Evaluation of the integral $int{frac{x+sin{x}}{1+cos{x}}mathrm{d}x}$ by parts
up vote
4
down vote
favorite
I have to evaluate the following integral by parts: $$int {dfrac{x+sin{x}}{1+cos{x}}}mathrm{d}x $$
So I tried to put:
$ u = x + sin{x}$ $~qquadrightarrow quad$ $mathrm{d}u=left(1+cos{x}right) mathrm{d}x$
$mathrm{d}v = dfrac{mathrm{d}x}{1+cos(x)}$ $quad rightarrow quad$ $v = int{dfrac{mathrm{d}x}{1+cos{x}}}$
But there is an extra integral to do ( the $v$ function) I evaluated it by sibstitution, and I get $v = tan{dfrac{x}{2}}$, Now
$$int {dfrac{x+sin(x)}{1+cos(x)}}mathrm{d}x = (x+sin{x}), tan{dfrac{x}{2}}-x +C$$
My question: is it possible to evaluate this integral entirely by parts (without using any substitution) ?
I appreciate any ideas
integration trigonometric-integrals
add a comment |
up vote
4
down vote
favorite
I have to evaluate the following integral by parts: $$int {dfrac{x+sin{x}}{1+cos{x}}}mathrm{d}x $$
So I tried to put:
$ u = x + sin{x}$ $~qquadrightarrow quad$ $mathrm{d}u=left(1+cos{x}right) mathrm{d}x$
$mathrm{d}v = dfrac{mathrm{d}x}{1+cos(x)}$ $quad rightarrow quad$ $v = int{dfrac{mathrm{d}x}{1+cos{x}}}$
But there is an extra integral to do ( the $v$ function) I evaluated it by sibstitution, and I get $v = tan{dfrac{x}{2}}$, Now
$$int {dfrac{x+sin(x)}{1+cos(x)}}mathrm{d}x = (x+sin{x}), tan{dfrac{x}{2}}-x +C$$
My question: is it possible to evaluate this integral entirely by parts (without using any substitution) ?
I appreciate any ideas
integration trigonometric-integrals
add a comment |
up vote
4
down vote
favorite
up vote
4
down vote
favorite
I have to evaluate the following integral by parts: $$int {dfrac{x+sin{x}}{1+cos{x}}}mathrm{d}x $$
So I tried to put:
$ u = x + sin{x}$ $~qquadrightarrow quad$ $mathrm{d}u=left(1+cos{x}right) mathrm{d}x$
$mathrm{d}v = dfrac{mathrm{d}x}{1+cos(x)}$ $quad rightarrow quad$ $v = int{dfrac{mathrm{d}x}{1+cos{x}}}$
But there is an extra integral to do ( the $v$ function) I evaluated it by sibstitution, and I get $v = tan{dfrac{x}{2}}$, Now
$$int {dfrac{x+sin(x)}{1+cos(x)}}mathrm{d}x = (x+sin{x}), tan{dfrac{x}{2}}-x +C$$
My question: is it possible to evaluate this integral entirely by parts (without using any substitution) ?
I appreciate any ideas
integration trigonometric-integrals
I have to evaluate the following integral by parts: $$int {dfrac{x+sin{x}}{1+cos{x}}}mathrm{d}x $$
So I tried to put:
$ u = x + sin{x}$ $~qquadrightarrow quad$ $mathrm{d}u=left(1+cos{x}right) mathrm{d}x$
$mathrm{d}v = dfrac{mathrm{d}x}{1+cos(x)}$ $quad rightarrow quad$ $v = int{dfrac{mathrm{d}x}{1+cos{x}}}$
But there is an extra integral to do ( the $v$ function) I evaluated it by sibstitution, and I get $v = tan{dfrac{x}{2}}$, Now
$$int {dfrac{x+sin(x)}{1+cos(x)}}mathrm{d}x = (x+sin{x}), tan{dfrac{x}{2}}-x +C$$
My question: is it possible to evaluate this integral entirely by parts (without using any substitution) ?
I appreciate any ideas
integration trigonometric-integrals
integration trigonometric-integrals
edited Nov 24 at 6:19
Martin Sleziak
44.5k7115268
44.5k7115268
asked Apr 8 '16 at 23:24
Navaro
474212
474212
add a comment |
add a comment |
4 Answers
4
active
oldest
votes
up vote
3
down vote
$int dfrac{x + sin x}{1+cos x}dx\
int dfrac{x + 2 sin frac{x}{2} cos frac{x}{2}}{2cos^2 frac{x}{2}} dx\
int frac{1}{2}xsec^2frac{x}{2} + tan frac{x}{2} dx\
int frac{1}{2}xsec^2frac{x}{2}dx + inttan frac{x}{2} dx$
Now we do integration by parts on the $1^{st}$ integral. we won't evaluate the $2^{nd}$ one quite yet.
$u = x, dv = sec^2 frac{x}{2} dx\ du = dx, v = 2 tan frac{x}{2}$
$xtanfrac{x}{2} - int tanfrac{x}{2}+inttanfrac{x}{2} \xtanfrac{x}{2} + C$
add a comment |
up vote
3
down vote
You can use the formula:
$$intfrac{f(x)+f'(x)sin x}{1+cos x}dx=frac{f(x)sin x}{1+cos x}+C$$
Because: $$(frac{sin x}{1+cos x})'=frac{1}{1+cos x}$$
then:$$intfrac{f(x)+f'(x)sin x}{1+cos x}dx=int f(x)d(frac{sin x}{1+cos x})+(frac{sin x}{1+cos x})df(x)=int d(frac{f(x)sin x}{1+cos x})=frac{f(x)sin x}{1+cos x}+C$$
Example1:$$int e^x frac{1+sin x}{1+cos x}dx=frac{e^xsin x}{1+cos x}+C$$
Example2:$$int frac{ln x+frac{sin x}{x}}{1+cos x}dx=frac{ln xsin x}{1+cos x}+C$$
add a comment |
up vote
1
down vote
You could use $displaystyle v=intfrac{1}{1+cos x}dx=intfrac{1-cos x}{1-cos^2 x} dx=intfrac{1-cos x}{sin^2 x} dx=int(csc^2 x-csc xcot x) dx$
$displaystylehspace{1.05in}=-cot x+csc x=frac{1-cos x}{sin x}=frac{sin x}{1+cos x}$ $;;;$(taking $C=0$)
add a comment |
up vote
1
down vote
Write the integrand as
$${x+sin xover1+cos x}={(x+sin x)(1-cos x)over1-cos^2x}=(x+sin x)(1-cos x)csc^2x$$
Now let $u=(x+sin x)(1-cos x)$ and $dv=csc^2x,dx$, for which $v=-cot x$. On noting that
$$du=(1+cos x)(1-cos x)+(x+sin x)(sin x)=xsin x+2sin^2x$$
integration by parts now gives
$$int{x+sin xover1+cos x}dx=(x+sin x)(1-cos x)(-cot x)+int (xcos x+2sin xcos x)dx$$
The integral $int xcos x,dx$ is easily done by parts. The integral $intsin xcos x,dx$ can also, if you like, be done by parts: Letting $u=sin x, dv=cos x,dx$, we get
$$I=intsin xcos x,dx=sin^2x-intcos xsin x,dx=sin^2x-Iimplies I={1over2}sin^2x+C$$
thank you , for : $int{2cos{x}sin{x},mathrm{d}x }=int{sin{2x},mathrm{d}x } = -dfrac{cos{2x}}{2} + C$
– Navaro
Apr 9 '16 at 0:20
add a comment |
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
$int dfrac{x + sin x}{1+cos x}dx\
int dfrac{x + 2 sin frac{x}{2} cos frac{x}{2}}{2cos^2 frac{x}{2}} dx\
int frac{1}{2}xsec^2frac{x}{2} + tan frac{x}{2} dx\
int frac{1}{2}xsec^2frac{x}{2}dx + inttan frac{x}{2} dx$
Now we do integration by parts on the $1^{st}$ integral. we won't evaluate the $2^{nd}$ one quite yet.
$u = x, dv = sec^2 frac{x}{2} dx\ du = dx, v = 2 tan frac{x}{2}$
$xtanfrac{x}{2} - int tanfrac{x}{2}+inttanfrac{x}{2} \xtanfrac{x}{2} + C$
add a comment |
up vote
3
down vote
$int dfrac{x + sin x}{1+cos x}dx\
int dfrac{x + 2 sin frac{x}{2} cos frac{x}{2}}{2cos^2 frac{x}{2}} dx\
int frac{1}{2}xsec^2frac{x}{2} + tan frac{x}{2} dx\
int frac{1}{2}xsec^2frac{x}{2}dx + inttan frac{x}{2} dx$
Now we do integration by parts on the $1^{st}$ integral. we won't evaluate the $2^{nd}$ one quite yet.
$u = x, dv = sec^2 frac{x}{2} dx\ du = dx, v = 2 tan frac{x}{2}$
$xtanfrac{x}{2} - int tanfrac{x}{2}+inttanfrac{x}{2} \xtanfrac{x}{2} + C$
add a comment |
up vote
3
down vote
up vote
3
down vote
$int dfrac{x + sin x}{1+cos x}dx\
int dfrac{x + 2 sin frac{x}{2} cos frac{x}{2}}{2cos^2 frac{x}{2}} dx\
int frac{1}{2}xsec^2frac{x}{2} + tan frac{x}{2} dx\
int frac{1}{2}xsec^2frac{x}{2}dx + inttan frac{x}{2} dx$
Now we do integration by parts on the $1^{st}$ integral. we won't evaluate the $2^{nd}$ one quite yet.
$u = x, dv = sec^2 frac{x}{2} dx\ du = dx, v = 2 tan frac{x}{2}$
$xtanfrac{x}{2} - int tanfrac{x}{2}+inttanfrac{x}{2} \xtanfrac{x}{2} + C$
$int dfrac{x + sin x}{1+cos x}dx\
int dfrac{x + 2 sin frac{x}{2} cos frac{x}{2}}{2cos^2 frac{x}{2}} dx\
int frac{1}{2}xsec^2frac{x}{2} + tan frac{x}{2} dx\
int frac{1}{2}xsec^2frac{x}{2}dx + inttan frac{x}{2} dx$
Now we do integration by parts on the $1^{st}$ integral. we won't evaluate the $2^{nd}$ one quite yet.
$u = x, dv = sec^2 frac{x}{2} dx\ du = dx, v = 2 tan frac{x}{2}$
$xtanfrac{x}{2} - int tanfrac{x}{2}+inttanfrac{x}{2} \xtanfrac{x}{2} + C$
edited Apr 9 '16 at 0:11
user84413
22.8k11848
22.8k11848
answered Apr 8 '16 at 23:56
Doug M
43k31753
43k31753
add a comment |
add a comment |
up vote
3
down vote
You can use the formula:
$$intfrac{f(x)+f'(x)sin x}{1+cos x}dx=frac{f(x)sin x}{1+cos x}+C$$
Because: $$(frac{sin x}{1+cos x})'=frac{1}{1+cos x}$$
then:$$intfrac{f(x)+f'(x)sin x}{1+cos x}dx=int f(x)d(frac{sin x}{1+cos x})+(frac{sin x}{1+cos x})df(x)=int d(frac{f(x)sin x}{1+cos x})=frac{f(x)sin x}{1+cos x}+C$$
Example1:$$int e^x frac{1+sin x}{1+cos x}dx=frac{e^xsin x}{1+cos x}+C$$
Example2:$$int frac{ln x+frac{sin x}{x}}{1+cos x}dx=frac{ln xsin x}{1+cos x}+C$$
add a comment |
up vote
3
down vote
You can use the formula:
$$intfrac{f(x)+f'(x)sin x}{1+cos x}dx=frac{f(x)sin x}{1+cos x}+C$$
Because: $$(frac{sin x}{1+cos x})'=frac{1}{1+cos x}$$
then:$$intfrac{f(x)+f'(x)sin x}{1+cos x}dx=int f(x)d(frac{sin x}{1+cos x})+(frac{sin x}{1+cos x})df(x)=int d(frac{f(x)sin x}{1+cos x})=frac{f(x)sin x}{1+cos x}+C$$
Example1:$$int e^x frac{1+sin x}{1+cos x}dx=frac{e^xsin x}{1+cos x}+C$$
Example2:$$int frac{ln x+frac{sin x}{x}}{1+cos x}dx=frac{ln xsin x}{1+cos x}+C$$
add a comment |
up vote
3
down vote
up vote
3
down vote
You can use the formula:
$$intfrac{f(x)+f'(x)sin x}{1+cos x}dx=frac{f(x)sin x}{1+cos x}+C$$
Because: $$(frac{sin x}{1+cos x})'=frac{1}{1+cos x}$$
then:$$intfrac{f(x)+f'(x)sin x}{1+cos x}dx=int f(x)d(frac{sin x}{1+cos x})+(frac{sin x}{1+cos x})df(x)=int d(frac{f(x)sin x}{1+cos x})=frac{f(x)sin x}{1+cos x}+C$$
Example1:$$int e^x frac{1+sin x}{1+cos x}dx=frac{e^xsin x}{1+cos x}+C$$
Example2:$$int frac{ln x+frac{sin x}{x}}{1+cos x}dx=frac{ln xsin x}{1+cos x}+C$$
You can use the formula:
$$intfrac{f(x)+f'(x)sin x}{1+cos x}dx=frac{f(x)sin x}{1+cos x}+C$$
Because: $$(frac{sin x}{1+cos x})'=frac{1}{1+cos x}$$
then:$$intfrac{f(x)+f'(x)sin x}{1+cos x}dx=int f(x)d(frac{sin x}{1+cos x})+(frac{sin x}{1+cos x})df(x)=int d(frac{f(x)sin x}{1+cos x})=frac{f(x)sin x}{1+cos x}+C$$
Example1:$$int e^x frac{1+sin x}{1+cos x}dx=frac{e^xsin x}{1+cos x}+C$$
Example2:$$int frac{ln x+frac{sin x}{x}}{1+cos x}dx=frac{ln xsin x}{1+cos x}+C$$
answered Jan 21 at 9:03
JamesJ
691111
691111
add a comment |
add a comment |
up vote
1
down vote
You could use $displaystyle v=intfrac{1}{1+cos x}dx=intfrac{1-cos x}{1-cos^2 x} dx=intfrac{1-cos x}{sin^2 x} dx=int(csc^2 x-csc xcot x) dx$
$displaystylehspace{1.05in}=-cot x+csc x=frac{1-cos x}{sin x}=frac{sin x}{1+cos x}$ $;;;$(taking $C=0$)
add a comment |
up vote
1
down vote
You could use $displaystyle v=intfrac{1}{1+cos x}dx=intfrac{1-cos x}{1-cos^2 x} dx=intfrac{1-cos x}{sin^2 x} dx=int(csc^2 x-csc xcot x) dx$
$displaystylehspace{1.05in}=-cot x+csc x=frac{1-cos x}{sin x}=frac{sin x}{1+cos x}$ $;;;$(taking $C=0$)
add a comment |
up vote
1
down vote
up vote
1
down vote
You could use $displaystyle v=intfrac{1}{1+cos x}dx=intfrac{1-cos x}{1-cos^2 x} dx=intfrac{1-cos x}{sin^2 x} dx=int(csc^2 x-csc xcot x) dx$
$displaystylehspace{1.05in}=-cot x+csc x=frac{1-cos x}{sin x}=frac{sin x}{1+cos x}$ $;;;$(taking $C=0$)
You could use $displaystyle v=intfrac{1}{1+cos x}dx=intfrac{1-cos x}{1-cos^2 x} dx=intfrac{1-cos x}{sin^2 x} dx=int(csc^2 x-csc xcot x) dx$
$displaystylehspace{1.05in}=-cot x+csc x=frac{1-cos x}{sin x}=frac{sin x}{1+cos x}$ $;;;$(taking $C=0$)
answered Apr 8 '16 at 23:54
user84413
22.8k11848
22.8k11848
add a comment |
add a comment |
up vote
1
down vote
Write the integrand as
$${x+sin xover1+cos x}={(x+sin x)(1-cos x)over1-cos^2x}=(x+sin x)(1-cos x)csc^2x$$
Now let $u=(x+sin x)(1-cos x)$ and $dv=csc^2x,dx$, for which $v=-cot x$. On noting that
$$du=(1+cos x)(1-cos x)+(x+sin x)(sin x)=xsin x+2sin^2x$$
integration by parts now gives
$$int{x+sin xover1+cos x}dx=(x+sin x)(1-cos x)(-cot x)+int (xcos x+2sin xcos x)dx$$
The integral $int xcos x,dx$ is easily done by parts. The integral $intsin xcos x,dx$ can also, if you like, be done by parts: Letting $u=sin x, dv=cos x,dx$, we get
$$I=intsin xcos x,dx=sin^2x-intcos xsin x,dx=sin^2x-Iimplies I={1over2}sin^2x+C$$
thank you , for : $int{2cos{x}sin{x},mathrm{d}x }=int{sin{2x},mathrm{d}x } = -dfrac{cos{2x}}{2} + C$
– Navaro
Apr 9 '16 at 0:20
add a comment |
up vote
1
down vote
Write the integrand as
$${x+sin xover1+cos x}={(x+sin x)(1-cos x)over1-cos^2x}=(x+sin x)(1-cos x)csc^2x$$
Now let $u=(x+sin x)(1-cos x)$ and $dv=csc^2x,dx$, for which $v=-cot x$. On noting that
$$du=(1+cos x)(1-cos x)+(x+sin x)(sin x)=xsin x+2sin^2x$$
integration by parts now gives
$$int{x+sin xover1+cos x}dx=(x+sin x)(1-cos x)(-cot x)+int (xcos x+2sin xcos x)dx$$
The integral $int xcos x,dx$ is easily done by parts. The integral $intsin xcos x,dx$ can also, if you like, be done by parts: Letting $u=sin x, dv=cos x,dx$, we get
$$I=intsin xcos x,dx=sin^2x-intcos xsin x,dx=sin^2x-Iimplies I={1over2}sin^2x+C$$
thank you , for : $int{2cos{x}sin{x},mathrm{d}x }=int{sin{2x},mathrm{d}x } = -dfrac{cos{2x}}{2} + C$
– Navaro
Apr 9 '16 at 0:20
add a comment |
up vote
1
down vote
up vote
1
down vote
Write the integrand as
$${x+sin xover1+cos x}={(x+sin x)(1-cos x)over1-cos^2x}=(x+sin x)(1-cos x)csc^2x$$
Now let $u=(x+sin x)(1-cos x)$ and $dv=csc^2x,dx$, for which $v=-cot x$. On noting that
$$du=(1+cos x)(1-cos x)+(x+sin x)(sin x)=xsin x+2sin^2x$$
integration by parts now gives
$$int{x+sin xover1+cos x}dx=(x+sin x)(1-cos x)(-cot x)+int (xcos x+2sin xcos x)dx$$
The integral $int xcos x,dx$ is easily done by parts. The integral $intsin xcos x,dx$ can also, if you like, be done by parts: Letting $u=sin x, dv=cos x,dx$, we get
$$I=intsin xcos x,dx=sin^2x-intcos xsin x,dx=sin^2x-Iimplies I={1over2}sin^2x+C$$
Write the integrand as
$${x+sin xover1+cos x}={(x+sin x)(1-cos x)over1-cos^2x}=(x+sin x)(1-cos x)csc^2x$$
Now let $u=(x+sin x)(1-cos x)$ and $dv=csc^2x,dx$, for which $v=-cot x$. On noting that
$$du=(1+cos x)(1-cos x)+(x+sin x)(sin x)=xsin x+2sin^2x$$
integration by parts now gives
$$int{x+sin xover1+cos x}dx=(x+sin x)(1-cos x)(-cot x)+int (xcos x+2sin xcos x)dx$$
The integral $int xcos x,dx$ is easily done by parts. The integral $intsin xcos x,dx$ can also, if you like, be done by parts: Letting $u=sin x, dv=cos x,dx$, we get
$$I=intsin xcos x,dx=sin^2x-intcos xsin x,dx=sin^2x-Iimplies I={1over2}sin^2x+C$$
edited Apr 9 '16 at 0:15
answered Apr 9 '16 at 0:09
Barry Cipra
58.5k652122
58.5k652122
thank you , for : $int{2cos{x}sin{x},mathrm{d}x }=int{sin{2x},mathrm{d}x } = -dfrac{cos{2x}}{2} + C$
– Navaro
Apr 9 '16 at 0:20
add a comment |
thank you , for : $int{2cos{x}sin{x},mathrm{d}x }=int{sin{2x},mathrm{d}x } = -dfrac{cos{2x}}{2} + C$
– Navaro
Apr 9 '16 at 0:20
thank you , for : $int{2cos{x}sin{x},mathrm{d}x }=int{sin{2x},mathrm{d}x } = -dfrac{cos{2x}}{2} + C$
– Navaro
Apr 9 '16 at 0:20
thank you , for : $int{2cos{x}sin{x},mathrm{d}x }=int{sin{2x},mathrm{d}x } = -dfrac{cos{2x}}{2} + C$
– Navaro
Apr 9 '16 at 0:20
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1734036%2fevaluation-of-the-integral-int-fracx-sinx1-cosx-mathrmdx-by-par%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown