m } breve { f } _ { m } breve { g } _ { n-m } T _ { n } ( x )=sum _ { m = 0 } ^ { infty } sum _ { n= m }^infty breve { f } _ { m } breve { g } _ { |n-m| } T _ { n } ( x )
            .
            $$
            Gathering them together, we have
            $$begin{eqnarray}
            frac { 1 } { 2 } sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } left[ T _ { | m - n | } ( x ) + T _ { m + n } ( x ) right]&=&frac { 1 } { 2 }sum _ { m = 0 } ^ { infty } sum _ { n=0} ^ {infty } breve { f } _ { m } (breve { g } _ { |n-m| } +breve { g } _ {m+ n })T _ {n } ( x )\&&+frac { 1 } { 2 }sum_{m=0}^inftyleft(breve { f } _ { m }breve { g } _ {0 }T_m(x)-breve { f } _ { m }breve { g } _ {m }T_0(x)right).
            end{eqnarray}$$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              That seems to be what I got so I'm confident that it's just wrong in the textbooks. Thanks for taking the time to confirm!
              $endgroup$
              – Jay
              Dec 31 '18 at 13:41






            • 1




              $begingroup$
              I hope this will help :)
              $endgroup$
              – Song
              Dec 31 '18 at 13:42














            2





            +100







            2





            +100



            2




            +100



            $begingroup$

            Extend $T_j$ to negative $j$ by $T_{-j} = T_j$ so that $T_{|j|} = T_j$. And let $ breve { f } _ { m }= breve { g } _ { n }=0$ for $n,m<0$. Then,
            $$begin{eqnarray}
            sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n }T _ { | m - n | } ( x )& =& sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n }T _ { m - n } ( x )\ &=& sum _ { m = 0 } ^ { infty } sum _ { nle m} ^ { } breve { f } _ { m } breve { g } _ {m- n }T _ {n } ( x )quad (m-nmapsto n)\
            &=&sum _ { m = 0 } ^ { infty } sum _ { nge -m} ^ { } breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )quad (nmapsto -n)\
            &=&sum _ { m = 0 } ^ { infty } sum _ { nge 0} ^ { } breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )+sum _ { m = 0 } ^ { infty } sum _ { n=-m} ^ { -1} breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )\
            &=&sum _ { m = 0 } ^ { infty } sum _ { nge 0} ^ { } breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )+sum _ { m = 0 } ^ { infty } sum _ { n=1} ^ { m} breve { f } _ { m } breve { g } _ {m-n }T _ {n } ( x )\&=&sum _ { m = 0 } ^ { infty } sum _ { nge 0} ^ { } breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )+sum _ { m = 0 } ^ { infty } sum _ { n=1} ^ { m} breve { f } _ { m } breve { g } _ {|n-m| }T _ {n } ( x ).end{eqnarray}$$
            On the other hand,
            $$
            sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } T _ { m + n } ( x )=sum _ { m = 0 } ^ { infty } sum _ { nge m } breve { f } _ { m } breve { g } _ { n-m } T _ { n } ( x )=sum _ { m = 0 } ^ { infty } sum _ { n= m }^infty breve { f } _ { m } breve { g } _ { |n-m| } T _ { n } ( x )
            .
            $$
            Gathering them together, we have
            $$begin{eqnarray}
            frac { 1 } { 2 } sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } left[ T _ { | m - n | } ( x ) + T _ { m + n } ( x ) right]&=&frac { 1 } { 2 }sum _ { m = 0 } ^ { infty } sum _ { n=0} ^ {infty } breve { f } _ { m } (breve { g } _ { |n-m| } +breve { g } _ {m+ n })T _ {n } ( x )\&&+frac { 1 } { 2 }sum_{m=0}^inftyleft(breve { f } _ { m }breve { g } _ {0 }T_m(x)-breve { f } _ { m }breve { g } _ {m }T_0(x)right).
            end{eqnarray}$$






            share|cite|improve this answer











            $endgroup$



            Extend $T_j$ to negative $j$ by $T_{-j} = T_j$ so that $T_{|j|} = T_j$. And let $ breve { f } _ { m }= breve { g } _ { n }=0$ for $n,m<0$. Then,
            $$begin{eqnarray}
            sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n }T _ { | m - n | } ( x )& =& sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n }T _ { m - n } ( x )\ &=& sum _ { m = 0 } ^ { infty } sum _ { nle m} ^ { } breve { f } _ { m } breve { g } _ {m- n }T _ {n } ( x )quad (m-nmapsto n)\
            &=&sum _ { m = 0 } ^ { infty } sum _ { nge -m} ^ { } breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )quad (nmapsto -n)\
            &=&sum _ { m = 0 } ^ { infty } sum _ { nge 0} ^ { } breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )+sum _ { m = 0 } ^ { infty } sum _ { n=-m} ^ { -1} breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )\
            &=&sum _ { m = 0 } ^ { infty } sum _ { nge 0} ^ { } breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )+sum _ { m = 0 } ^ { infty } sum _ { n=1} ^ { m} breve { f } _ { m } breve { g } _ {m-n }T _ {n } ( x )\&=&sum _ { m = 0 } ^ { infty } sum _ { nge 0} ^ { } breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )+sum _ { m = 0 } ^ { infty } sum _ { n=1} ^ { m} breve { f } _ { m } breve { g } _ {|n-m| }T _ {n } ( x ).end{eqnarray}$$
            On the other hand,
            $$
            sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } T _ { m + n } ( x )=sum _ { m = 0 } ^ { infty } sum _ { nge m } breve { f } _ { m } breve { g } _ { n-m } T _ { n } ( x )=sum _ { m = 0 } ^ { infty } sum _ { n= m }^infty breve { f } _ { m } breve { g } _ { |n-m| } T _ { n } ( x )
            .
            $$
            Gathering them together, we have
            $$begin{eqnarray}
            frac { 1 } { 2 } sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } left[ T _ { | m - n | } ( x ) + T _ { m + n } ( x ) right]&=&frac { 1 } { 2 }sum _ { m = 0 } ^ { infty } sum _ { n=0} ^ {infty } breve { f } _ { m } (breve { g } _ { |n-m| } +breve { g } _ {m+ n })T _ {n } ( x )\&&+frac { 1 } { 2 }sum_{m=0}^inftyleft(breve { f } _ { m }breve { g } _ {0 }T_m(x)-breve { f } _ { m }breve { g } _ {m }T_0(x)right).
            end{eqnarray}$$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Dec 31 '18 at 13:49

























            answered Dec 31 '18 at 13:36









            SongSong

            18.3k21549




            18.3k21549












            • $begingroup$
              That seems to be what I got so I'm confident that it's just wrong in the textbooks. Thanks for taking the time to confirm!
              $endgroup$
              – Jay
              Dec 31 '18 at 13:41






            • 1




              $begingroup$
              I hope this will help :)
              $endgroup$
              – Song
              Dec 31 '18 at 13:42


















            • $begingroup$
              That seems to be what I got so I'm confident that it's just wrong in the textbooks. Thanks for taking the time to confirm!
              $endgroup$
              – Jay
              Dec 31 '18 at 13:41






            • 1




              $begingroup$
              I hope this will help :)
              $endgroup$
              – Song
              Dec 31 '18 at 13:42
















            $begingroup$
            That seems to be what I got so I'm confident that it's just wrong in the textbooks. Thanks for taking the time to confirm!
            $endgroup$
            – Jay
            Dec 31 '18 at 13:41




            $begingroup$
            That seems to be what I got so I'm confident that it's just wrong in the textbooks. Thanks for taking the time to confirm!
            $endgroup$
            – Jay
            Dec 31 '18 at 13:41




            1




            1




            $begingroup$
            I hope this will help :)
            $endgroup$
            – Song
            Dec 31 '18 at 13:42




            $begingroup$
            I hope this will help :)
            $endgroup$
            – Song
            Dec 31 '18 at 13:42











            1












            $begingroup$

            I've taken another look and I'm pretty sure this must just be incorrect for two reasons:





            (1) Trying to show directly:



            If we start from $$ frac { 1 } { 2 } sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } left[ T _ { | m - n | } + T _ { m + n } right]$$
            we can split the absolute value up and reaarange the terms to get
            $$frac { 1 } { 2 } sum _ { m = 0 } ^ { infty }breve { f } _ { m }left[ sum_{n=0}^m breve{ g } _ { n } T _ { m - n }+ sum_{n=m+1}^m breve{ g } _ { n } T _ { n-m }+sum_{n=0}^infty breve { g } _ { n } T _ { m+n } right]$$
            then we can reindex each sum in the square brackets according to the rules: $nto n-m$ for the first, $nto m-n$ for the second and $nto n+m$ for the third. Which results in:
            $$ frac { 1 } { 2 } sum _ { m = 0 } ^ { infty }breve { f } _ { m }left[ sum_{n=m}^infty breve{g}_{n-m}T_n+sum_{n=0}^m breve{g}_{m-n}T_n+sum_{n=1}^infty breve{g}_{n+m}T_n right] $$
            which I can force into the form given by writing this as:
            $$ frac { 1 } { 2 } sum _ { m = 0 } ^ { infty }breve { f } _ { m }left[ sum_{n=0}^infty (breve{g}_{|n-m|}+breve{g}_{n+m})T_n +breve{g}_0 T_m-breve{g}_mT_0 right] $$
            where the it only differs by those two terms.





            (2) Check equality for $T_0$ terms



            First let's look at the formula $$frac { 1 } { 2 } sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } left[ T _ { | m - n | } + T _ { m + n } right]$$
            to get the terms involving $T_0$ consider




            • Fixed $m>0$, we need $n=m$ whose terms are: $breve{f}_mbreve{g}_m (T_0)$


            • $m=0$, we need $n=m=0$ whose term is: $breve{f}_0breve{g}_0(T_0+T_0)=2breve{f}_0breve{g}_0T_0$


            This is different for the formula $$frac { 1 } { 2 } sum _ { n = 0 } ^ { infty } sum _ { m = 0 } ^ { infty } breve { f } _ { m } left( breve { g } _ { | m - n | } + breve { g } _ { m + n } right) T _ { n } ( x )$$
            since if we repeat the procedure we get:




            • Fixed $m>0$, we need $n=0$ whose terms are: $breve{f}_m(breve{g}_m+breve{g}_m) T_0=2breve{f}_mbreve{g}_m T_0$


            • $m=0$, we need $n=m=0$ with term: $breve{f}_0(breve{g}_0+breve{g}_0)T_0=2breve{f}_0breve{g}_0T_0$


            which would incidentally be fixed with the extra $-breve{g}_m T_0$ from the direct way above.





            edit: (3) Another reason



            Just from implementing in Mathematica with $f(x)=sin(x)$ and $g(x)=cos(x)$ then the one they give (labeled A) vs. the one I derived (labeled B):
            enter image description here





            This result is in two published books so I feel like I have made a mistake somewhere so if anyone spots anything please let me know.






            share|cite|improve this answer











            $endgroup$


















              1












              $begingroup$

              I've taken another look and I'm pretty sure this must just be incorrect for two reasons:





              (1) Trying to show directly:



              If we start from $$ frac { 1 } { 2 } sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } left[ T _ { | m - n | } + T _ { m + n } right]$$
              we can split the absolute value up and reaarange the terms to get
              $$frac { 1 } { 2 } sum _ { m = 0 } ^ { infty }breve { f } _ { m }left[ sum_{n=0}^m breve{ g } _ { n } T _ { m - n }+ sum_{n=m+1}^m breve{ g } _ { n } T _ { n-m }+sum_{n=0}^infty breve { g } _ { n } T _ { m+n } right]$$
              then we can reindex each sum in the square brackets according to the rules: $nto n-m$ for the first, $nto m-n$ for the second and $nto n+m$ for the third. Which results in:
              $$ frac { 1 } { 2 } sum _ { m = 0 } ^ { infty }breve { f } _ { m }left[ sum_{n=m}^infty breve{g}_{n-m}T_n+sum_{n=0}^m breve{g}_{m-n}T_n+sum_{n=1}^infty breve{g}_{n+m}T_n right] $$
              which I can force into the form given by writing this as:
              $$ frac { 1 } { 2 } sum _ { m = 0 } ^ { infty }breve { f } _ { m }left[ sum_{n=0}^infty (breve{g}_{|n-m|}+breve{g}_{n+m})T_n +breve{g}_0 T_m-breve{g}_mT_0 right] $$
              where the it only differs by those two terms.





              (2) Check equality for $T_0$ terms



              First let's look at the formula $$frac { 1 } { 2 } sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } left[ T _ { | m - n | } + T _ { m + n } right]$$
              to get the terms involving $T_0$ consider




              • Fixed $m>0$, we need $n=m$ whose terms are: $breve{f}_mbreve{g}_m (T_0)$


              • $m=0$, we need $n=m=0$ whose term is: $breve{f}_0breve{g}_0(T_0+T_0)=2breve{f}_0breve{g}_0T_0$


              This is different for the formula $$frac { 1 } { 2 } sum _ { n = 0 } ^ { infty } sum _ { m = 0 } ^ { infty } breve { f } _ { m } left( breve { g } _ { | m - n | } + breve { g } _ { m + n } right) T _ { n } ( x )$$
              since if we repeat the procedure we get:




              • Fixed $m>0$, we need $n=0$ whose terms are: $breve{f}_m(breve{g}_m+breve{g}_m) T_0=2breve{f}_mbreve{g}_m T_0$


              • $m=0$, we need $n=m=0$ with term: $breve{f}_0(breve{g}_0+breve{g}_0)T_0=2breve{f}_0breve{g}_0T_0$


              which would incidentally be fixed with the extra $-breve{g}_m T_0$ from the direct way above.





              edit: (3) Another reason



              Just from implementing in Mathematica with $f(x)=sin(x)$ and $g(x)=cos(x)$ then the one they give (labeled A) vs. the one I derived (labeled B):
              enter image description here





              This result is in two published books so I feel like I have made a mistake somewhere so if anyone spots anything please let me know.






              share|cite|improve this answer











              $endgroup$
















                1












                1








                1





                $begingroup$

                I've taken another look and I'm pretty sure this must just be incorrect for two reasons:





                (1) Trying to show directly:



                If we start from $$ frac { 1 } { 2 } sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } left[ T _ { | m - n | } + T _ { m + n } right]$$
                we can split the absolute value up and reaarange the terms to get
                $$frac { 1 } { 2 } sum _ { m = 0 } ^ { infty }breve { f } _ { m }left[ sum_{n=0}^m breve{ g } _ { n } T _ { m - n }+ sum_{n=m+1}^m breve{ g } _ { n } T _ { n-m }+sum_{n=0}^infty breve { g } _ { n } T _ { m+n } right]$$
                then we can reindex each sum in the square brackets according to the rules: $nto n-m$ for the first, $nto m-n$ for the second and $nto n+m$ for the third. Which results in:
                $$ frac { 1 } { 2 } sum _ { m = 0 } ^ { infty }breve { f } _ { m }left[ sum_{n=m}^infty breve{g}_{n-m}T_n+sum_{n=0}^m breve{g}_{m-n}T_n+sum_{n=1}^infty breve{g}_{n+m}T_n right] $$
                which I can force into the form given by writing this as:
                $$ frac { 1 } { 2 } sum _ { m = 0 } ^ { infty }breve { f } _ { m }left[ sum_{n=0}^infty (breve{g}_{|n-m|}+breve{g}_{n+m})T_n +breve{g}_0 T_m-breve{g}_mT_0 right] $$
                where the it only differs by those two terms.





                (2) Check equality for $T_0$ terms



                First let's look at the formula $$frac { 1 } { 2 } sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } left[ T _ { | m - n | } + T _ { m + n } right]$$
                to get the terms involving $T_0$ consider




                • Fixed $m>0$, we need $n=m$ whose terms are: $breve{f}_mbreve{g}_m (T_0)$


                • $m=0$, we need $n=m=0$ whose term is: $breve{f}_0breve{g}_0(T_0+T_0)=2breve{f}_0breve{g}_0T_0$


                This is different for the formula $$frac { 1 } { 2 } sum _ { n = 0 } ^ { infty } sum _ { m = 0 } ^ { infty } breve { f } _ { m } left( breve { g } _ { | m - n | } + breve { g } _ { m + n } right) T _ { n } ( x )$$
                since if we repeat the procedure we get:




                • Fixed $m>0$, we need $n=0$ whose terms are: $breve{f}_m(breve{g}_m+breve{g}_m) T_0=2breve{f}_mbreve{g}_m T_0$


                • $m=0$, we need $n=m=0$ with term: $breve{f}_0(breve{g}_0+breve{g}_0)T_0=2breve{f}_0breve{g}_0T_0$


                which would incidentally be fixed with the extra $-breve{g}_m T_0$ from the direct way above.





                edit: (3) Another reason



                Just from implementing in Mathematica with $f(x)=sin(x)$ and $g(x)=cos(x)$ then the one they give (labeled A) vs. the one I derived (labeled B):
                enter image description here





                This result is in two published books so I feel like I have made a mistake somewhere so if anyone spots anything please let me know.






                share|cite|improve this answer











                $endgroup$



                I've taken another look and I'm pretty sure this must just be incorrect for two reasons:





                (1) Trying to show directly:



                If we start from $$ frac { 1 } { 2 } sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } left[ T _ { | m - n | } + T _ { m + n } right]$$
                we can split the absolute value up and reaarange the terms to get
                $$frac { 1 } { 2 } sum _ { m = 0 } ^ { infty }breve { f } _ { m }left[ sum_{n=0}^m breve{ g } _ { n } T _ { m - n }+ sum_{n=m+1}^m breve{ g } _ { n } T _ { n-m }+sum_{n=0}^infty breve { g } _ { n } T _ { m+n } right]$$
                then we can reindex each sum in the square brackets according to the rules: $nto n-m$ for the first, $nto m-n$ for the second and $nto n+m$ for the third. Which results in:
                $$ frac { 1 } { 2 } sum _ { m = 0 } ^ { infty }breve { f } _ { m }left[ sum_{n=m}^infty breve{g}_{n-m}T_n+sum_{n=0}^m breve{g}_{m-n}T_n+sum_{n=1}^infty breve{g}_{n+m}T_n right] $$
                which I can force into the form given by writing this as:
                $$ frac { 1 } { 2 } sum _ { m = 0 } ^ { infty }breve { f } _ { m }left[ sum_{n=0}^infty (breve{g}_{|n-m|}+breve{g}_{n+m})T_n +breve{g}_0 T_m-breve{g}_mT_0 right] $$
                where the it only differs by those two terms.





                (2) Check equality for $T_0$ terms



                First let's look at the formula $$frac { 1 } { 2 } sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } left[ T _ { | m - n | } + T _ { m + n } right]$$
                to get the terms involving $T_0$ consider




                • Fixed $m>0$, we need $n=m$ whose terms are: $breve{f}_mbreve{g}_m (T_0)$


                • $m=0$, we need $n=m=0$ whose term is: $breve{f}_0breve{g}_0(T_0+T_0)=2breve{f}_0breve{g}_0T_0$


                This is different for the formula $$frac { 1 } { 2 } sum _ { n = 0 } ^ { infty } sum _ { m = 0 } ^ { infty } breve { f } _ { m } left( breve { g } _ { | m - n | } + breve { g } _ { m + n } right) T _ { n } ( x )$$
                since if we repeat the procedure we get:




                • Fixed $m>0$, we need $n=0$ whose terms are: $breve{f}_m(breve{g}_m+breve{g}_m) T_0=2breve{f}_mbreve{g}_m T_0$


                • $m=0$, we need $n=m=0$ with term: $breve{f}_0(breve{g}_0+breve{g}_0)T_0=2breve{f}_0breve{g}_0T_0$


                which would incidentally be fixed with the extra $-breve{g}_m T_0$ from the direct way above.





                edit: (3) Another reason



                Just from implementing in Mathematica with $f(x)=sin(x)$ and $g(x)=cos(x)$ then the one they give (labeled A) vs. the one I derived (labeled B):
                enter image description here





                This result is in two published books so I feel like I have made a mistake somewhere so if anyone spots anything please let me know.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Dec 31 '18 at 13:38

























                answered Dec 31 '18 at 1:05









                JayJay

                1,293818




                1,293818






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055422%2fhow-has-this-chebyshev-expansion-been-reindexed%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Wiesbaden

                    Marschland

                    Dieringhausen