Show that this inequality involving expectations holds
Let there be two events (which are disjoint and a partition of the sample space) $G$ and $B$ where $p = Pr(G)$ and $1-p = Pr(B)$. Let $X$ be a random variable and $K$ be a positive constant. Let $D = mathbb{E}[min(K, X)|G] - mathbb{E}[min(K, X)|B]$ and $E = alpha mathbb{E}(X|G) - alpha mathbb{E}(X|B)$ where $alpha = frac{mathbb{E}[min(K,X)]}{mathbb{E}(X)}$.
Show that $D < E$ if and only if
$$frac{mathbb{E}(min(K, X)|G)}{mathbb{E}(min(K, X)|B)} < frac{mathbb{E}(X|G)}{mathbb{E}(X|B)} $$
What I've tried so far is to write $alpha$ as
$$alpha = frac{pmathbb{E}(min(K, X)|G) + (1-p) mathbb{E}(min(K, X)|B)}{pmathbb{E}(X|G) + (1-p)mathbb{E}(X|B)} $$ and then I am stuck.
probability statistics inequality conditional-expectation expected-value
add a comment |
Let there be two events (which are disjoint and a partition of the sample space) $G$ and $B$ where $p = Pr(G)$ and $1-p = Pr(B)$. Let $X$ be a random variable and $K$ be a positive constant. Let $D = mathbb{E}[min(K, X)|G] - mathbb{E}[min(K, X)|B]$ and $E = alpha mathbb{E}(X|G) - alpha mathbb{E}(X|B)$ where $alpha = frac{mathbb{E}[min(K,X)]}{mathbb{E}(X)}$.
Show that $D < E$ if and only if
$$frac{mathbb{E}(min(K, X)|G)}{mathbb{E}(min(K, X)|B)} < frac{mathbb{E}(X|G)}{mathbb{E}(X|B)} $$
What I've tried so far is to write $alpha$ as
$$alpha = frac{pmathbb{E}(min(K, X)|G) + (1-p) mathbb{E}(min(K, X)|B)}{pmathbb{E}(X|G) + (1-p)mathbb{E}(X|B)} $$ and then I am stuck.
probability statistics inequality conditional-expectation expected-value
add a comment |
Let there be two events (which are disjoint and a partition of the sample space) $G$ and $B$ where $p = Pr(G)$ and $1-p = Pr(B)$. Let $X$ be a random variable and $K$ be a positive constant. Let $D = mathbb{E}[min(K, X)|G] - mathbb{E}[min(K, X)|B]$ and $E = alpha mathbb{E}(X|G) - alpha mathbb{E}(X|B)$ where $alpha = frac{mathbb{E}[min(K,X)]}{mathbb{E}(X)}$.
Show that $D < E$ if and only if
$$frac{mathbb{E}(min(K, X)|G)}{mathbb{E}(min(K, X)|B)} < frac{mathbb{E}(X|G)}{mathbb{E}(X|B)} $$
What I've tried so far is to write $alpha$ as
$$alpha = frac{pmathbb{E}(min(K, X)|G) + (1-p) mathbb{E}(min(K, X)|B)}{pmathbb{E}(X|G) + (1-p)mathbb{E}(X|B)} $$ and then I am stuck.
probability statistics inequality conditional-expectation expected-value
Let there be two events (which are disjoint and a partition of the sample space) $G$ and $B$ where $p = Pr(G)$ and $1-p = Pr(B)$. Let $X$ be a random variable and $K$ be a positive constant. Let $D = mathbb{E}[min(K, X)|G] - mathbb{E}[min(K, X)|B]$ and $E = alpha mathbb{E}(X|G) - alpha mathbb{E}(X|B)$ where $alpha = frac{mathbb{E}[min(K,X)]}{mathbb{E}(X)}$.
Show that $D < E$ if and only if
$$frac{mathbb{E}(min(K, X)|G)}{mathbb{E}(min(K, X)|B)} < frac{mathbb{E}(X|G)}{mathbb{E}(X|B)} $$
What I've tried so far is to write $alpha$ as
$$alpha = frac{pmathbb{E}(min(K, X)|G) + (1-p) mathbb{E}(min(K, X)|B)}{pmathbb{E}(X|G) + (1-p)mathbb{E}(X|B)} $$ and then I am stuck.
probability statistics inequality conditional-expectation expected-value
probability statistics inequality conditional-expectation expected-value
asked Nov 29 at 0:03
elbarto
1,538824
1,538824
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
It is only true if we assume something more. Let's $Xsim U(-4,2), K=1$, $G$- $X>=0$, $B$- $X<0$. In this case $D=2.5<4.5=E$, but
$$frac{mathbb{E}(min(K, X)|G)}{mathbb{E}(min(K, X)|B)}=-frac{1}{4} >-frac{1}{2}= frac{mathbb{E}(X|G)}{mathbb{E}(X|B)}. $$
Let's start with $D<E$
begin{equation}
mathbb{E}(min(K,X)|G) - mathbb{E}(min(K,X)|B)< frac{mathbb{E}(min(K,X))}{mathbb{E}(X)} big( mathbb{E}(X|G) - mathbb{E}(X|B)big)
end{equation}
Let's assume that $mathbb{E}(X) > 0$ so we can multiply both sides by $mathbb{E}(X)$.
Also, as you noticed, $mathbb{E}(min(K, X)) = pmathbb{E}(min(K, X)|G) + (1-p) mathbb{E}(min(K, X)|B)$ and $mathbb{E}(X)= pmathbb{E}(X|G) + (1-p)mathbb{E}(X|B)$. Now we have:
begin{equation}
begin{split}
p mathbb{E}(X|G)mathbb{E}(min(K,X)|G)&- &pmathbb{E}(X|G)mathbb{E}(min(K,X)|B) + \
+(1-p) mathbb{E}(X|B)mathbb{E}(min(K,X)|G)&- (1-p&) mathbb{E}(X|B)mathbb{E}(min(K,X)|B)
\ <\
pmathbb{E}(X|G)mathbb{E}(min(K, X)|G)&- &pmathbb{E}(X|B)mathbb{E}(min(K, X)|G) + \ +(1-p)mathbb{E}(X|G)mathbb{E}(min(K, X)|B)&-(1-p&)mathbb{E}(X|B)mathbb{E}(min(K, X)|B)
end{split}
end{equation}
As you can see, we can subtract some components and we are left with:
begin{equation}
begin{split}
(1-p) mathbb{E}(X|B)mathbb{E}(min(K,X)&|G)-pmathbb{E}(X|G)mathbb{E}(min(K,X)|B)
\ <\
(1-p)mathbb{E}(X|G)mathbb{E}(min(K, X)&|B)-pmathbb{E}(X|B)mathbb{E}(min(K,X)|G)
end{split}
end{equation}
Now we add to both sides $pbigg(mathbb{E}(X|B)mathbb{E}(min(K,X)|G)+mathbb{E}(X|G)mathbb{E}(min(K,X)|B)bigg)$ to got:
begin{equation}
mathbb{E}(X|B)mathbb{E}(min(K,X)|G)
<
mathbb{E}(X|G)mathbb{E}(min(K, X)|B)
end{equation}
If we divide by $mathbb{E}(min(K, X)|B)mathbb{E}(X|B)$ we got:
$$frac{mathbb{E}(min(K, X)|G)}{mathbb{E}(min(K, X)|B)} < frac{mathbb{E}(X|G)}{mathbb{E}(X|B)}. $$
We only have to assure, that both $mathbb{E}(min(K, X)|B), mathbb{E}(X|B)$ have same sign.
If one or three out of $mathbb{E}(X),mathbb{E}(min(K, X)|B), mathbb{E}(X|B)$ have negative sign, we won't have the dependence. Otherwise it's ok (if $E(X)<0$ you'll have to change the inequality signs respectively after the multiplication, and then after the division).
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3017949%2fshow-that-this-inequality-involving-expectations-holds%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
It is only true if we assume something more. Let's $Xsim U(-4,2), K=1$, $G$- $X>=0$, $B$- $X<0$. In this case $D=2.5<4.5=E$, but
$$frac{mathbb{E}(min(K, X)|G)}{mathbb{E}(min(K, X)|B)}=-frac{1}{4} >-frac{1}{2}= frac{mathbb{E}(X|G)}{mathbb{E}(X|B)}. $$
Let's start with $D<E$
begin{equation}
mathbb{E}(min(K,X)|G) - mathbb{E}(min(K,X)|B)< frac{mathbb{E}(min(K,X))}{mathbb{E}(X)} big( mathbb{E}(X|G) - mathbb{E}(X|B)big)
end{equation}
Let's assume that $mathbb{E}(X) > 0$ so we can multiply both sides by $mathbb{E}(X)$.
Also, as you noticed, $mathbb{E}(min(K, X)) = pmathbb{E}(min(K, X)|G) + (1-p) mathbb{E}(min(K, X)|B)$ and $mathbb{E}(X)= pmathbb{E}(X|G) + (1-p)mathbb{E}(X|B)$. Now we have:
begin{equation}
begin{split}
p mathbb{E}(X|G)mathbb{E}(min(K,X)|G)&- &pmathbb{E}(X|G)mathbb{E}(min(K,X)|B) + \
+(1-p) mathbb{E}(X|B)mathbb{E}(min(K,X)|G)&- (1-p&) mathbb{E}(X|B)mathbb{E}(min(K,X)|B)
\ <\
pmathbb{E}(X|G)mathbb{E}(min(K, X)|G)&- &pmathbb{E}(X|B)mathbb{E}(min(K, X)|G) + \ +(1-p)mathbb{E}(X|G)mathbb{E}(min(K, X)|B)&-(1-p&)mathbb{E}(X|B)mathbb{E}(min(K, X)|B)
end{split}
end{equation}
As you can see, we can subtract some components and we are left with:
begin{equation}
begin{split}
(1-p) mathbb{E}(X|B)mathbb{E}(min(K,X)&|G)-pmathbb{E}(X|G)mathbb{E}(min(K,X)|B)
\ <\
(1-p)mathbb{E}(X|G)mathbb{E}(min(K, X)&|B)-pmathbb{E}(X|B)mathbb{E}(min(K,X)|G)
end{split}
end{equation}
Now we add to both sides $pbigg(mathbb{E}(X|B)mathbb{E}(min(K,X)|G)+mathbb{E}(X|G)mathbb{E}(min(K,X)|B)bigg)$ to got:
begin{equation}
mathbb{E}(X|B)mathbb{E}(min(K,X)|G)
<
mathbb{E}(X|G)mathbb{E}(min(K, X)|B)
end{equation}
If we divide by $mathbb{E}(min(K, X)|B)mathbb{E}(X|B)$ we got:
$$frac{mathbb{E}(min(K, X)|G)}{mathbb{E}(min(K, X)|B)} < frac{mathbb{E}(X|G)}{mathbb{E}(X|B)}. $$
We only have to assure, that both $mathbb{E}(min(K, X)|B), mathbb{E}(X|B)$ have same sign.
If one or three out of $mathbb{E}(X),mathbb{E}(min(K, X)|B), mathbb{E}(X|B)$ have negative sign, we won't have the dependence. Otherwise it's ok (if $E(X)<0$ you'll have to change the inequality signs respectively after the multiplication, and then after the division).
add a comment |
It is only true if we assume something more. Let's $Xsim U(-4,2), K=1$, $G$- $X>=0$, $B$- $X<0$. In this case $D=2.5<4.5=E$, but
$$frac{mathbb{E}(min(K, X)|G)}{mathbb{E}(min(K, X)|B)}=-frac{1}{4} >-frac{1}{2}= frac{mathbb{E}(X|G)}{mathbb{E}(X|B)}. $$
Let's start with $D<E$
begin{equation}
mathbb{E}(min(K,X)|G) - mathbb{E}(min(K,X)|B)< frac{mathbb{E}(min(K,X))}{mathbb{E}(X)} big( mathbb{E}(X|G) - mathbb{E}(X|B)big)
end{equation}
Let's assume that $mathbb{E}(X) > 0$ so we can multiply both sides by $mathbb{E}(X)$.
Also, as you noticed, $mathbb{E}(min(K, X)) = pmathbb{E}(min(K, X)|G) + (1-p) mathbb{E}(min(K, X)|B)$ and $mathbb{E}(X)= pmathbb{E}(X|G) + (1-p)mathbb{E}(X|B)$. Now we have:
begin{equation}
begin{split}
p mathbb{E}(X|G)mathbb{E}(min(K,X)|G)&- &pmathbb{E}(X|G)mathbb{E}(min(K,X)|B) + \
+(1-p) mathbb{E}(X|B)mathbb{E}(min(K,X)|G)&- (1-p&) mathbb{E}(X|B)mathbb{E}(min(K,X)|B)
\ <\
pmathbb{E}(X|G)mathbb{E}(min(K, X)|G)&- &pmathbb{E}(X|B)mathbb{E}(min(K, X)|G) + \ +(1-p)mathbb{E}(X|G)mathbb{E}(min(K, X)|B)&-(1-p&)mathbb{E}(X|B)mathbb{E}(min(K, X)|B)
end{split}
end{equation}
As you can see, we can subtract some components and we are left with:
begin{equation}
begin{split}
(1-p) mathbb{E}(X|B)mathbb{E}(min(K,X)&|G)-pmathbb{E}(X|G)mathbb{E}(min(K,X)|B)
\ <\
(1-p)mathbb{E}(X|G)mathbb{E}(min(K, X)&|B)-pmathbb{E}(X|B)mathbb{E}(min(K,X)|G)
end{split}
end{equation}
Now we add to both sides $pbigg(mathbb{E}(X|B)mathbb{E}(min(K,X)|G)+mathbb{E}(X|G)mathbb{E}(min(K,X)|B)bigg)$ to got:
begin{equation}
mathbb{E}(X|B)mathbb{E}(min(K,X)|G)
<
mathbb{E}(X|G)mathbb{E}(min(K, X)|B)
end{equation}
If we divide by $mathbb{E}(min(K, X)|B)mathbb{E}(X|B)$ we got:
$$frac{mathbb{E}(min(K, X)|G)}{mathbb{E}(min(K, X)|B)} < frac{mathbb{E}(X|G)}{mathbb{E}(X|B)}. $$
We only have to assure, that both $mathbb{E}(min(K, X)|B), mathbb{E}(X|B)$ have same sign.
If one or three out of $mathbb{E}(X),mathbb{E}(min(K, X)|B), mathbb{E}(X|B)$ have negative sign, we won't have the dependence. Otherwise it's ok (if $E(X)<0$ you'll have to change the inequality signs respectively after the multiplication, and then after the division).
add a comment |
It is only true if we assume something more. Let's $Xsim U(-4,2), K=1$, $G$- $X>=0$, $B$- $X<0$. In this case $D=2.5<4.5=E$, but
$$frac{mathbb{E}(min(K, X)|G)}{mathbb{E}(min(K, X)|B)}=-frac{1}{4} >-frac{1}{2}= frac{mathbb{E}(X|G)}{mathbb{E}(X|B)}. $$
Let's start with $D<E$
begin{equation}
mathbb{E}(min(K,X)|G) - mathbb{E}(min(K,X)|B)< frac{mathbb{E}(min(K,X))}{mathbb{E}(X)} big( mathbb{E}(X|G) - mathbb{E}(X|B)big)
end{equation}
Let's assume that $mathbb{E}(X) > 0$ so we can multiply both sides by $mathbb{E}(X)$.
Also, as you noticed, $mathbb{E}(min(K, X)) = pmathbb{E}(min(K, X)|G) + (1-p) mathbb{E}(min(K, X)|B)$ and $mathbb{E}(X)= pmathbb{E}(X|G) + (1-p)mathbb{E}(X|B)$. Now we have:
begin{equation}
begin{split}
p mathbb{E}(X|G)mathbb{E}(min(K,X)|G)&- &pmathbb{E}(X|G)mathbb{E}(min(K,X)|B) + \
+(1-p) mathbb{E}(X|B)mathbb{E}(min(K,X)|G)&- (1-p&) mathbb{E}(X|B)mathbb{E}(min(K,X)|B)
\ <\
pmathbb{E}(X|G)mathbb{E}(min(K, X)|G)&- &pmathbb{E}(X|B)mathbb{E}(min(K, X)|G) + \ +(1-p)mathbb{E}(X|G)mathbb{E}(min(K, X)|B)&-(1-p&)mathbb{E}(X|B)mathbb{E}(min(K, X)|B)
end{split}
end{equation}
As you can see, we can subtract some components and we are left with:
begin{equation}
begin{split}
(1-p) mathbb{E}(X|B)mathbb{E}(min(K,X)&|G)-pmathbb{E}(X|G)mathbb{E}(min(K,X)|B)
\ <\
(1-p)mathbb{E}(X|G)mathbb{E}(min(K, X)&|B)-pmathbb{E}(X|B)mathbb{E}(min(K,X)|G)
end{split}
end{equation}
Now we add to both sides $pbigg(mathbb{E}(X|B)mathbb{E}(min(K,X)|G)+mathbb{E}(X|G)mathbb{E}(min(K,X)|B)bigg)$ to got:
begin{equation}
mathbb{E}(X|B)mathbb{E}(min(K,X)|G)
<
mathbb{E}(X|G)mathbb{E}(min(K, X)|B)
end{equation}
If we divide by $mathbb{E}(min(K, X)|B)mathbb{E}(X|B)$ we got:
$$frac{mathbb{E}(min(K, X)|G)}{mathbb{E}(min(K, X)|B)} < frac{mathbb{E}(X|G)}{mathbb{E}(X|B)}. $$
We only have to assure, that both $mathbb{E}(min(K, X)|B), mathbb{E}(X|B)$ have same sign.
If one or three out of $mathbb{E}(X),mathbb{E}(min(K, X)|B), mathbb{E}(X|B)$ have negative sign, we won't have the dependence. Otherwise it's ok (if $E(X)<0$ you'll have to change the inequality signs respectively after the multiplication, and then after the division).
It is only true if we assume something more. Let's $Xsim U(-4,2), K=1$, $G$- $X>=0$, $B$- $X<0$. In this case $D=2.5<4.5=E$, but
$$frac{mathbb{E}(min(K, X)|G)}{mathbb{E}(min(K, X)|B)}=-frac{1}{4} >-frac{1}{2}= frac{mathbb{E}(X|G)}{mathbb{E}(X|B)}. $$
Let's start with $D<E$
begin{equation}
mathbb{E}(min(K,X)|G) - mathbb{E}(min(K,X)|B)< frac{mathbb{E}(min(K,X))}{mathbb{E}(X)} big( mathbb{E}(X|G) - mathbb{E}(X|B)big)
end{equation}
Let's assume that $mathbb{E}(X) > 0$ so we can multiply both sides by $mathbb{E}(X)$.
Also, as you noticed, $mathbb{E}(min(K, X)) = pmathbb{E}(min(K, X)|G) + (1-p) mathbb{E}(min(K, X)|B)$ and $mathbb{E}(X)= pmathbb{E}(X|G) + (1-p)mathbb{E}(X|B)$. Now we have:
begin{equation}
begin{split}
p mathbb{E}(X|G)mathbb{E}(min(K,X)|G)&- &pmathbb{E}(X|G)mathbb{E}(min(K,X)|B) + \
+(1-p) mathbb{E}(X|B)mathbb{E}(min(K,X)|G)&- (1-p&) mathbb{E}(X|B)mathbb{E}(min(K,X)|B)
\ <\
pmathbb{E}(X|G)mathbb{E}(min(K, X)|G)&- &pmathbb{E}(X|B)mathbb{E}(min(K, X)|G) + \ +(1-p)mathbb{E}(X|G)mathbb{E}(min(K, X)|B)&-(1-p&)mathbb{E}(X|B)mathbb{E}(min(K, X)|B)
end{split}
end{equation}
As you can see, we can subtract some components and we are left with:
begin{equation}
begin{split}
(1-p) mathbb{E}(X|B)mathbb{E}(min(K,X)&|G)-pmathbb{E}(X|G)mathbb{E}(min(K,X)|B)
\ <\
(1-p)mathbb{E}(X|G)mathbb{E}(min(K, X)&|B)-pmathbb{E}(X|B)mathbb{E}(min(K,X)|G)
end{split}
end{equation}
Now we add to both sides $pbigg(mathbb{E}(X|B)mathbb{E}(min(K,X)|G)+mathbb{E}(X|G)mathbb{E}(min(K,X)|B)bigg)$ to got:
begin{equation}
mathbb{E}(X|B)mathbb{E}(min(K,X)|G)
<
mathbb{E}(X|G)mathbb{E}(min(K, X)|B)
end{equation}
If we divide by $mathbb{E}(min(K, X)|B)mathbb{E}(X|B)$ we got:
$$frac{mathbb{E}(min(K, X)|G)}{mathbb{E}(min(K, X)|B)} < frac{mathbb{E}(X|G)}{mathbb{E}(X|B)}. $$
We only have to assure, that both $mathbb{E}(min(K, X)|B), mathbb{E}(X|B)$ have same sign.
If one or three out of $mathbb{E}(X),mathbb{E}(min(K, X)|B), mathbb{E}(X|B)$ have negative sign, we won't have the dependence. Otherwise it's ok (if $E(X)<0$ you'll have to change the inequality signs respectively after the multiplication, and then after the division).
answered Nov 29 at 16:09
vermator
795
795
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3017949%2fshow-that-this-inequality-involving-expectations-holds%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown