How has this Chebyshev expansion been reindexed?
$begingroup$
Just a quick question, I'm going through my lecture notes and I can't see how the author has gone from this:
$$begin{aligned} f ( x ) g ( x ) & = sum _ { m = 0 } ^ { infty } breve { f } _ { m } T _ { m } ( x ) sum _ { n = 0 } ^ { infty } breve { g } _ { n } T _ { n } ( x ) \ & = frac { 1 } { 2 } sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } left[ T _ { | m - n | } ( x ) + T _ { m + n } ( x ) right] end{aligned}$$
which is fine (the identity $T _ { m } ( x ) T _ { n } ( x ) =frac { 1 } { 2 } left[ T _ { | m - n | } ( x ) + T _ { m + n } ( x ) right]$ is separately derived), to this:
$$= frac { 1 } { 2 } sum _ { n = 0 } ^ { infty } sum _ { m = 0 } ^ { infty } breve { f } _ { m } left( breve { g } _ { | m - n | } + breve { g } _ { m + n } right) T _ { n } ( x )$$
it seems like it's just a reindex and apparently it's "elementary algebra" but I can't seem to spot it.
For context $T_n(x)$ is the $n$th Chebyshev polynomial and $f$ and $g$ have expansions of the form $$f ( x ) = sum _ { n = 0 } ^ { infty } breve { f } _ { n } T _ { n } ( x )$$
sequences-and-series summation numerical-methods chebyshev-polynomials
$endgroup$
add a comment |
$begingroup$
Just a quick question, I'm going through my lecture notes and I can't see how the author has gone from this:
$$begin{aligned} f ( x ) g ( x ) & = sum _ { m = 0 } ^ { infty } breve { f } _ { m } T _ { m } ( x ) sum _ { n = 0 } ^ { infty } breve { g } _ { n } T _ { n } ( x ) \ & = frac { 1 } { 2 } sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } left[ T _ { | m - n | } ( x ) + T _ { m + n } ( x ) right] end{aligned}$$
which is fine (the identity $T _ { m } ( x ) T _ { n } ( x ) =frac { 1 } { 2 } left[ T _ { | m - n | } ( x ) + T _ { m + n } ( x ) right]$ is separately derived), to this:
$$= frac { 1 } { 2 } sum _ { n = 0 } ^ { infty } sum _ { m = 0 } ^ { infty } breve { f } _ { m } left( breve { g } _ { | m - n | } + breve { g } _ { m + n } right) T _ { n } ( x )$$
it seems like it's just a reindex and apparently it's "elementary algebra" but I can't seem to spot it.
For context $T_n(x)$ is the $n$th Chebyshev polynomial and $f$ and $g$ have expansions of the form $$f ( x ) = sum _ { n = 0 } ^ { infty } breve { f } _ { n } T _ { n } ( x )$$
sequences-and-series summation numerical-methods chebyshev-polynomials
$endgroup$
add a comment |
$begingroup$
Just a quick question, I'm going through my lecture notes and I can't see how the author has gone from this:
$$begin{aligned} f ( x ) g ( x ) & = sum _ { m = 0 } ^ { infty } breve { f } _ { m } T _ { m } ( x ) sum _ { n = 0 } ^ { infty } breve { g } _ { n } T _ { n } ( x ) \ & = frac { 1 } { 2 } sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } left[ T _ { | m - n | } ( x ) + T _ { m + n } ( x ) right] end{aligned}$$
which is fine (the identity $T _ { m } ( x ) T _ { n } ( x ) =frac { 1 } { 2 } left[ T _ { | m - n | } ( x ) + T _ { m + n } ( x ) right]$ is separately derived), to this:
$$= frac { 1 } { 2 } sum _ { n = 0 } ^ { infty } sum _ { m = 0 } ^ { infty } breve { f } _ { m } left( breve { g } _ { | m - n | } + breve { g } _ { m + n } right) T _ { n } ( x )$$
it seems like it's just a reindex and apparently it's "elementary algebra" but I can't seem to spot it.
For context $T_n(x)$ is the $n$th Chebyshev polynomial and $f$ and $g$ have expansions of the form $$f ( x ) = sum _ { n = 0 } ^ { infty } breve { f } _ { n } T _ { n } ( x )$$
sequences-and-series summation numerical-methods chebyshev-polynomials
$endgroup$
Just a quick question, I'm going through my lecture notes and I can't see how the author has gone from this:
$$begin{aligned} f ( x ) g ( x ) & = sum _ { m = 0 } ^ { infty } breve { f } _ { m } T _ { m } ( x ) sum _ { n = 0 } ^ { infty } breve { g } _ { n } T _ { n } ( x ) \ & = frac { 1 } { 2 } sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } left[ T _ { | m - n | } ( x ) + T _ { m + n } ( x ) right] end{aligned}$$
which is fine (the identity $T _ { m } ( x ) T _ { n } ( x ) =frac { 1 } { 2 } left[ T _ { | m - n | } ( x ) + T _ { m + n } ( x ) right]$ is separately derived), to this:
$$= frac { 1 } { 2 } sum _ { n = 0 } ^ { infty } sum _ { m = 0 } ^ { infty } breve { f } _ { m } left( breve { g } _ { | m - n | } + breve { g } _ { m + n } right) T _ { n } ( x )$$
it seems like it's just a reindex and apparently it's "elementary algebra" but I can't seem to spot it.
For context $T_n(x)$ is the $n$th Chebyshev polynomial and $f$ and $g$ have expansions of the form $$f ( x ) = sum _ { n = 0 } ^ { infty } breve { f } _ { n } T _ { n } ( x )$$
sequences-and-series summation numerical-methods chebyshev-polynomials
sequences-and-series summation numerical-methods chebyshev-polynomials
edited Dec 31 '18 at 9:06
Jay
asked Dec 29 '18 at 0:33
JayJay
1,293818
1,293818
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Extend $T_j$ to negative $j$ by $T_{-j} = T_j$ so that $T_{|j|} = T_j$. And let $ breve { f } _ { m }= breve { g } _ { n }=0$ for $n,m<0$. Then,
$$begin{eqnarray}
sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n }T _ { | m - n | } ( x )& =& sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n }T _ { m - n } ( x )\ &=& sum _ { m = 0 } ^ { infty } sum _ { nle m} ^ { } breve { f } _ { m } breve { g } _ {m- n }T _ {n } ( x )quad (m-nmapsto n)\
&=&sum _ { m = 0 } ^ { infty } sum _ { nge -m} ^ { } breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )quad (nmapsto -n)\
&=&sum _ { m = 0 } ^ { infty } sum _ { nge 0} ^ { } breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )+sum _ { m = 0 } ^ { infty } sum _ { n=-m} ^ { -1} breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )\
&=&sum _ { m = 0 } ^ { infty } sum _ { nge 0} ^ { } breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )+sum _ { m = 0 } ^ { infty } sum _ { n=1} ^ { m} breve { f } _ { m } breve { g } _ {m-n }T _ {n } ( x )\&=&sum _ { m = 0 } ^ { infty } sum _ { nge 0} ^ { } breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )+sum _ { m = 0 } ^ { infty } sum _ { n=1} ^ { m} breve { f } _ { m } breve { g } _ {|n-m| }T _ {n } ( x ).end{eqnarray}$$ On the other hand,
$$
sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } T _ { m + n } ( x )=sum _ { m = 0 } ^ { infty } sum _ { nge m } breve { f } _ { m } breve { g } _ { n-m } T _ { n } ( x )=sum _ { m = 0 } ^ { infty } sum _ { n= m }^infty breve { f } _ { m } breve { g } _ { |n-m| } T _ { n } ( x )
.
$$ Gathering them together, we have
$$begin{eqnarray}
frac { 1 } { 2 } sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } left[ T _ { | m - n | } ( x ) + T _ { m + n } ( x ) right]&=&frac { 1 } { 2 }sum _ { m = 0 } ^ { infty } sum _ { n=0} ^ {infty } breve { f } _ { m } (breve { g } _ { |n-m| } +breve { g } _ {m+ n })T _ {n } ( x )\&&+frac { 1 } { 2 }sum_{m=0}^inftyleft(breve { f } _ { m }breve { g } _ {0 }T_m(x)-breve { f } _ { m }breve { g } _ {m }T_0(x)right).
end{eqnarray}$$
$endgroup$
$begingroup$
That seems to be what I got so I'm confident that it's just wrong in the textbooks. Thanks for taking the time to confirm!
$endgroup$
– Jay
Dec 31 '18 at 13:41
1
$begingroup$
I hope this will help :)
$endgroup$
– Song
Dec 31 '18 at 13:42
add a comment |
$begingroup$
I've taken another look and I'm pretty sure this must just be incorrect for two reasons:
(1) Trying to show directly:
If we start from $$ frac { 1 } { 2 } sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } left[ T _ { | m - n | } + T _ { m + n } right]$$
we can split the absolute value up and reaarange the terms to get
$$frac { 1 } { 2 } sum _ { m = 0 } ^ { infty }breve { f } _ { m }left[ sum_{n=0}^m breve{ g } _ { n } T _ { m - n }+ sum_{n=m+1}^m breve{ g } _ { n } T _ { n-m }+sum_{n=0}^infty breve { g } _ { n } T _ { m+n } right]$$
then we can reindex each sum in the square brackets according to the rules: $nto n-m$ for the first, $nto m-n$ for the second and $nto n+m$ for the third. Which results in:
$$ frac { 1 } { 2 } sum _ { m = 0 } ^ { infty }breve { f } _ { m }left[ sum_{n=m}^infty breve{g}_{n-m}T_n+sum_{n=0}^m breve{g}_{m-n}T_n+sum_{n=1}^infty breve{g}_{n+m}T_n right] $$
which I can force into the form given by writing this as:
$$ frac { 1 } { 2 } sum _ { m = 0 } ^ { infty }breve { f } _ { m }left[ sum_{n=0}^infty (breve{g}_{|n-m|}+breve{g}_{n+m})T_n +breve{g}_0 T_m-breve{g}_mT_0 right] $$
where the it only differs by those two terms.
(2) Check equality for $T_0$ terms
First let's look at the formula $$frac { 1 } { 2 } sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } left[ T _ { | m - n | } + T _ { m + n } right]$$
to get the terms involving $T_0$ consider
- Fixed $m>0$, we need $n=m$ whose terms are: $breve{f}_mbreve{g}_m (T_0)$
$m=0$, we need $n=m=0$ whose term is: $breve{f}_0breve{g}_0(T_0+T_0)=2breve{f}_0breve{g}_0T_0$
This is different for the formula $$frac { 1 } { 2 } sum _ { n = 0 } ^ { infty } sum _ { m = 0 } ^ { infty } breve { f } _ { m } left( breve { g } _ { | m - n | } + breve { g } _ { m + n } right) T _ { n } ( x )$$
since if we repeat the procedure we get:
- Fixed $m>0$, we need $n=0$ whose terms are: $breve{f}_m(breve{g}_m+breve{g}_m) T_0=2breve{f}_mbreve{g}_m T_0$
$m=0$, we need $n=m=0$ with term: $breve{f}_0(breve{g}_0+breve{g}_0)T_0=2breve{f}_0breve{g}_0T_0$
which would incidentally be fixed with the extra $-breve{g}_m T_0$ from the direct way above.
edit: (3) Another reason
Just from implementing in Mathematica with $f(x)=sin(x)$ and $g(x)=cos(x)$ then the one they give (labeled A) vs. the one I derived (labeled B):
This result is in two published books so I feel like I have made a mistake somewhere so if anyone spots anything please let me know.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055422%2fhow-has-this-chebyshev-expansion-been-reindexed%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Extend $T_j$ to negative $j$ by $T_{-j} = T_j$ so that $T_{|j|} = T_j$. And let $ breve { f } _ { m }= breve { g } _ { n }=0$ for $n,m<0$. Then,
$$begin{eqnarray}
sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n }T _ { | m - n | } ( x )& =& sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n }T _ { m - n } ( x )\ &=& sum _ { m = 0 } ^ { infty } sum _ { nle m} ^ { } breve { f } _ { m } breve { g } _ {m- n }T _ {n } ( x )quad (m-nmapsto n)\
&=&sum _ { m = 0 } ^ { infty } sum _ { nge -m} ^ { } breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )quad (nmapsto -n)\
&=&sum _ { m = 0 } ^ { infty } sum _ { nge 0} ^ { } breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )+sum _ { m = 0 } ^ { infty } sum _ { n=-m} ^ { -1} breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )\
&=&sum _ { m = 0 } ^ { infty } sum _ { nge 0} ^ { } breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )+sum _ { m = 0 } ^ { infty } sum _ { n=1} ^ { m} breve { f } _ { m } breve { g } _ {m-n }T _ {n } ( x )\&=&sum _ { m = 0 } ^ { infty } sum _ { nge 0} ^ { } breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )+sum _ { m = 0 } ^ { infty } sum _ { n=1} ^ { m} breve { f } _ { m } breve { g } _ {|n-m| }T _ {n } ( x ).end{eqnarray}$$ On the other hand,
$$
sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } T _ { m + n } ( x )=sum _ { m = 0 } ^ { infty } sum _ { nge m } breve { f } _ { m } breve { g } _ { n-m } T _ { n } ( x )=sum _ { m = 0 } ^ { infty } sum _ { n= m }^infty breve { f } _ { m } breve { g } _ { |n-m| } T _ { n } ( x )
.
$$ Gathering them together, we have
$$begin{eqnarray}
frac { 1 } { 2 } sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } left[ T _ { | m - n | } ( x ) + T _ { m + n } ( x ) right]&=&frac { 1 } { 2 }sum _ { m = 0 } ^ { infty } sum _ { n=0} ^ {infty } breve { f } _ { m } (breve { g } _ { |n-m| } +breve { g } _ {m+ n })T _ {n } ( x )\&&+frac { 1 } { 2 }sum_{m=0}^inftyleft(breve { f } _ { m }breve { g } _ {0 }T_m(x)-breve { f } _ { m }breve { g } _ {m }T_0(x)right).
end{eqnarray}$$
$endgroup$
$begingroup$
That seems to be what I got so I'm confident that it's just wrong in the textbooks. Thanks for taking the time to confirm!
$endgroup$
– Jay
Dec 31 '18 at 13:41
1
$begingroup$
I hope this will help :)
$endgroup$
– Song
Dec 31 '18 at 13:42
add a comment |
$begingroup$
Extend $T_j$ to negative $j$ by $T_{-j} = T_j$ so that $T_{|j|} = T_j$. And let $ breve { f } _ { m }= breve { g } _ { n }=0$ for $n,m<0$. Then,
$$begin{eqnarray}
sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n }T _ { | m - n | } ( x )& =& sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n }T _ { m - n } ( x )\ &=& sum _ { m = 0 } ^ { infty } sum _ { nle m} ^ { } breve { f } _ { m } breve { g } _ {m- n }T _ {n } ( x )quad (m-nmapsto n)\
&=&sum _ { m = 0 } ^ { infty } sum _ { nge -m} ^ { } breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )quad (nmapsto -n)\
&=&sum _ { m = 0 } ^ { infty } sum _ { nge 0} ^ { } breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )+sum _ { m = 0 } ^ { infty } sum _ { n=-m} ^ { -1} breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )\
&=&sum _ { m = 0 } ^ { infty } sum _ { nge 0} ^ { } breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )+sum _ { m = 0 } ^ { infty } sum _ { n=1} ^ { m} breve { f } _ { m } breve { g } _ {m-n }T _ {n } ( x )\&=&sum _ { m = 0 } ^ { infty } sum _ { nge 0} ^ { } breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )+sum _ { m = 0 } ^ { infty } sum _ { n=1} ^ { m} breve { f } _ { m } breve { g } _ {|n-m| }T _ {n } ( x ).end{eqnarray}$$ On the other hand,
$$
sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } T _ { m + n } ( x )=sum _ { m = 0 } ^ { infty } sum _ { nge m } breve { f } _ { m } breve { g } _ { n-m } T _ { n } ( x )=sum _ { m = 0 } ^ { infty } sum _ { n= m }^infty breve { f } _ { m } breve { g } _ { |n-m| } T _ { n } ( x )
.
$$ Gathering them together, we have
$$begin{eqnarray}
frac { 1 } { 2 } sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } left[ T _ { | m - n | } ( x ) + T _ { m + n } ( x ) right]&=&frac { 1 } { 2 }sum _ { m = 0 } ^ { infty } sum _ { n=0} ^ {infty } breve { f } _ { m } (breve { g } _ { |n-m| } +breve { g } _ {m+ n })T _ {n } ( x )\&&+frac { 1 } { 2 }sum_{m=0}^inftyleft(breve { f } _ { m }breve { g } _ {0 }T_m(x)-breve { f } _ { m }breve { g } _ {m }T_0(x)right).
end{eqnarray}$$
$endgroup$
$begingroup$
That seems to be what I got so I'm confident that it's just wrong in the textbooks. Thanks for taking the time to confirm!
$endgroup$
– Jay
Dec 31 '18 at 13:41
1
$begingroup$
I hope this will help :)
$endgroup$
– Song
Dec 31 '18 at 13:42
add a comment |
$begingroup$
Extend $T_j$ to negative $j$ by $T_{-j} = T_j$ so that $T_{|j|} = T_j$. And let $ breve { f } _ { m }= breve { g } _ { n }=0$ for $n,m<0$. Then,
$$begin{eqnarray}
sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n }T _ { | m - n | } ( x )& =& sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n }T _ { m - n } ( x )\ &=& sum _ { m = 0 } ^ { infty } sum _ { nle m} ^ { } breve { f } _ { m } breve { g } _ {m- n }T _ {n } ( x )quad (m-nmapsto n)\
&=&sum _ { m = 0 } ^ { infty } sum _ { nge -m} ^ { } breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )quad (nmapsto -n)\
&=&sum _ { m = 0 } ^ { infty } sum _ { nge 0} ^ { } breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )+sum _ { m = 0 } ^ { infty } sum _ { n=-m} ^ { -1} breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )\
&=&sum _ { m = 0 } ^ { infty } sum _ { nge 0} ^ { } breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )+sum _ { m = 0 } ^ { infty } sum _ { n=1} ^ { m} breve { f } _ { m } breve { g } _ {m-n }T _ {n } ( x )\&=&sum _ { m = 0 } ^ { infty } sum _ { nge 0} ^ { } breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )+sum _ { m = 0 } ^ { infty } sum _ { n=1} ^ { m} breve { f } _ { m } breve { g } _ {|n-m| }T _ {n } ( x ).end{eqnarray}$$ On the other hand,
$$
sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } T _ { m + n } ( x )=sum _ { m = 0 } ^ { infty } sum _ { nge m } breve { f } _ { m } breve { g } _ { n-m } T _ { n } ( x )=sum _ { m = 0 } ^ { infty } sum _ { n= m }^infty breve { f } _ { m } breve { g } _ { |n-m| } T _ { n } ( x )
.
$$ Gathering them together, we have
$$begin{eqnarray}
frac { 1 } { 2 } sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } left[ T _ { | m - n | } ( x ) + T _ { m + n } ( x ) right]&=&frac { 1 } { 2 }sum _ { m = 0 } ^ { infty } sum _ { n=0} ^ {infty } breve { f } _ { m } (breve { g } _ { |n-m| } +breve { g } _ {m+ n })T _ {n } ( x )\&&+frac { 1 } { 2 }sum_{m=0}^inftyleft(breve { f } _ { m }breve { g } _ {0 }T_m(x)-breve { f } _ { m }breve { g } _ {m }T_0(x)right).
end{eqnarray}$$
$endgroup$
Extend $T_j$ to negative $j$ by $T_{-j} = T_j$ so that $T_{|j|} = T_j$. And let $ breve { f } _ { m }= breve { g } _ { n }=0$ for $n,m<0$. Then,
$$begin{eqnarray}
sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n }T _ { | m - n | } ( x )& =& sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n }T _ { m - n } ( x )\ &=& sum _ { m = 0 } ^ { infty } sum _ { nle m} ^ { } breve { f } _ { m } breve { g } _ {m- n }T _ {n } ( x )quad (m-nmapsto n)\
&=&sum _ { m = 0 } ^ { infty } sum _ { nge -m} ^ { } breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )quad (nmapsto -n)\
&=&sum _ { m = 0 } ^ { infty } sum _ { nge 0} ^ { } breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )+sum _ { m = 0 } ^ { infty } sum _ { n=-m} ^ { -1} breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )\
&=&sum _ { m = 0 } ^ { infty } sum _ { nge 0} ^ { } breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )+sum _ { m = 0 } ^ { infty } sum _ { n=1} ^ { m} breve { f } _ { m } breve { g } _ {m-n }T _ {n } ( x )\&=&sum _ { m = 0 } ^ { infty } sum _ { nge 0} ^ { } breve { f } _ { m } breve { g } _ {m+ n }T _ {n } ( x )+sum _ { m = 0 } ^ { infty } sum _ { n=1} ^ { m} breve { f } _ { m } breve { g } _ {|n-m| }T _ {n } ( x ).end{eqnarray}$$ On the other hand,
$$
sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } T _ { m + n } ( x )=sum _ { m = 0 } ^ { infty } sum _ { nge m } breve { f } _ { m } breve { g } _ { n-m } T _ { n } ( x )=sum _ { m = 0 } ^ { infty } sum _ { n= m }^infty breve { f } _ { m } breve { g } _ { |n-m| } T _ { n } ( x )
.
$$ Gathering them together, we have
$$begin{eqnarray}
frac { 1 } { 2 } sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } left[ T _ { | m - n | } ( x ) + T _ { m + n } ( x ) right]&=&frac { 1 } { 2 }sum _ { m = 0 } ^ { infty } sum _ { n=0} ^ {infty } breve { f } _ { m } (breve { g } _ { |n-m| } +breve { g } _ {m+ n })T _ {n } ( x )\&&+frac { 1 } { 2 }sum_{m=0}^inftyleft(breve { f } _ { m }breve { g } _ {0 }T_m(x)-breve { f } _ { m }breve { g } _ {m }T_0(x)right).
end{eqnarray}$$
edited Dec 31 '18 at 13:49
answered Dec 31 '18 at 13:36
SongSong
18.3k21549
18.3k21549
$begingroup$
That seems to be what I got so I'm confident that it's just wrong in the textbooks. Thanks for taking the time to confirm!
$endgroup$
– Jay
Dec 31 '18 at 13:41
1
$begingroup$
I hope this will help :)
$endgroup$
– Song
Dec 31 '18 at 13:42
add a comment |
$begingroup$
That seems to be what I got so I'm confident that it's just wrong in the textbooks. Thanks for taking the time to confirm!
$endgroup$
– Jay
Dec 31 '18 at 13:41
1
$begingroup$
I hope this will help :)
$endgroup$
– Song
Dec 31 '18 at 13:42
$begingroup$
That seems to be what I got so I'm confident that it's just wrong in the textbooks. Thanks for taking the time to confirm!
$endgroup$
– Jay
Dec 31 '18 at 13:41
$begingroup$
That seems to be what I got so I'm confident that it's just wrong in the textbooks. Thanks for taking the time to confirm!
$endgroup$
– Jay
Dec 31 '18 at 13:41
1
1
$begingroup$
I hope this will help :)
$endgroup$
– Song
Dec 31 '18 at 13:42
$begingroup$
I hope this will help :)
$endgroup$
– Song
Dec 31 '18 at 13:42
add a comment |
$begingroup$
I've taken another look and I'm pretty sure this must just be incorrect for two reasons:
(1) Trying to show directly:
If we start from $$ frac { 1 } { 2 } sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } left[ T _ { | m - n | } + T _ { m + n } right]$$
we can split the absolute value up and reaarange the terms to get
$$frac { 1 } { 2 } sum _ { m = 0 } ^ { infty }breve { f } _ { m }left[ sum_{n=0}^m breve{ g } _ { n } T _ { m - n }+ sum_{n=m+1}^m breve{ g } _ { n } T _ { n-m }+sum_{n=0}^infty breve { g } _ { n } T _ { m+n } right]$$
then we can reindex each sum in the square brackets according to the rules: $nto n-m$ for the first, $nto m-n$ for the second and $nto n+m$ for the third. Which results in:
$$ frac { 1 } { 2 } sum _ { m = 0 } ^ { infty }breve { f } _ { m }left[ sum_{n=m}^infty breve{g}_{n-m}T_n+sum_{n=0}^m breve{g}_{m-n}T_n+sum_{n=1}^infty breve{g}_{n+m}T_n right] $$
which I can force into the form given by writing this as:
$$ frac { 1 } { 2 } sum _ { m = 0 } ^ { infty }breve { f } _ { m }left[ sum_{n=0}^infty (breve{g}_{|n-m|}+breve{g}_{n+m})T_n +breve{g}_0 T_m-breve{g}_mT_0 right] $$
where the it only differs by those two terms.
(2) Check equality for $T_0$ terms
First let's look at the formula $$frac { 1 } { 2 } sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } left[ T _ { | m - n | } + T _ { m + n } right]$$
to get the terms involving $T_0$ consider
- Fixed $m>0$, we need $n=m$ whose terms are: $breve{f}_mbreve{g}_m (T_0)$
$m=0$, we need $n=m=0$ whose term is: $breve{f}_0breve{g}_0(T_0+T_0)=2breve{f}_0breve{g}_0T_0$
This is different for the formula $$frac { 1 } { 2 } sum _ { n = 0 } ^ { infty } sum _ { m = 0 } ^ { infty } breve { f } _ { m } left( breve { g } _ { | m - n | } + breve { g } _ { m + n } right) T _ { n } ( x )$$
since if we repeat the procedure we get:
- Fixed $m>0$, we need $n=0$ whose terms are: $breve{f}_m(breve{g}_m+breve{g}_m) T_0=2breve{f}_mbreve{g}_m T_0$
$m=0$, we need $n=m=0$ with term: $breve{f}_0(breve{g}_0+breve{g}_0)T_0=2breve{f}_0breve{g}_0T_0$
which would incidentally be fixed with the extra $-breve{g}_m T_0$ from the direct way above.
edit: (3) Another reason
Just from implementing in Mathematica with $f(x)=sin(x)$ and $g(x)=cos(x)$ then the one they give (labeled A) vs. the one I derived (labeled B):
This result is in two published books so I feel like I have made a mistake somewhere so if anyone spots anything please let me know.
$endgroup$
add a comment |
$begingroup$
I've taken another look and I'm pretty sure this must just be incorrect for two reasons:
(1) Trying to show directly:
If we start from $$ frac { 1 } { 2 } sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } left[ T _ { | m - n | } + T _ { m + n } right]$$
we can split the absolute value up and reaarange the terms to get
$$frac { 1 } { 2 } sum _ { m = 0 } ^ { infty }breve { f } _ { m }left[ sum_{n=0}^m breve{ g } _ { n } T _ { m - n }+ sum_{n=m+1}^m breve{ g } _ { n } T _ { n-m }+sum_{n=0}^infty breve { g } _ { n } T _ { m+n } right]$$
then we can reindex each sum in the square brackets according to the rules: $nto n-m$ for the first, $nto m-n$ for the second and $nto n+m$ for the third. Which results in:
$$ frac { 1 } { 2 } sum _ { m = 0 } ^ { infty }breve { f } _ { m }left[ sum_{n=m}^infty breve{g}_{n-m}T_n+sum_{n=0}^m breve{g}_{m-n}T_n+sum_{n=1}^infty breve{g}_{n+m}T_n right] $$
which I can force into the form given by writing this as:
$$ frac { 1 } { 2 } sum _ { m = 0 } ^ { infty }breve { f } _ { m }left[ sum_{n=0}^infty (breve{g}_{|n-m|}+breve{g}_{n+m})T_n +breve{g}_0 T_m-breve{g}_mT_0 right] $$
where the it only differs by those two terms.
(2) Check equality for $T_0$ terms
First let's look at the formula $$frac { 1 } { 2 } sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } left[ T _ { | m - n | } + T _ { m + n } right]$$
to get the terms involving $T_0$ consider
- Fixed $m>0$, we need $n=m$ whose terms are: $breve{f}_mbreve{g}_m (T_0)$
$m=0$, we need $n=m=0$ whose term is: $breve{f}_0breve{g}_0(T_0+T_0)=2breve{f}_0breve{g}_0T_0$
This is different for the formula $$frac { 1 } { 2 } sum _ { n = 0 } ^ { infty } sum _ { m = 0 } ^ { infty } breve { f } _ { m } left( breve { g } _ { | m - n | } + breve { g } _ { m + n } right) T _ { n } ( x )$$
since if we repeat the procedure we get:
- Fixed $m>0$, we need $n=0$ whose terms are: $breve{f}_m(breve{g}_m+breve{g}_m) T_0=2breve{f}_mbreve{g}_m T_0$
$m=0$, we need $n=m=0$ with term: $breve{f}_0(breve{g}_0+breve{g}_0)T_0=2breve{f}_0breve{g}_0T_0$
which would incidentally be fixed with the extra $-breve{g}_m T_0$ from the direct way above.
edit: (3) Another reason
Just from implementing in Mathematica with $f(x)=sin(x)$ and $g(x)=cos(x)$ then the one they give (labeled A) vs. the one I derived (labeled B):
This result is in two published books so I feel like I have made a mistake somewhere so if anyone spots anything please let me know.
$endgroup$
add a comment |
$begingroup$
I've taken another look and I'm pretty sure this must just be incorrect for two reasons:
(1) Trying to show directly:
If we start from $$ frac { 1 } { 2 } sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } left[ T _ { | m - n | } + T _ { m + n } right]$$
we can split the absolute value up and reaarange the terms to get
$$frac { 1 } { 2 } sum _ { m = 0 } ^ { infty }breve { f } _ { m }left[ sum_{n=0}^m breve{ g } _ { n } T _ { m - n }+ sum_{n=m+1}^m breve{ g } _ { n } T _ { n-m }+sum_{n=0}^infty breve { g } _ { n } T _ { m+n } right]$$
then we can reindex each sum in the square brackets according to the rules: $nto n-m$ for the first, $nto m-n$ for the second and $nto n+m$ for the third. Which results in:
$$ frac { 1 } { 2 } sum _ { m = 0 } ^ { infty }breve { f } _ { m }left[ sum_{n=m}^infty breve{g}_{n-m}T_n+sum_{n=0}^m breve{g}_{m-n}T_n+sum_{n=1}^infty breve{g}_{n+m}T_n right] $$
which I can force into the form given by writing this as:
$$ frac { 1 } { 2 } sum _ { m = 0 } ^ { infty }breve { f } _ { m }left[ sum_{n=0}^infty (breve{g}_{|n-m|}+breve{g}_{n+m})T_n +breve{g}_0 T_m-breve{g}_mT_0 right] $$
where the it only differs by those two terms.
(2) Check equality for $T_0$ terms
First let's look at the formula $$frac { 1 } { 2 } sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } left[ T _ { | m - n | } + T _ { m + n } right]$$
to get the terms involving $T_0$ consider
- Fixed $m>0$, we need $n=m$ whose terms are: $breve{f}_mbreve{g}_m (T_0)$
$m=0$, we need $n=m=0$ whose term is: $breve{f}_0breve{g}_0(T_0+T_0)=2breve{f}_0breve{g}_0T_0$
This is different for the formula $$frac { 1 } { 2 } sum _ { n = 0 } ^ { infty } sum _ { m = 0 } ^ { infty } breve { f } _ { m } left( breve { g } _ { | m - n | } + breve { g } _ { m + n } right) T _ { n } ( x )$$
since if we repeat the procedure we get:
- Fixed $m>0$, we need $n=0$ whose terms are: $breve{f}_m(breve{g}_m+breve{g}_m) T_0=2breve{f}_mbreve{g}_m T_0$
$m=0$, we need $n=m=0$ with term: $breve{f}_0(breve{g}_0+breve{g}_0)T_0=2breve{f}_0breve{g}_0T_0$
which would incidentally be fixed with the extra $-breve{g}_m T_0$ from the direct way above.
edit: (3) Another reason
Just from implementing in Mathematica with $f(x)=sin(x)$ and $g(x)=cos(x)$ then the one they give (labeled A) vs. the one I derived (labeled B):
This result is in two published books so I feel like I have made a mistake somewhere so if anyone spots anything please let me know.
$endgroup$
I've taken another look and I'm pretty sure this must just be incorrect for two reasons:
(1) Trying to show directly:
If we start from $$ frac { 1 } { 2 } sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } left[ T _ { | m - n | } + T _ { m + n } right]$$
we can split the absolute value up and reaarange the terms to get
$$frac { 1 } { 2 } sum _ { m = 0 } ^ { infty }breve { f } _ { m }left[ sum_{n=0}^m breve{ g } _ { n } T _ { m - n }+ sum_{n=m+1}^m breve{ g } _ { n } T _ { n-m }+sum_{n=0}^infty breve { g } _ { n } T _ { m+n } right]$$
then we can reindex each sum in the square brackets according to the rules: $nto n-m$ for the first, $nto m-n$ for the second and $nto n+m$ for the third. Which results in:
$$ frac { 1 } { 2 } sum _ { m = 0 } ^ { infty }breve { f } _ { m }left[ sum_{n=m}^infty breve{g}_{n-m}T_n+sum_{n=0}^m breve{g}_{m-n}T_n+sum_{n=1}^infty breve{g}_{n+m}T_n right] $$
which I can force into the form given by writing this as:
$$ frac { 1 } { 2 } sum _ { m = 0 } ^ { infty }breve { f } _ { m }left[ sum_{n=0}^infty (breve{g}_{|n-m|}+breve{g}_{n+m})T_n +breve{g}_0 T_m-breve{g}_mT_0 right] $$
where the it only differs by those two terms.
(2) Check equality for $T_0$ terms
First let's look at the formula $$frac { 1 } { 2 } sum _ { m = 0 } ^ { infty } sum _ { n = 0 } ^ { infty } breve { f } _ { m } breve { g } _ { n } left[ T _ { | m - n | } + T _ { m + n } right]$$
to get the terms involving $T_0$ consider
- Fixed $m>0$, we need $n=m$ whose terms are: $breve{f}_mbreve{g}_m (T_0)$
$m=0$, we need $n=m=0$ whose term is: $breve{f}_0breve{g}_0(T_0+T_0)=2breve{f}_0breve{g}_0T_0$
This is different for the formula $$frac { 1 } { 2 } sum _ { n = 0 } ^ { infty } sum _ { m = 0 } ^ { infty } breve { f } _ { m } left( breve { g } _ { | m - n | } + breve { g } _ { m + n } right) T _ { n } ( x )$$
since if we repeat the procedure we get:
- Fixed $m>0$, we need $n=0$ whose terms are: $breve{f}_m(breve{g}_m+breve{g}_m) T_0=2breve{f}_mbreve{g}_m T_0$
$m=0$, we need $n=m=0$ with term: $breve{f}_0(breve{g}_0+breve{g}_0)T_0=2breve{f}_0breve{g}_0T_0$
which would incidentally be fixed with the extra $-breve{g}_m T_0$ from the direct way above.
edit: (3) Another reason
Just from implementing in Mathematica with $f(x)=sin(x)$ and $g(x)=cos(x)$ then the one they give (labeled A) vs. the one I derived (labeled B):
This result is in two published books so I feel like I have made a mistake somewhere so if anyone spots anything please let me know.
edited Dec 31 '18 at 13:38
answered Dec 31 '18 at 1:05
JayJay
1,293818
1,293818
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055422%2fhow-has-this-chebyshev-expansion-been-reindexed%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown