Show that this inequality involving expectations holds












0














Let there be two events (which are disjoint and a partition of the sample space) $G$ and $B$ where $p = Pr(G)$ and $1-p = Pr(B)$. Let $X$ be a random variable and $K$ be a positive constant. Let $D = mathbb{E}[min(K, X)|G] - mathbb{E}[min(K, X)|B]$ and $E = alpha mathbb{E}(X|G) - alpha mathbb{E}(X|B)$ where $alpha = frac{mathbb{E}[min(K,X)]}{mathbb{E}(X)}$.



Show that $D < E$ if and only if
$$frac{mathbb{E}(min(K, X)|G)}{mathbb{E}(min(K, X)|B)} < frac{mathbb{E}(X|G)}{mathbb{E}(X|B)} $$



What I've tried so far is to write $alpha$ as



$$alpha = frac{pmathbb{E}(min(K, X)|G) + (1-p) mathbb{E}(min(K, X)|B)}{pmathbb{E}(X|G) + (1-p)mathbb{E}(X|B)} $$ and then I am stuck.










share|cite|improve this question



























    0














    Let there be two events (which are disjoint and a partition of the sample space) $G$ and $B$ where $p = Pr(G)$ and $1-p = Pr(B)$. Let $X$ be a random variable and $K$ be a positive constant. Let $D = mathbb{E}[min(K, X)|G] - mathbb{E}[min(K, X)|B]$ and $E = alpha mathbb{E}(X|G) - alpha mathbb{E}(X|B)$ where $alpha = frac{mathbb{E}[min(K,X)]}{mathbb{E}(X)}$.



    Show that $D < E$ if and only if
    $$frac{mathbb{E}(min(K, X)|G)}{mathbb{E}(min(K, X)|B)} < frac{mathbb{E}(X|G)}{mathbb{E}(X|B)} $$



    What I've tried so far is to write $alpha$ as



    $$alpha = frac{pmathbb{E}(min(K, X)|G) + (1-p) mathbb{E}(min(K, X)|B)}{pmathbb{E}(X|G) + (1-p)mathbb{E}(X|B)} $$ and then I am stuck.










    share|cite|improve this question

























      0












      0








      0







      Let there be two events (which are disjoint and a partition of the sample space) $G$ and $B$ where $p = Pr(G)$ and $1-p = Pr(B)$. Let $X$ be a random variable and $K$ be a positive constant. Let $D = mathbb{E}[min(K, X)|G] - mathbb{E}[min(K, X)|B]$ and $E = alpha mathbb{E}(X|G) - alpha mathbb{E}(X|B)$ where $alpha = frac{mathbb{E}[min(K,X)]}{mathbb{E}(X)}$.



      Show that $D < E$ if and only if
      $$frac{mathbb{E}(min(K, X)|G)}{mathbb{E}(min(K, X)|B)} < frac{mathbb{E}(X|G)}{mathbb{E}(X|B)} $$



      What I've tried so far is to write $alpha$ as



      $$alpha = frac{pmathbb{E}(min(K, X)|G) + (1-p) mathbb{E}(min(K, X)|B)}{pmathbb{E}(X|G) + (1-p)mathbb{E}(X|B)} $$ and then I am stuck.










      share|cite|improve this question













      Let there be two events (which are disjoint and a partition of the sample space) $G$ and $B$ where $p = Pr(G)$ and $1-p = Pr(B)$. Let $X$ be a random variable and $K$ be a positive constant. Let $D = mathbb{E}[min(K, X)|G] - mathbb{E}[min(K, X)|B]$ and $E = alpha mathbb{E}(X|G) - alpha mathbb{E}(X|B)$ where $alpha = frac{mathbb{E}[min(K,X)]}{mathbb{E}(X)}$.



      Show that $D < E$ if and only if
      $$frac{mathbb{E}(min(K, X)|G)}{mathbb{E}(min(K, X)|B)} < frac{mathbb{E}(X|G)}{mathbb{E}(X|B)} $$



      What I've tried so far is to write $alpha$ as



      $$alpha = frac{pmathbb{E}(min(K, X)|G) + (1-p) mathbb{E}(min(K, X)|B)}{pmathbb{E}(X|G) + (1-p)mathbb{E}(X|B)} $$ and then I am stuck.







      probability statistics inequality conditional-expectation expected-value






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 29 at 0:03









      elbarto

      1,538824




      1,538824






















          1 Answer
          1






          active

          oldest

          votes


















          -1














          It is only true if we assume something more. Let's $Xsim U(-4,2), K=1$, $G$- $X>=0$, $B$- $X<0$. In this case $D=2.5<4.5=E$, but
          $$frac{mathbb{E}(min(K, X)|G)}{mathbb{E}(min(K, X)|B)}=-frac{1}{4} >-frac{1}{2}= frac{mathbb{E}(X|G)}{mathbb{E}(X|B)}. $$



          Let's start with $D<E$
          begin{equation}
          mathbb{E}(min(K,X)|G) - mathbb{E}(min(K,X)|B)< frac{mathbb{E}(min(K,X))}{mathbb{E}(X)} big( mathbb{E}(X|G) - mathbb{E}(X|B)big)
          end{equation}

          Let's assume that $mathbb{E}(X) > 0$ so we can multiply both sides by $mathbb{E}(X)$.



          Also, as you noticed, $mathbb{E}(min(K, X)) = pmathbb{E}(min(K, X)|G) + (1-p) mathbb{E}(min(K, X)|B)$ and $mathbb{E}(X)= pmathbb{E}(X|G) + (1-p)mathbb{E}(X|B)$. Now we have:
          begin{equation}
          begin{split}
          p mathbb{E}(X|G)mathbb{E}(min(K,X)|G)&- &pmathbb{E}(X|G)mathbb{E}(min(K,X)|B) + \
          +(1-p) mathbb{E}(X|B)mathbb{E}(min(K,X)|G)&- (1-p&) mathbb{E}(X|B)mathbb{E}(min(K,X)|B)
          \ <\
          pmathbb{E}(X|G)mathbb{E}(min(K, X)|G)&- &pmathbb{E}(X|B)mathbb{E}(min(K, X)|G) + \ +(1-p)mathbb{E}(X|G)mathbb{E}(min(K, X)|B)&-(1-p&)mathbb{E}(X|B)mathbb{E}(min(K, X)|B)
          end{split}
          end{equation}



          As you can see, we can subtract some components and we are left with:
          begin{equation}
          begin{split}
          (1-p) mathbb{E}(X|B)mathbb{E}(min(K,X)&|G)-pmathbb{E}(X|G)mathbb{E}(min(K,X)|B)
          \ <\
          (1-p)mathbb{E}(X|G)mathbb{E}(min(K, X)&|B)-pmathbb{E}(X|B)mathbb{E}(min(K,X)|G)
          end{split}
          end{equation}



          Now we add to both sides $pbigg(mathbb{E}(X|B)mathbb{E}(min(K,X)|G)+mathbb{E}(X|G)mathbb{E}(min(K,X)|B)bigg)$ to got:



          begin{equation}
          mathbb{E}(X|B)mathbb{E}(min(K,X)|G)
          <
          mathbb{E}(X|G)mathbb{E}(min(K, X)|B)
          end{equation}



          If we divide by $mathbb{E}(min(K, X)|B)mathbb{E}(X|B)$ we got:
          $$frac{mathbb{E}(min(K, X)|G)}{mathbb{E}(min(K, X)|B)} < frac{mathbb{E}(X|G)}{mathbb{E}(X|B)}. $$



          We only have to assure, that both $mathbb{E}(min(K, X)|B), mathbb{E}(X|B)$ have same sign.



          If one or three out of $mathbb{E}(X),mathbb{E}(min(K, X)|B), mathbb{E}(X|B)$ have negative sign, we won't have the dependence. Otherwise it's ok (if $E(X)<0$ you'll have to change the inequality signs respectively after the multiplication, and then after the division).






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3017949%2fshow-that-this-inequality-involving-expectations-holds%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            -1














            It is only true if we assume something more. Let's $Xsim U(-4,2), K=1$, $G$- $X>=0$, $B$- $X<0$. In this case $D=2.5<4.5=E$, but
            $$frac{mathbb{E}(min(K, X)|G)}{mathbb{E}(min(K, X)|B)}=-frac{1}{4} >-frac{1}{2}= frac{mathbb{E}(X|G)}{mathbb{E}(X|B)}. $$



            Let's start with $D<E$
            begin{equation}
            mathbb{E}(min(K,X)|G) - mathbb{E}(min(K,X)|B)< frac{mathbb{E}(min(K,X))}{mathbb{E}(X)} big( mathbb{E}(X|G) - mathbb{E}(X|B)big)
            end{equation}

            Let's assume that $mathbb{E}(X) > 0$ so we can multiply both sides by $mathbb{E}(X)$.



            Also, as you noticed, $mathbb{E}(min(K, X)) = pmathbb{E}(min(K, X)|G) + (1-p) mathbb{E}(min(K, X)|B)$ and $mathbb{E}(X)= pmathbb{E}(X|G) + (1-p)mathbb{E}(X|B)$. Now we have:
            begin{equation}
            begin{split}
            p mathbb{E}(X|G)mathbb{E}(min(K,X)|G)&- &pmathbb{E}(X|G)mathbb{E}(min(K,X)|B) + \
            +(1-p) mathbb{E}(X|B)mathbb{E}(min(K,X)|G)&- (1-p&) mathbb{E}(X|B)mathbb{E}(min(K,X)|B)
            \ <\
            pmathbb{E}(X|G)mathbb{E}(min(K, X)|G)&- &pmathbb{E}(X|B)mathbb{E}(min(K, X)|G) + \ +(1-p)mathbb{E}(X|G)mathbb{E}(min(K, X)|B)&-(1-p&)mathbb{E}(X|B)mathbb{E}(min(K, X)|B)
            end{split}
            end{equation}



            As you can see, we can subtract some components and we are left with:
            begin{equation}
            begin{split}
            (1-p) mathbb{E}(X|B)mathbb{E}(min(K,X)&|G)-pmathbb{E}(X|G)mathbb{E}(min(K,X)|B)
            \ <\
            (1-p)mathbb{E}(X|G)mathbb{E}(min(K, X)&|B)-pmathbb{E}(X|B)mathbb{E}(min(K,X)|G)
            end{split}
            end{equation}



            Now we add to both sides $pbigg(mathbb{E}(X|B)mathbb{E}(min(K,X)|G)+mathbb{E}(X|G)mathbb{E}(min(K,X)|B)bigg)$ to got:



            begin{equation}
            mathbb{E}(X|B)mathbb{E}(min(K,X)|G)
            <
            mathbb{E}(X|G)mathbb{E}(min(K, X)|B)
            end{equation}



            If we divide by $mathbb{E}(min(K, X)|B)mathbb{E}(X|B)$ we got:
            $$frac{mathbb{E}(min(K, X)|G)}{mathbb{E}(min(K, X)|B)} < frac{mathbb{E}(X|G)}{mathbb{E}(X|B)}. $$



            We only have to assure, that both $mathbb{E}(min(K, X)|B), mathbb{E}(X|B)$ have same sign.



            If one or three out of $mathbb{E}(X),mathbb{E}(min(K, X)|B), mathbb{E}(X|B)$ have negative sign, we won't have the dependence. Otherwise it's ok (if $E(X)<0$ you'll have to change the inequality signs respectively after the multiplication, and then after the division).






            share|cite|improve this answer


























              -1














              It is only true if we assume something more. Let's $Xsim U(-4,2), K=1$, $G$- $X>=0$, $B$- $X<0$. In this case $D=2.5<4.5=E$, but
              $$frac{mathbb{E}(min(K, X)|G)}{mathbb{E}(min(K, X)|B)}=-frac{1}{4} >-frac{1}{2}= frac{mathbb{E}(X|G)}{mathbb{E}(X|B)}. $$



              Let's start with $D<E$
              begin{equation}
              mathbb{E}(min(K,X)|G) - mathbb{E}(min(K,X)|B)< frac{mathbb{E}(min(K,X))}{mathbb{E}(X)} big( mathbb{E}(X|G) - mathbb{E}(X|B)big)
              end{equation}

              Let's assume that $mathbb{E}(X) > 0$ so we can multiply both sides by $mathbb{E}(X)$.



              Also, as you noticed, $mathbb{E}(min(K, X)) = pmathbb{E}(min(K, X)|G) + (1-p) mathbb{E}(min(K, X)|B)$ and $mathbb{E}(X)= pmathbb{E}(X|G) + (1-p)mathbb{E}(X|B)$. Now we have:
              begin{equation}
              begin{split}
              p mathbb{E}(X|G)mathbb{E}(min(K,X)|G)&- &pmathbb{E}(X|G)mathbb{E}(min(K,X)|B) + \
              +(1-p) mathbb{E}(X|B)mathbb{E}(min(K,X)|G)&- (1-p&) mathbb{E}(X|B)mathbb{E}(min(K,X)|B)
              \ <\
              pmathbb{E}(X|G)mathbb{E}(min(K, X)|G)&- &pmathbb{E}(X|B)mathbb{E}(min(K, X)|G) + \ +(1-p)mathbb{E}(X|G)mathbb{E}(min(K, X)|B)&-(1-p&)mathbb{E}(X|B)mathbb{E}(min(K, X)|B)
              end{split}
              end{equation}



              As you can see, we can subtract some components and we are left with:
              begin{equation}
              begin{split}
              (1-p) mathbb{E}(X|B)mathbb{E}(min(K,X)&|G)-pmathbb{E}(X|G)mathbb{E}(min(K,X)|B)
              \ <\
              (1-p)mathbb{E}(X|G)mathbb{E}(min(K, X)&|B)-pmathbb{E}(X|B)mathbb{E}(min(K,X)|G)
              end{split}
              end{equation}



              Now we add to both sides $pbigg(mathbb{E}(X|B)mathbb{E}(min(K,X)|G)+mathbb{E}(X|G)mathbb{E}(min(K,X)|B)bigg)$ to got:



              begin{equation}
              mathbb{E}(X|B)mathbb{E}(min(K,X)|G)
              <
              mathbb{E}(X|G)mathbb{E}(min(K, X)|B)
              end{equation}



              If we divide by $mathbb{E}(min(K, X)|B)mathbb{E}(X|B)$ we got:
              $$frac{mathbb{E}(min(K, X)|G)}{mathbb{E}(min(K, X)|B)} < frac{mathbb{E}(X|G)}{mathbb{E}(X|B)}. $$



              We only have to assure, that both $mathbb{E}(min(K, X)|B), mathbb{E}(X|B)$ have same sign.



              If one or three out of $mathbb{E}(X),mathbb{E}(min(K, X)|B), mathbb{E}(X|B)$ have negative sign, we won't have the dependence. Otherwise it's ok (if $E(X)<0$ you'll have to change the inequality signs respectively after the multiplication, and then after the division).






              share|cite|improve this answer
























                -1












                -1








                -1






                It is only true if we assume something more. Let's $Xsim U(-4,2), K=1$, $G$- $X>=0$, $B$- $X<0$. In this case $D=2.5<4.5=E$, but
                $$frac{mathbb{E}(min(K, X)|G)}{mathbb{E}(min(K, X)|B)}=-frac{1}{4} >-frac{1}{2}= frac{mathbb{E}(X|G)}{mathbb{E}(X|B)}. $$



                Let's start with $D<E$
                begin{equation}
                mathbb{E}(min(K,X)|G) - mathbb{E}(min(K,X)|B)< frac{mathbb{E}(min(K,X))}{mathbb{E}(X)} big( mathbb{E}(X|G) - mathbb{E}(X|B)big)
                end{equation}

                Let's assume that $mathbb{E}(X) > 0$ so we can multiply both sides by $mathbb{E}(X)$.



                Also, as you noticed, $mathbb{E}(min(K, X)) = pmathbb{E}(min(K, X)|G) + (1-p) mathbb{E}(min(K, X)|B)$ and $mathbb{E}(X)= pmathbb{E}(X|G) + (1-p)mathbb{E}(X|B)$. Now we have:
                begin{equation}
                begin{split}
                p mathbb{E}(X|G)mathbb{E}(min(K,X)|G)&- &pmathbb{E}(X|G)mathbb{E}(min(K,X)|B) + \
                +(1-p) mathbb{E}(X|B)mathbb{E}(min(K,X)|G)&- (1-p&) mathbb{E}(X|B)mathbb{E}(min(K,X)|B)
                \ <\
                pmathbb{E}(X|G)mathbb{E}(min(K, X)|G)&- &pmathbb{E}(X|B)mathbb{E}(min(K, X)|G) + \ +(1-p)mathbb{E}(X|G)mathbb{E}(min(K, X)|B)&-(1-p&)mathbb{E}(X|B)mathbb{E}(min(K, X)|B)
                end{split}
                end{equation}



                As you can see, we can subtract some components and we are left with:
                begin{equation}
                begin{split}
                (1-p) mathbb{E}(X|B)mathbb{E}(min(K,X)&|G)-pmathbb{E}(X|G)mathbb{E}(min(K,X)|B)
                \ <\
                (1-p)mathbb{E}(X|G)mathbb{E}(min(K, X)&|B)-pmathbb{E}(X|B)mathbb{E}(min(K,X)|G)
                end{split}
                end{equation}



                Now we add to both sides $pbigg(mathbb{E}(X|B)mathbb{E}(min(K,X)|G)+mathbb{E}(X|G)mathbb{E}(min(K,X)|B)bigg)$ to got:



                begin{equation}
                mathbb{E}(X|B)mathbb{E}(min(K,X)|G)
                <
                mathbb{E}(X|G)mathbb{E}(min(K, X)|B)
                end{equation}



                If we divide by $mathbb{E}(min(K, X)|B)mathbb{E}(X|B)$ we got:
                $$frac{mathbb{E}(min(K, X)|G)}{mathbb{E}(min(K, X)|B)} < frac{mathbb{E}(X|G)}{mathbb{E}(X|B)}. $$



                We only have to assure, that both $mathbb{E}(min(K, X)|B), mathbb{E}(X|B)$ have same sign.



                If one or three out of $mathbb{E}(X),mathbb{E}(min(K, X)|B), mathbb{E}(X|B)$ have negative sign, we won't have the dependence. Otherwise it's ok (if $E(X)<0$ you'll have to change the inequality signs respectively after the multiplication, and then after the division).






                share|cite|improve this answer












                It is only true if we assume something more. Let's $Xsim U(-4,2), K=1$, $G$- $X>=0$, $B$- $X<0$. In this case $D=2.5<4.5=E$, but
                $$frac{mathbb{E}(min(K, X)|G)}{mathbb{E}(min(K, X)|B)}=-frac{1}{4} >-frac{1}{2}= frac{mathbb{E}(X|G)}{mathbb{E}(X|B)}. $$



                Let's start with $D<E$
                begin{equation}
                mathbb{E}(min(K,X)|G) - mathbb{E}(min(K,X)|B)< frac{mathbb{E}(min(K,X))}{mathbb{E}(X)} big( mathbb{E}(X|G) - mathbb{E}(X|B)big)
                end{equation}

                Let's assume that $mathbb{E}(X) > 0$ so we can multiply both sides by $mathbb{E}(X)$.



                Also, as you noticed, $mathbb{E}(min(K, X)) = pmathbb{E}(min(K, X)|G) + (1-p) mathbb{E}(min(K, X)|B)$ and $mathbb{E}(X)= pmathbb{E}(X|G) + (1-p)mathbb{E}(X|B)$. Now we have:
                begin{equation}
                begin{split}
                p mathbb{E}(X|G)mathbb{E}(min(K,X)|G)&- &pmathbb{E}(X|G)mathbb{E}(min(K,X)|B) + \
                +(1-p) mathbb{E}(X|B)mathbb{E}(min(K,X)|G)&- (1-p&) mathbb{E}(X|B)mathbb{E}(min(K,X)|B)
                \ <\
                pmathbb{E}(X|G)mathbb{E}(min(K, X)|G)&- &pmathbb{E}(X|B)mathbb{E}(min(K, X)|G) + \ +(1-p)mathbb{E}(X|G)mathbb{E}(min(K, X)|B)&-(1-p&)mathbb{E}(X|B)mathbb{E}(min(K, X)|B)
                end{split}
                end{equation}



                As you can see, we can subtract some components and we are left with:
                begin{equation}
                begin{split}
                (1-p) mathbb{E}(X|B)mathbb{E}(min(K,X)&|G)-pmathbb{E}(X|G)mathbb{E}(min(K,X)|B)
                \ <\
                (1-p)mathbb{E}(X|G)mathbb{E}(min(K, X)&|B)-pmathbb{E}(X|B)mathbb{E}(min(K,X)|G)
                end{split}
                end{equation}



                Now we add to both sides $pbigg(mathbb{E}(X|B)mathbb{E}(min(K,X)|G)+mathbb{E}(X|G)mathbb{E}(min(K,X)|B)bigg)$ to got:



                begin{equation}
                mathbb{E}(X|B)mathbb{E}(min(K,X)|G)
                <
                mathbb{E}(X|G)mathbb{E}(min(K, X)|B)
                end{equation}



                If we divide by $mathbb{E}(min(K, X)|B)mathbb{E}(X|B)$ we got:
                $$frac{mathbb{E}(min(K, X)|G)}{mathbb{E}(min(K, X)|B)} < frac{mathbb{E}(X|G)}{mathbb{E}(X|B)}. $$



                We only have to assure, that both $mathbb{E}(min(K, X)|B), mathbb{E}(X|B)$ have same sign.



                If one or three out of $mathbb{E}(X),mathbb{E}(min(K, X)|B), mathbb{E}(X|B)$ have negative sign, we won't have the dependence. Otherwise it's ok (if $E(X)<0$ you'll have to change the inequality signs respectively after the multiplication, and then after the division).







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Nov 29 at 16:09









                vermator

                795




                795






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3017949%2fshow-that-this-inequality-involving-expectations-holds%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Wiesbaden

                    Marschland

                    Dieringhausen