Evaluation of the integral $int{frac{x+sin{x}}{1+cos{x}}mathrm{d}x}$ by parts











up vote
4
down vote

favorite












I have to evaluate the following integral by parts: $$int {dfrac{x+sin{x}}{1+cos{x}}}mathrm{d}x $$



So I tried to put:



$ u = x + sin{x}$ $~qquadrightarrow quad$ $mathrm{d}u=left(1+cos{x}right) mathrm{d}x$



$mathrm{d}v = dfrac{mathrm{d}x}{1+cos(x)}$ $quad rightarrow quad$ $v = int{dfrac{mathrm{d}x}{1+cos{x}}}$



But there is an extra integral to do ( the $v$ function) I evaluated it by sibstitution, and I get $v = tan{dfrac{x}{2}}$, Now



$$int {dfrac{x+sin(x)}{1+cos(x)}}mathrm{d}x = (x+sin{x}), tan{dfrac{x}{2}}-x +C$$
My question: is it possible to evaluate this integral entirely by parts (without using any substitution) ?



I appreciate any ideas










share|cite|improve this question




























    up vote
    4
    down vote

    favorite












    I have to evaluate the following integral by parts: $$int {dfrac{x+sin{x}}{1+cos{x}}}mathrm{d}x $$



    So I tried to put:



    $ u = x + sin{x}$ $~qquadrightarrow quad$ $mathrm{d}u=left(1+cos{x}right) mathrm{d}x$



    $mathrm{d}v = dfrac{mathrm{d}x}{1+cos(x)}$ $quad rightarrow quad$ $v = int{dfrac{mathrm{d}x}{1+cos{x}}}$



    But there is an extra integral to do ( the $v$ function) I evaluated it by sibstitution, and I get $v = tan{dfrac{x}{2}}$, Now



    $$int {dfrac{x+sin(x)}{1+cos(x)}}mathrm{d}x = (x+sin{x}), tan{dfrac{x}{2}}-x +C$$
    My question: is it possible to evaluate this integral entirely by parts (without using any substitution) ?



    I appreciate any ideas










    share|cite|improve this question


























      up vote
      4
      down vote

      favorite









      up vote
      4
      down vote

      favorite











      I have to evaluate the following integral by parts: $$int {dfrac{x+sin{x}}{1+cos{x}}}mathrm{d}x $$



      So I tried to put:



      $ u = x + sin{x}$ $~qquadrightarrow quad$ $mathrm{d}u=left(1+cos{x}right) mathrm{d}x$



      $mathrm{d}v = dfrac{mathrm{d}x}{1+cos(x)}$ $quad rightarrow quad$ $v = int{dfrac{mathrm{d}x}{1+cos{x}}}$



      But there is an extra integral to do ( the $v$ function) I evaluated it by sibstitution, and I get $v = tan{dfrac{x}{2}}$, Now



      $$int {dfrac{x+sin(x)}{1+cos(x)}}mathrm{d}x = (x+sin{x}), tan{dfrac{x}{2}}-x +C$$
      My question: is it possible to evaluate this integral entirely by parts (without using any substitution) ?



      I appreciate any ideas










      share|cite|improve this question















      I have to evaluate the following integral by parts: $$int {dfrac{x+sin{x}}{1+cos{x}}}mathrm{d}x $$



      So I tried to put:



      $ u = x + sin{x}$ $~qquadrightarrow quad$ $mathrm{d}u=left(1+cos{x}right) mathrm{d}x$



      $mathrm{d}v = dfrac{mathrm{d}x}{1+cos(x)}$ $quad rightarrow quad$ $v = int{dfrac{mathrm{d}x}{1+cos{x}}}$



      But there is an extra integral to do ( the $v$ function) I evaluated it by sibstitution, and I get $v = tan{dfrac{x}{2}}$, Now



      $$int {dfrac{x+sin(x)}{1+cos(x)}}mathrm{d}x = (x+sin{x}), tan{dfrac{x}{2}}-x +C$$
      My question: is it possible to evaluate this integral entirely by parts (without using any substitution) ?



      I appreciate any ideas







      integration trigonometric-integrals






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 24 at 6:19









      Martin Sleziak

      44.5k7115268




      44.5k7115268










      asked Apr 8 '16 at 23:24









      Navaro

      474212




      474212






















          4 Answers
          4






          active

          oldest

          votes

















          up vote
          3
          down vote













          $int dfrac{x + sin x}{1+cos x}dx\
          int dfrac{x + 2 sin frac{x}{2} cos frac{x}{2}}{2cos^2 frac{x}{2}} dx\
          int frac{1}{2}xsec^2frac{x}{2} + tan frac{x}{2} dx\
          int frac{1}{2}xsec^2frac{x}{2}dx + inttan frac{x}{2} dx$



          Now we do integration by parts on the $1^{st}$ integral. we won't evaluate the $2^{nd}$ one quite yet.



          $u = x, dv = sec^2 frac{x}{2} dx\ du = dx, v = 2 tan frac{x}{2}$



          $xtanfrac{x}{2} - int tanfrac{x}{2}+inttanfrac{x}{2} \xtanfrac{x}{2} + C$






          share|cite|improve this answer






























            up vote
            3
            down vote













            You can use the formula:
            $$intfrac{f(x)+f'(x)sin x}{1+cos x}dx=frac{f(x)sin x}{1+cos x}+C$$



            Because: $$(frac{sin x}{1+cos x})'=frac{1}{1+cos x}$$
            then:$$intfrac{f(x)+f'(x)sin x}{1+cos x}dx=int f(x)d(frac{sin x}{1+cos x})+(frac{sin x}{1+cos x})df(x)=int d(frac{f(x)sin x}{1+cos x})=frac{f(x)sin x}{1+cos x}+C$$



            Example1:$$int e^x frac{1+sin x}{1+cos x}dx=frac{e^xsin x}{1+cos x}+C$$
            Example2:$$int frac{ln x+frac{sin x}{x}}{1+cos x}dx=frac{ln xsin x}{1+cos x}+C$$






            share|cite|improve this answer




























              up vote
              1
              down vote













              You could use $displaystyle v=intfrac{1}{1+cos x}dx=intfrac{1-cos x}{1-cos^2 x} dx=intfrac{1-cos x}{sin^2 x} dx=int(csc^2 x-csc xcot x) dx$



              $displaystylehspace{1.05in}=-cot x+csc x=frac{1-cos x}{sin x}=frac{sin x}{1+cos x}$ $;;;$(taking $C=0$)






              share|cite|improve this answer




























                up vote
                1
                down vote













                Write the integrand as



                $${x+sin xover1+cos x}={(x+sin x)(1-cos x)over1-cos^2x}=(x+sin x)(1-cos x)csc^2x$$



                Now let $u=(x+sin x)(1-cos x)$ and $dv=csc^2x,dx$, for which $v=-cot x$. On noting that



                $$du=(1+cos x)(1-cos x)+(x+sin x)(sin x)=xsin x+2sin^2x$$



                integration by parts now gives



                $$int{x+sin xover1+cos x}dx=(x+sin x)(1-cos x)(-cot x)+int (xcos x+2sin xcos x)dx$$



                The integral $int xcos x,dx$ is easily done by parts. The integral $intsin xcos x,dx$ can also, if you like, be done by parts: Letting $u=sin x, dv=cos x,dx$, we get



                $$I=intsin xcos x,dx=sin^2x-intcos xsin x,dx=sin^2x-Iimplies I={1over2}sin^2x+C$$






                share|cite|improve this answer























                • thank you , for : $int{2cos{x}sin{x},mathrm{d}x }=int{sin{2x},mathrm{d}x } = -dfrac{cos{2x}}{2} + C$
                  – Navaro
                  Apr 9 '16 at 0:20













                Your Answer





                StackExchange.ifUsing("editor", function () {
                return StackExchange.using("mathjaxEditing", function () {
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                });
                });
                }, "mathjax-editing");

                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "69"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });














                draft saved

                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1734036%2fevaluation-of-the-integral-int-fracx-sinx1-cosx-mathrmdx-by-par%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown

























                4 Answers
                4






                active

                oldest

                votes








                4 Answers
                4






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes








                up vote
                3
                down vote













                $int dfrac{x + sin x}{1+cos x}dx\
                int dfrac{x + 2 sin frac{x}{2} cos frac{x}{2}}{2cos^2 frac{x}{2}} dx\
                int frac{1}{2}xsec^2frac{x}{2} + tan frac{x}{2} dx\
                int frac{1}{2}xsec^2frac{x}{2}dx + inttan frac{x}{2} dx$



                Now we do integration by parts on the $1^{st}$ integral. we won't evaluate the $2^{nd}$ one quite yet.



                $u = x, dv = sec^2 frac{x}{2} dx\ du = dx, v = 2 tan frac{x}{2}$



                $xtanfrac{x}{2} - int tanfrac{x}{2}+inttanfrac{x}{2} \xtanfrac{x}{2} + C$






                share|cite|improve this answer



























                  up vote
                  3
                  down vote













                  $int dfrac{x + sin x}{1+cos x}dx\
                  int dfrac{x + 2 sin frac{x}{2} cos frac{x}{2}}{2cos^2 frac{x}{2}} dx\
                  int frac{1}{2}xsec^2frac{x}{2} + tan frac{x}{2} dx\
                  int frac{1}{2}xsec^2frac{x}{2}dx + inttan frac{x}{2} dx$



                  Now we do integration by parts on the $1^{st}$ integral. we won't evaluate the $2^{nd}$ one quite yet.



                  $u = x, dv = sec^2 frac{x}{2} dx\ du = dx, v = 2 tan frac{x}{2}$



                  $xtanfrac{x}{2} - int tanfrac{x}{2}+inttanfrac{x}{2} \xtanfrac{x}{2} + C$






                  share|cite|improve this answer

























                    up vote
                    3
                    down vote










                    up vote
                    3
                    down vote









                    $int dfrac{x + sin x}{1+cos x}dx\
                    int dfrac{x + 2 sin frac{x}{2} cos frac{x}{2}}{2cos^2 frac{x}{2}} dx\
                    int frac{1}{2}xsec^2frac{x}{2} + tan frac{x}{2} dx\
                    int frac{1}{2}xsec^2frac{x}{2}dx + inttan frac{x}{2} dx$



                    Now we do integration by parts on the $1^{st}$ integral. we won't evaluate the $2^{nd}$ one quite yet.



                    $u = x, dv = sec^2 frac{x}{2} dx\ du = dx, v = 2 tan frac{x}{2}$



                    $xtanfrac{x}{2} - int tanfrac{x}{2}+inttanfrac{x}{2} \xtanfrac{x}{2} + C$






                    share|cite|improve this answer














                    $int dfrac{x + sin x}{1+cos x}dx\
                    int dfrac{x + 2 sin frac{x}{2} cos frac{x}{2}}{2cos^2 frac{x}{2}} dx\
                    int frac{1}{2}xsec^2frac{x}{2} + tan frac{x}{2} dx\
                    int frac{1}{2}xsec^2frac{x}{2}dx + inttan frac{x}{2} dx$



                    Now we do integration by parts on the $1^{st}$ integral. we won't evaluate the $2^{nd}$ one quite yet.



                    $u = x, dv = sec^2 frac{x}{2} dx\ du = dx, v = 2 tan frac{x}{2}$



                    $xtanfrac{x}{2} - int tanfrac{x}{2}+inttanfrac{x}{2} \xtanfrac{x}{2} + C$







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited Apr 9 '16 at 0:11









                    user84413

                    22.8k11848




                    22.8k11848










                    answered Apr 8 '16 at 23:56









                    Doug M

                    43k31753




                    43k31753






















                        up vote
                        3
                        down vote













                        You can use the formula:
                        $$intfrac{f(x)+f'(x)sin x}{1+cos x}dx=frac{f(x)sin x}{1+cos x}+C$$



                        Because: $$(frac{sin x}{1+cos x})'=frac{1}{1+cos x}$$
                        then:$$intfrac{f(x)+f'(x)sin x}{1+cos x}dx=int f(x)d(frac{sin x}{1+cos x})+(frac{sin x}{1+cos x})df(x)=int d(frac{f(x)sin x}{1+cos x})=frac{f(x)sin x}{1+cos x}+C$$



                        Example1:$$int e^x frac{1+sin x}{1+cos x}dx=frac{e^xsin x}{1+cos x}+C$$
                        Example2:$$int frac{ln x+frac{sin x}{x}}{1+cos x}dx=frac{ln xsin x}{1+cos x}+C$$






                        share|cite|improve this answer

























                          up vote
                          3
                          down vote













                          You can use the formula:
                          $$intfrac{f(x)+f'(x)sin x}{1+cos x}dx=frac{f(x)sin x}{1+cos x}+C$$



                          Because: $$(frac{sin x}{1+cos x})'=frac{1}{1+cos x}$$
                          then:$$intfrac{f(x)+f'(x)sin x}{1+cos x}dx=int f(x)d(frac{sin x}{1+cos x})+(frac{sin x}{1+cos x})df(x)=int d(frac{f(x)sin x}{1+cos x})=frac{f(x)sin x}{1+cos x}+C$$



                          Example1:$$int e^x frac{1+sin x}{1+cos x}dx=frac{e^xsin x}{1+cos x}+C$$
                          Example2:$$int frac{ln x+frac{sin x}{x}}{1+cos x}dx=frac{ln xsin x}{1+cos x}+C$$






                          share|cite|improve this answer























                            up vote
                            3
                            down vote










                            up vote
                            3
                            down vote









                            You can use the formula:
                            $$intfrac{f(x)+f'(x)sin x}{1+cos x}dx=frac{f(x)sin x}{1+cos x}+C$$



                            Because: $$(frac{sin x}{1+cos x})'=frac{1}{1+cos x}$$
                            then:$$intfrac{f(x)+f'(x)sin x}{1+cos x}dx=int f(x)d(frac{sin x}{1+cos x})+(frac{sin x}{1+cos x})df(x)=int d(frac{f(x)sin x}{1+cos x})=frac{f(x)sin x}{1+cos x}+C$$



                            Example1:$$int e^x frac{1+sin x}{1+cos x}dx=frac{e^xsin x}{1+cos x}+C$$
                            Example2:$$int frac{ln x+frac{sin x}{x}}{1+cos x}dx=frac{ln xsin x}{1+cos x}+C$$






                            share|cite|improve this answer












                            You can use the formula:
                            $$intfrac{f(x)+f'(x)sin x}{1+cos x}dx=frac{f(x)sin x}{1+cos x}+C$$



                            Because: $$(frac{sin x}{1+cos x})'=frac{1}{1+cos x}$$
                            then:$$intfrac{f(x)+f'(x)sin x}{1+cos x}dx=int f(x)d(frac{sin x}{1+cos x})+(frac{sin x}{1+cos x})df(x)=int d(frac{f(x)sin x}{1+cos x})=frac{f(x)sin x}{1+cos x}+C$$



                            Example1:$$int e^x frac{1+sin x}{1+cos x}dx=frac{e^xsin x}{1+cos x}+C$$
                            Example2:$$int frac{ln x+frac{sin x}{x}}{1+cos x}dx=frac{ln xsin x}{1+cos x}+C$$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Jan 21 at 9:03









                            JamesJ

                            691111




                            691111






















                                up vote
                                1
                                down vote













                                You could use $displaystyle v=intfrac{1}{1+cos x}dx=intfrac{1-cos x}{1-cos^2 x} dx=intfrac{1-cos x}{sin^2 x} dx=int(csc^2 x-csc xcot x) dx$



                                $displaystylehspace{1.05in}=-cot x+csc x=frac{1-cos x}{sin x}=frac{sin x}{1+cos x}$ $;;;$(taking $C=0$)






                                share|cite|improve this answer

























                                  up vote
                                  1
                                  down vote













                                  You could use $displaystyle v=intfrac{1}{1+cos x}dx=intfrac{1-cos x}{1-cos^2 x} dx=intfrac{1-cos x}{sin^2 x} dx=int(csc^2 x-csc xcot x) dx$



                                  $displaystylehspace{1.05in}=-cot x+csc x=frac{1-cos x}{sin x}=frac{sin x}{1+cos x}$ $;;;$(taking $C=0$)






                                  share|cite|improve this answer























                                    up vote
                                    1
                                    down vote










                                    up vote
                                    1
                                    down vote









                                    You could use $displaystyle v=intfrac{1}{1+cos x}dx=intfrac{1-cos x}{1-cos^2 x} dx=intfrac{1-cos x}{sin^2 x} dx=int(csc^2 x-csc xcot x) dx$



                                    $displaystylehspace{1.05in}=-cot x+csc x=frac{1-cos x}{sin x}=frac{sin x}{1+cos x}$ $;;;$(taking $C=0$)






                                    share|cite|improve this answer












                                    You could use $displaystyle v=intfrac{1}{1+cos x}dx=intfrac{1-cos x}{1-cos^2 x} dx=intfrac{1-cos x}{sin^2 x} dx=int(csc^2 x-csc xcot x) dx$



                                    $displaystylehspace{1.05in}=-cot x+csc x=frac{1-cos x}{sin x}=frac{sin x}{1+cos x}$ $;;;$(taking $C=0$)







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered Apr 8 '16 at 23:54









                                    user84413

                                    22.8k11848




                                    22.8k11848






















                                        up vote
                                        1
                                        down vote













                                        Write the integrand as



                                        $${x+sin xover1+cos x}={(x+sin x)(1-cos x)over1-cos^2x}=(x+sin x)(1-cos x)csc^2x$$



                                        Now let $u=(x+sin x)(1-cos x)$ and $dv=csc^2x,dx$, for which $v=-cot x$. On noting that



                                        $$du=(1+cos x)(1-cos x)+(x+sin x)(sin x)=xsin x+2sin^2x$$



                                        integration by parts now gives



                                        $$int{x+sin xover1+cos x}dx=(x+sin x)(1-cos x)(-cot x)+int (xcos x+2sin xcos x)dx$$



                                        The integral $int xcos x,dx$ is easily done by parts. The integral $intsin xcos x,dx$ can also, if you like, be done by parts: Letting $u=sin x, dv=cos x,dx$, we get



                                        $$I=intsin xcos x,dx=sin^2x-intcos xsin x,dx=sin^2x-Iimplies I={1over2}sin^2x+C$$






                                        share|cite|improve this answer























                                        • thank you , for : $int{2cos{x}sin{x},mathrm{d}x }=int{sin{2x},mathrm{d}x } = -dfrac{cos{2x}}{2} + C$
                                          – Navaro
                                          Apr 9 '16 at 0:20

















                                        up vote
                                        1
                                        down vote













                                        Write the integrand as



                                        $${x+sin xover1+cos x}={(x+sin x)(1-cos x)over1-cos^2x}=(x+sin x)(1-cos x)csc^2x$$



                                        Now let $u=(x+sin x)(1-cos x)$ and $dv=csc^2x,dx$, for which $v=-cot x$. On noting that



                                        $$du=(1+cos x)(1-cos x)+(x+sin x)(sin x)=xsin x+2sin^2x$$



                                        integration by parts now gives



                                        $$int{x+sin xover1+cos x}dx=(x+sin x)(1-cos x)(-cot x)+int (xcos x+2sin xcos x)dx$$



                                        The integral $int xcos x,dx$ is easily done by parts. The integral $intsin xcos x,dx$ can also, if you like, be done by parts: Letting $u=sin x, dv=cos x,dx$, we get



                                        $$I=intsin xcos x,dx=sin^2x-intcos xsin x,dx=sin^2x-Iimplies I={1over2}sin^2x+C$$






                                        share|cite|improve this answer























                                        • thank you , for : $int{2cos{x}sin{x},mathrm{d}x }=int{sin{2x},mathrm{d}x } = -dfrac{cos{2x}}{2} + C$
                                          – Navaro
                                          Apr 9 '16 at 0:20















                                        up vote
                                        1
                                        down vote










                                        up vote
                                        1
                                        down vote









                                        Write the integrand as



                                        $${x+sin xover1+cos x}={(x+sin x)(1-cos x)over1-cos^2x}=(x+sin x)(1-cos x)csc^2x$$



                                        Now let $u=(x+sin x)(1-cos x)$ and $dv=csc^2x,dx$, for which $v=-cot x$. On noting that



                                        $$du=(1+cos x)(1-cos x)+(x+sin x)(sin x)=xsin x+2sin^2x$$



                                        integration by parts now gives



                                        $$int{x+sin xover1+cos x}dx=(x+sin x)(1-cos x)(-cot x)+int (xcos x+2sin xcos x)dx$$



                                        The integral $int xcos x,dx$ is easily done by parts. The integral $intsin xcos x,dx$ can also, if you like, be done by parts: Letting $u=sin x, dv=cos x,dx$, we get



                                        $$I=intsin xcos x,dx=sin^2x-intcos xsin x,dx=sin^2x-Iimplies I={1over2}sin^2x+C$$






                                        share|cite|improve this answer














                                        Write the integrand as



                                        $${x+sin xover1+cos x}={(x+sin x)(1-cos x)over1-cos^2x}=(x+sin x)(1-cos x)csc^2x$$



                                        Now let $u=(x+sin x)(1-cos x)$ and $dv=csc^2x,dx$, for which $v=-cot x$. On noting that



                                        $$du=(1+cos x)(1-cos x)+(x+sin x)(sin x)=xsin x+2sin^2x$$



                                        integration by parts now gives



                                        $$int{x+sin xover1+cos x}dx=(x+sin x)(1-cos x)(-cot x)+int (xcos x+2sin xcos x)dx$$



                                        The integral $int xcos x,dx$ is easily done by parts. The integral $intsin xcos x,dx$ can also, if you like, be done by parts: Letting $u=sin x, dv=cos x,dx$, we get



                                        $$I=intsin xcos x,dx=sin^2x-intcos xsin x,dx=sin^2x-Iimplies I={1over2}sin^2x+C$$







                                        share|cite|improve this answer














                                        share|cite|improve this answer



                                        share|cite|improve this answer








                                        edited Apr 9 '16 at 0:15

























                                        answered Apr 9 '16 at 0:09









                                        Barry Cipra

                                        58.5k652122




                                        58.5k652122












                                        • thank you , for : $int{2cos{x}sin{x},mathrm{d}x }=int{sin{2x},mathrm{d}x } = -dfrac{cos{2x}}{2} + C$
                                          – Navaro
                                          Apr 9 '16 at 0:20




















                                        • thank you , for : $int{2cos{x}sin{x},mathrm{d}x }=int{sin{2x},mathrm{d}x } = -dfrac{cos{2x}}{2} + C$
                                          – Navaro
                                          Apr 9 '16 at 0:20


















                                        thank you , for : $int{2cos{x}sin{x},mathrm{d}x }=int{sin{2x},mathrm{d}x } = -dfrac{cos{2x}}{2} + C$
                                        – Navaro
                                        Apr 9 '16 at 0:20






                                        thank you , for : $int{2cos{x}sin{x},mathrm{d}x }=int{sin{2x},mathrm{d}x } = -dfrac{cos{2x}}{2} + C$
                                        – Navaro
                                        Apr 9 '16 at 0:20




















                                        draft saved

                                        draft discarded




















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.





                                        Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                                        Please pay close attention to the following guidance:


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function () {
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1734036%2fevaluation-of-the-integral-int-fracx-sinx1-cosx-mathrmdx-by-par%23new-answer', 'question_page');
                                        }
                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        Wiesbaden

                                        Marschland

                                        Dieringhausen