Finding a probability by conditioning
Suppose $X_i$ $i=1,2,3..$ are indepednent random variables with common distribution F(x). Let $N$ be a geometric with parameter $alpha$ and suppose $X_i$ is independent of $N$ for all $i$. Let $M = max(X_1,...,X_N)$. Find $P(X leq x ) $ by conditioning on $N$ and find it in different way (Hint: for second part compute $P(M leq x mid N = 1)$ and $P(M leq x mid N > 1 $). )
Attempt:
By conditioning, we have
$$ P(M leq x) = sum_{i=1}^{infty} P(M leq x mid N=i ) P(N=i) $$
$$ = sum frac{ P(M leq x cap N = i ) cdot P(X=i) }{P(X=i)} = sum P( X_1 leq x, X_2 leq x,...,X_N leq x, N=i)$$
since they are all indepdenent, we have
$$ sum F(x)^N P(N=i) = F^N(x) sum P(N=i) = F^N(x) $$
Now, for the second part, Im not quite sure what they mean. Notice by independence, we have
$$ P(M leq x mid N = 1) = P(M leq x ) $$
$$ P(M leq x mid N > 1) = P(M leq x )$$
am I misunderstanding the hint?
probability
add a comment |
Suppose $X_i$ $i=1,2,3..$ are indepednent random variables with common distribution F(x). Let $N$ be a geometric with parameter $alpha$ and suppose $X_i$ is independent of $N$ for all $i$. Let $M = max(X_1,...,X_N)$. Find $P(X leq x ) $ by conditioning on $N$ and find it in different way (Hint: for second part compute $P(M leq x mid N = 1)$ and $P(M leq x mid N > 1 $). )
Attempt:
By conditioning, we have
$$ P(M leq x) = sum_{i=1}^{infty} P(M leq x mid N=i ) P(N=i) $$
$$ = sum frac{ P(M leq x cap N = i ) cdot P(X=i) }{P(X=i)} = sum P( X_1 leq x, X_2 leq x,...,X_N leq x, N=i)$$
since they are all indepdenent, we have
$$ sum F(x)^N P(N=i) = F^N(x) sum P(N=i) = F^N(x) $$
Now, for the second part, Im not quite sure what they mean. Notice by independence, we have
$$ P(M leq x mid N = 1) = P(M leq x ) $$
$$ P(M leq x mid N > 1) = P(M leq x )$$
am I misunderstanding the hint?
probability
1
In your first part calculation, note that you are using the dummy variable $i$ in the argument of the pmf $Pr{N = i}$. So when you are simplifying, you should have $F(x)^i$ inside the summand and cannot pull it out.
– BGM
Nov 30 at 6:31
$M$ is not independent of $N$.
– d.k.o.
Dec 2 at 8:40
add a comment |
Suppose $X_i$ $i=1,2,3..$ are indepednent random variables with common distribution F(x). Let $N$ be a geometric with parameter $alpha$ and suppose $X_i$ is independent of $N$ for all $i$. Let $M = max(X_1,...,X_N)$. Find $P(X leq x ) $ by conditioning on $N$ and find it in different way (Hint: for second part compute $P(M leq x mid N = 1)$ and $P(M leq x mid N > 1 $). )
Attempt:
By conditioning, we have
$$ P(M leq x) = sum_{i=1}^{infty} P(M leq x mid N=i ) P(N=i) $$
$$ = sum frac{ P(M leq x cap N = i ) cdot P(X=i) }{P(X=i)} = sum P( X_1 leq x, X_2 leq x,...,X_N leq x, N=i)$$
since they are all indepdenent, we have
$$ sum F(x)^N P(N=i) = F^N(x) sum P(N=i) = F^N(x) $$
Now, for the second part, Im not quite sure what they mean. Notice by independence, we have
$$ P(M leq x mid N = 1) = P(M leq x ) $$
$$ P(M leq x mid N > 1) = P(M leq x )$$
am I misunderstanding the hint?
probability
Suppose $X_i$ $i=1,2,3..$ are indepednent random variables with common distribution F(x). Let $N$ be a geometric with parameter $alpha$ and suppose $X_i$ is independent of $N$ for all $i$. Let $M = max(X_1,...,X_N)$. Find $P(X leq x ) $ by conditioning on $N$ and find it in different way (Hint: for second part compute $P(M leq x mid N = 1)$ and $P(M leq x mid N > 1 $). )
Attempt:
By conditioning, we have
$$ P(M leq x) = sum_{i=1}^{infty} P(M leq x mid N=i ) P(N=i) $$
$$ = sum frac{ P(M leq x cap N = i ) cdot P(X=i) }{P(X=i)} = sum P( X_1 leq x, X_2 leq x,...,X_N leq x, N=i)$$
since they are all indepdenent, we have
$$ sum F(x)^N P(N=i) = F^N(x) sum P(N=i) = F^N(x) $$
Now, for the second part, Im not quite sure what they mean. Notice by independence, we have
$$ P(M leq x mid N = 1) = P(M leq x ) $$
$$ P(M leq x mid N > 1) = P(M leq x )$$
am I misunderstanding the hint?
probability
probability
asked Nov 30 at 6:06
Jimmy Sabater
1,930219
1,930219
1
In your first part calculation, note that you are using the dummy variable $i$ in the argument of the pmf $Pr{N = i}$. So when you are simplifying, you should have $F(x)^i$ inside the summand and cannot pull it out.
– BGM
Nov 30 at 6:31
$M$ is not independent of $N$.
– d.k.o.
Dec 2 at 8:40
add a comment |
1
In your first part calculation, note that you are using the dummy variable $i$ in the argument of the pmf $Pr{N = i}$. So when you are simplifying, you should have $F(x)^i$ inside the summand and cannot pull it out.
– BGM
Nov 30 at 6:31
$M$ is not independent of $N$.
– d.k.o.
Dec 2 at 8:40
1
1
In your first part calculation, note that you are using the dummy variable $i$ in the argument of the pmf $Pr{N = i}$. So when you are simplifying, you should have $F(x)^i$ inside the summand and cannot pull it out.
– BGM
Nov 30 at 6:31
In your first part calculation, note that you are using the dummy variable $i$ in the argument of the pmf $Pr{N = i}$. So when you are simplifying, you should have $F(x)^i$ inside the summand and cannot pull it out.
– BGM
Nov 30 at 6:31
$M$ is not independent of $N$.
– d.k.o.
Dec 2 at 8:40
$M$ is not independent of $N$.
– d.k.o.
Dec 2 at 8:40
add a comment |
1 Answer
1
active
oldest
votes
begin{align}
P(M le x) &= sum_{n=1}^infty P(M le x|N=n)P(N=n)\
&=sum_{n=1}^infty P(max(X_1, ldots, X_n )le x )(1-alpha)^{n-1}alpha\
&= frac{alpha}{1-alpha}sum_{n=1}^infty [F(x)(1-alpha)]^n \
&= frac{alpha}{1-alpha}frac{F(x)(1-alpha)}{1-F(x)(1-alpha)}\
&= frac{F(x)alpha}{1-F(x)(1-alpha)}
end{align}
Notice that $N$ follows a geometric distribution, it has memoryless property, that is
$$P(N-1 > n|N>1)=frac{P(N>1+n)}{P(N>1)}=frac{(1-alpha)^{n+1}}{(1-alpha)}=P(N > n)$$
Hence,
begin{align}
P(M le x) &= P(M le x|N=1)P(N=1)+P(M le x|Nge1)P(N>1)\
&= F(x)alpha + (1-alpha) P(M le x|N > 1)\
&= F(x) alpha +(1-alpha)P(X_1 le x)P(max(X_2, ldots, X_N) le x|N > 1)\
&= F(x)alpha + (1-alpha)F(x)P(max(X_1, ldots, X_{N-1} )le x|N >1)\
&= F(x) alpha + (1-alpha) F(x) P(M le x)
end{align}
Hence $$(1-(1-alpha)F(x))P(M le x) = F(x) alpha$$
$$P( M le x) = frac{F(x) alpha}{1-(1-alpha)F(x)}$$
On second line, why $P( M leq x mid N = n ) = P( max (X_1,..,X_n) leq x) $?
– Jimmy Sabater
Dec 3 at 5:28
$P(M le x |N=n) = P(max(X_1, ldots, X_N ) le x|N=n) = P(max(X_1, ldots, X_n ) le x|N=n)=P(max(X_1, ldots, X_n ) le x)$
– Siong Thye Goh
Dec 3 at 5:46
in the fourth equality on the second derivation of $P(M leq x)$, how does the $X_1$ appear again and how pulled it out of max function?
– Neymar
Dec 4 at 3:47
$X_2, ldots, X_N |N > 1$ and $X_1, ldots, X_{N-1}|N>1$ follows the same distribution.
– Siong Thye Goh
Dec 4 at 3:56
But Im not given that the $X_i$ are identically distributed.
– Neymar
Dec 4 at 4:00
|
show 4 more comments
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019714%2ffinding-a-probability-by-conditioning%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
begin{align}
P(M le x) &= sum_{n=1}^infty P(M le x|N=n)P(N=n)\
&=sum_{n=1}^infty P(max(X_1, ldots, X_n )le x )(1-alpha)^{n-1}alpha\
&= frac{alpha}{1-alpha}sum_{n=1}^infty [F(x)(1-alpha)]^n \
&= frac{alpha}{1-alpha}frac{F(x)(1-alpha)}{1-F(x)(1-alpha)}\
&= frac{F(x)alpha}{1-F(x)(1-alpha)}
end{align}
Notice that $N$ follows a geometric distribution, it has memoryless property, that is
$$P(N-1 > n|N>1)=frac{P(N>1+n)}{P(N>1)}=frac{(1-alpha)^{n+1}}{(1-alpha)}=P(N > n)$$
Hence,
begin{align}
P(M le x) &= P(M le x|N=1)P(N=1)+P(M le x|Nge1)P(N>1)\
&= F(x)alpha + (1-alpha) P(M le x|N > 1)\
&= F(x) alpha +(1-alpha)P(X_1 le x)P(max(X_2, ldots, X_N) le x|N > 1)\
&= F(x)alpha + (1-alpha)F(x)P(max(X_1, ldots, X_{N-1} )le x|N >1)\
&= F(x) alpha + (1-alpha) F(x) P(M le x)
end{align}
Hence $$(1-(1-alpha)F(x))P(M le x) = F(x) alpha$$
$$P( M le x) = frac{F(x) alpha}{1-(1-alpha)F(x)}$$
On second line, why $P( M leq x mid N = n ) = P( max (X_1,..,X_n) leq x) $?
– Jimmy Sabater
Dec 3 at 5:28
$P(M le x |N=n) = P(max(X_1, ldots, X_N ) le x|N=n) = P(max(X_1, ldots, X_n ) le x|N=n)=P(max(X_1, ldots, X_n ) le x)$
– Siong Thye Goh
Dec 3 at 5:46
in the fourth equality on the second derivation of $P(M leq x)$, how does the $X_1$ appear again and how pulled it out of max function?
– Neymar
Dec 4 at 3:47
$X_2, ldots, X_N |N > 1$ and $X_1, ldots, X_{N-1}|N>1$ follows the same distribution.
– Siong Thye Goh
Dec 4 at 3:56
But Im not given that the $X_i$ are identically distributed.
– Neymar
Dec 4 at 4:00
|
show 4 more comments
begin{align}
P(M le x) &= sum_{n=1}^infty P(M le x|N=n)P(N=n)\
&=sum_{n=1}^infty P(max(X_1, ldots, X_n )le x )(1-alpha)^{n-1}alpha\
&= frac{alpha}{1-alpha}sum_{n=1}^infty [F(x)(1-alpha)]^n \
&= frac{alpha}{1-alpha}frac{F(x)(1-alpha)}{1-F(x)(1-alpha)}\
&= frac{F(x)alpha}{1-F(x)(1-alpha)}
end{align}
Notice that $N$ follows a geometric distribution, it has memoryless property, that is
$$P(N-1 > n|N>1)=frac{P(N>1+n)}{P(N>1)}=frac{(1-alpha)^{n+1}}{(1-alpha)}=P(N > n)$$
Hence,
begin{align}
P(M le x) &= P(M le x|N=1)P(N=1)+P(M le x|Nge1)P(N>1)\
&= F(x)alpha + (1-alpha) P(M le x|N > 1)\
&= F(x) alpha +(1-alpha)P(X_1 le x)P(max(X_2, ldots, X_N) le x|N > 1)\
&= F(x)alpha + (1-alpha)F(x)P(max(X_1, ldots, X_{N-1} )le x|N >1)\
&= F(x) alpha + (1-alpha) F(x) P(M le x)
end{align}
Hence $$(1-(1-alpha)F(x))P(M le x) = F(x) alpha$$
$$P( M le x) = frac{F(x) alpha}{1-(1-alpha)F(x)}$$
On second line, why $P( M leq x mid N = n ) = P( max (X_1,..,X_n) leq x) $?
– Jimmy Sabater
Dec 3 at 5:28
$P(M le x |N=n) = P(max(X_1, ldots, X_N ) le x|N=n) = P(max(X_1, ldots, X_n ) le x|N=n)=P(max(X_1, ldots, X_n ) le x)$
– Siong Thye Goh
Dec 3 at 5:46
in the fourth equality on the second derivation of $P(M leq x)$, how does the $X_1$ appear again and how pulled it out of max function?
– Neymar
Dec 4 at 3:47
$X_2, ldots, X_N |N > 1$ and $X_1, ldots, X_{N-1}|N>1$ follows the same distribution.
– Siong Thye Goh
Dec 4 at 3:56
But Im not given that the $X_i$ are identically distributed.
– Neymar
Dec 4 at 4:00
|
show 4 more comments
begin{align}
P(M le x) &= sum_{n=1}^infty P(M le x|N=n)P(N=n)\
&=sum_{n=1}^infty P(max(X_1, ldots, X_n )le x )(1-alpha)^{n-1}alpha\
&= frac{alpha}{1-alpha}sum_{n=1}^infty [F(x)(1-alpha)]^n \
&= frac{alpha}{1-alpha}frac{F(x)(1-alpha)}{1-F(x)(1-alpha)}\
&= frac{F(x)alpha}{1-F(x)(1-alpha)}
end{align}
Notice that $N$ follows a geometric distribution, it has memoryless property, that is
$$P(N-1 > n|N>1)=frac{P(N>1+n)}{P(N>1)}=frac{(1-alpha)^{n+1}}{(1-alpha)}=P(N > n)$$
Hence,
begin{align}
P(M le x) &= P(M le x|N=1)P(N=1)+P(M le x|Nge1)P(N>1)\
&= F(x)alpha + (1-alpha) P(M le x|N > 1)\
&= F(x) alpha +(1-alpha)P(X_1 le x)P(max(X_2, ldots, X_N) le x|N > 1)\
&= F(x)alpha + (1-alpha)F(x)P(max(X_1, ldots, X_{N-1} )le x|N >1)\
&= F(x) alpha + (1-alpha) F(x) P(M le x)
end{align}
Hence $$(1-(1-alpha)F(x))P(M le x) = F(x) alpha$$
$$P( M le x) = frac{F(x) alpha}{1-(1-alpha)F(x)}$$
begin{align}
P(M le x) &= sum_{n=1}^infty P(M le x|N=n)P(N=n)\
&=sum_{n=1}^infty P(max(X_1, ldots, X_n )le x )(1-alpha)^{n-1}alpha\
&= frac{alpha}{1-alpha}sum_{n=1}^infty [F(x)(1-alpha)]^n \
&= frac{alpha}{1-alpha}frac{F(x)(1-alpha)}{1-F(x)(1-alpha)}\
&= frac{F(x)alpha}{1-F(x)(1-alpha)}
end{align}
Notice that $N$ follows a geometric distribution, it has memoryless property, that is
$$P(N-1 > n|N>1)=frac{P(N>1+n)}{P(N>1)}=frac{(1-alpha)^{n+1}}{(1-alpha)}=P(N > n)$$
Hence,
begin{align}
P(M le x) &= P(M le x|N=1)P(N=1)+P(M le x|Nge1)P(N>1)\
&= F(x)alpha + (1-alpha) P(M le x|N > 1)\
&= F(x) alpha +(1-alpha)P(X_1 le x)P(max(X_2, ldots, X_N) le x|N > 1)\
&= F(x)alpha + (1-alpha)F(x)P(max(X_1, ldots, X_{N-1} )le x|N >1)\
&= F(x) alpha + (1-alpha) F(x) P(M le x)
end{align}
Hence $$(1-(1-alpha)F(x))P(M le x) = F(x) alpha$$
$$P( M le x) = frac{F(x) alpha}{1-(1-alpha)F(x)}$$
answered Dec 2 at 9:04
Siong Thye Goh
98.9k1464116
98.9k1464116
On second line, why $P( M leq x mid N = n ) = P( max (X_1,..,X_n) leq x) $?
– Jimmy Sabater
Dec 3 at 5:28
$P(M le x |N=n) = P(max(X_1, ldots, X_N ) le x|N=n) = P(max(X_1, ldots, X_n ) le x|N=n)=P(max(X_1, ldots, X_n ) le x)$
– Siong Thye Goh
Dec 3 at 5:46
in the fourth equality on the second derivation of $P(M leq x)$, how does the $X_1$ appear again and how pulled it out of max function?
– Neymar
Dec 4 at 3:47
$X_2, ldots, X_N |N > 1$ and $X_1, ldots, X_{N-1}|N>1$ follows the same distribution.
– Siong Thye Goh
Dec 4 at 3:56
But Im not given that the $X_i$ are identically distributed.
– Neymar
Dec 4 at 4:00
|
show 4 more comments
On second line, why $P( M leq x mid N = n ) = P( max (X_1,..,X_n) leq x) $?
– Jimmy Sabater
Dec 3 at 5:28
$P(M le x |N=n) = P(max(X_1, ldots, X_N ) le x|N=n) = P(max(X_1, ldots, X_n ) le x|N=n)=P(max(X_1, ldots, X_n ) le x)$
– Siong Thye Goh
Dec 3 at 5:46
in the fourth equality on the second derivation of $P(M leq x)$, how does the $X_1$ appear again and how pulled it out of max function?
– Neymar
Dec 4 at 3:47
$X_2, ldots, X_N |N > 1$ and $X_1, ldots, X_{N-1}|N>1$ follows the same distribution.
– Siong Thye Goh
Dec 4 at 3:56
But Im not given that the $X_i$ are identically distributed.
– Neymar
Dec 4 at 4:00
On second line, why $P( M leq x mid N = n ) = P( max (X_1,..,X_n) leq x) $?
– Jimmy Sabater
Dec 3 at 5:28
On second line, why $P( M leq x mid N = n ) = P( max (X_1,..,X_n) leq x) $?
– Jimmy Sabater
Dec 3 at 5:28
$P(M le x |N=n) = P(max(X_1, ldots, X_N ) le x|N=n) = P(max(X_1, ldots, X_n ) le x|N=n)=P(max(X_1, ldots, X_n ) le x)$
– Siong Thye Goh
Dec 3 at 5:46
$P(M le x |N=n) = P(max(X_1, ldots, X_N ) le x|N=n) = P(max(X_1, ldots, X_n ) le x|N=n)=P(max(X_1, ldots, X_n ) le x)$
– Siong Thye Goh
Dec 3 at 5:46
in the fourth equality on the second derivation of $P(M leq x)$, how does the $X_1$ appear again and how pulled it out of max function?
– Neymar
Dec 4 at 3:47
in the fourth equality on the second derivation of $P(M leq x)$, how does the $X_1$ appear again and how pulled it out of max function?
– Neymar
Dec 4 at 3:47
$X_2, ldots, X_N |N > 1$ and $X_1, ldots, X_{N-1}|N>1$ follows the same distribution.
– Siong Thye Goh
Dec 4 at 3:56
$X_2, ldots, X_N |N > 1$ and $X_1, ldots, X_{N-1}|N>1$ follows the same distribution.
– Siong Thye Goh
Dec 4 at 3:56
But Im not given that the $X_i$ are identically distributed.
– Neymar
Dec 4 at 4:00
But Im not given that the $X_i$ are identically distributed.
– Neymar
Dec 4 at 4:00
|
show 4 more comments
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019714%2ffinding-a-probability-by-conditioning%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
In your first part calculation, note that you are using the dummy variable $i$ in the argument of the pmf $Pr{N = i}$. So when you are simplifying, you should have $F(x)^i$ inside the summand and cannot pull it out.
– BGM
Nov 30 at 6:31
$M$ is not independent of $N$.
– d.k.o.
Dec 2 at 8:40