Gaussians as good kernels












0












$begingroup$


Theorem. If $delta>0$ and
$$K_{delta}(x) = delta^{-frac{1}{2}}e^{- pi frac{x^2}{delta}},$$
then
$$widehat{K_{delta}}(xi) = e^{- pi delta xi^2}.$$
Proof.

I started the proof in a very expected way.
$$widehat{K_{delta}}(xi) = int limits_{-infty}^{infty} delta^{-frac{1}{2}}e^{- pi frac{x^2}{delta}} e^{-2 pi ix xi} mbox{d}x. tag{1}$$
Unfortunately I don't know how to evaluate $(1)$. I think using the following equality might help
$$int limits_{-infty}^{infty} e^{- pi x} mbox{d}x =1$$
but I don't know how to use it. I would appreciate any hints or tips.










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Theorem. If $delta>0$ and
    $$K_{delta}(x) = delta^{-frac{1}{2}}e^{- pi frac{x^2}{delta}},$$
    then
    $$widehat{K_{delta}}(xi) = e^{- pi delta xi^2}.$$
    Proof.

    I started the proof in a very expected way.
    $$widehat{K_{delta}}(xi) = int limits_{-infty}^{infty} delta^{-frac{1}{2}}e^{- pi frac{x^2}{delta}} e^{-2 pi ix xi} mbox{d}x. tag{1}$$
    Unfortunately I don't know how to evaluate $(1)$. I think using the following equality might help
    $$int limits_{-infty}^{infty} e^{- pi x} mbox{d}x =1$$
    but I don't know how to use it. I would appreciate any hints or tips.










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      Theorem. If $delta>0$ and
      $$K_{delta}(x) = delta^{-frac{1}{2}}e^{- pi frac{x^2}{delta}},$$
      then
      $$widehat{K_{delta}}(xi) = e^{- pi delta xi^2}.$$
      Proof.

      I started the proof in a very expected way.
      $$widehat{K_{delta}}(xi) = int limits_{-infty}^{infty} delta^{-frac{1}{2}}e^{- pi frac{x^2}{delta}} e^{-2 pi ix xi} mbox{d}x. tag{1}$$
      Unfortunately I don't know how to evaluate $(1)$. I think using the following equality might help
      $$int limits_{-infty}^{infty} e^{- pi x} mbox{d}x =1$$
      but I don't know how to use it. I would appreciate any hints or tips.










      share|cite|improve this question









      $endgroup$




      Theorem. If $delta>0$ and
      $$K_{delta}(x) = delta^{-frac{1}{2}}e^{- pi frac{x^2}{delta}},$$
      then
      $$widehat{K_{delta}}(xi) = e^{- pi delta xi^2}.$$
      Proof.

      I started the proof in a very expected way.
      $$widehat{K_{delta}}(xi) = int limits_{-infty}^{infty} delta^{-frac{1}{2}}e^{- pi frac{x^2}{delta}} e^{-2 pi ix xi} mbox{d}x. tag{1}$$
      Unfortunately I don't know how to evaluate $(1)$. I think using the following equality might help
      $$int limits_{-infty}^{infty} e^{- pi x} mbox{d}x =1$$
      but I don't know how to use it. I would appreciate any hints or tips.







      real-analysis fourier-transform






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 19 '18 at 14:54









      HendrraHendrra

      1,200516




      1,200516






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          The integral is equal to
          $$
          int _{-infty}^{infty} delta^{-frac{1}{2}}e^{- pi frac{x^2}{delta}} e^{-2 pi ix xi}dx = int _{-infty}^{infty}e^{- pi x^2} e^{-2 pi isqrt{delta} x xi}dx= e^{-pideltaxi^2}int _{-infty}^{infty}e^{- pi (x+isqrt{delta}xi)^2} dx.
          $$

          Note that
          $$
          int _{-infty}^{infty}e^{- pi (x+isqrt{delta}xi)^2} dx=int_{Im(z)=sqrt{delta}xi}e^{- pi z^2} dz.
          $$
          By Cauchy's integral theorem, we can show that
          $$
          int_{Im(z)=sqrt{delta}xi}e^{- pi z^2} dz =int_{Im(z)=0}e^{- pi z^2} dz=int_{-infty}^infty e^{- pi z^2} dz=1.
          $$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Can you explain a bit more the second line? I can't see how did you get $Im{z}$ in the integration limit.
            $endgroup$
            – Hendrra
            Dec 19 '18 at 15:09






          • 1




            $begingroup$
            The left hand side is just the line integral of $zmapsto e^{-pi z^2}$ over $Im(z) = sqrt{delta}xi$ parametrized by $gamma(t) = t+isqrt{delta}xi, quad -infty <t<infty$.
            $endgroup$
            – Song
            Dec 19 '18 at 15:12










          • $begingroup$
            Thank you! I appreciate your help and knowledge!
            $endgroup$
            – Hendrra
            Dec 19 '18 at 15:16










          • $begingroup$
            I'm glad it helped :)
            $endgroup$
            – Song
            Dec 19 '18 at 15:19











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046471%2fgaussians-as-good-kernels%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          The integral is equal to
          $$
          int _{-infty}^{infty} delta^{-frac{1}{2}}e^{- pi frac{x^2}{delta}} e^{-2 pi ix xi}dx = int _{-infty}^{infty}e^{- pi x^2} e^{-2 pi isqrt{delta} x xi}dx= e^{-pideltaxi^2}int _{-infty}^{infty}e^{- pi (x+isqrt{delta}xi)^2} dx.
          $$

          Note that
          $$
          int _{-infty}^{infty}e^{- pi (x+isqrt{delta}xi)^2} dx=int_{Im(z)=sqrt{delta}xi}e^{- pi z^2} dz.
          $$
          By Cauchy's integral theorem, we can show that
          $$
          int_{Im(z)=sqrt{delta}xi}e^{- pi z^2} dz =int_{Im(z)=0}e^{- pi z^2} dz=int_{-infty}^infty e^{- pi z^2} dz=1.
          $$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Can you explain a bit more the second line? I can't see how did you get $Im{z}$ in the integration limit.
            $endgroup$
            – Hendrra
            Dec 19 '18 at 15:09






          • 1




            $begingroup$
            The left hand side is just the line integral of $zmapsto e^{-pi z^2}$ over $Im(z) = sqrt{delta}xi$ parametrized by $gamma(t) = t+isqrt{delta}xi, quad -infty <t<infty$.
            $endgroup$
            – Song
            Dec 19 '18 at 15:12










          • $begingroup$
            Thank you! I appreciate your help and knowledge!
            $endgroup$
            – Hendrra
            Dec 19 '18 at 15:16










          • $begingroup$
            I'm glad it helped :)
            $endgroup$
            – Song
            Dec 19 '18 at 15:19
















          1












          $begingroup$

          The integral is equal to
          $$
          int _{-infty}^{infty} delta^{-frac{1}{2}}e^{- pi frac{x^2}{delta}} e^{-2 pi ix xi}dx = int _{-infty}^{infty}e^{- pi x^2} e^{-2 pi isqrt{delta} x xi}dx= e^{-pideltaxi^2}int _{-infty}^{infty}e^{- pi (x+isqrt{delta}xi)^2} dx.
          $$

          Note that
          $$
          int _{-infty}^{infty}e^{- pi (x+isqrt{delta}xi)^2} dx=int_{Im(z)=sqrt{delta}xi}e^{- pi z^2} dz.
          $$
          By Cauchy's integral theorem, we can show that
          $$
          int_{Im(z)=sqrt{delta}xi}e^{- pi z^2} dz =int_{Im(z)=0}e^{- pi z^2} dz=int_{-infty}^infty e^{- pi z^2} dz=1.
          $$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Can you explain a bit more the second line? I can't see how did you get $Im{z}$ in the integration limit.
            $endgroup$
            – Hendrra
            Dec 19 '18 at 15:09






          • 1




            $begingroup$
            The left hand side is just the line integral of $zmapsto e^{-pi z^2}$ over $Im(z) = sqrt{delta}xi$ parametrized by $gamma(t) = t+isqrt{delta}xi, quad -infty <t<infty$.
            $endgroup$
            – Song
            Dec 19 '18 at 15:12










          • $begingroup$
            Thank you! I appreciate your help and knowledge!
            $endgroup$
            – Hendrra
            Dec 19 '18 at 15:16










          • $begingroup$
            I'm glad it helped :)
            $endgroup$
            – Song
            Dec 19 '18 at 15:19














          1












          1








          1





          $begingroup$

          The integral is equal to
          $$
          int _{-infty}^{infty} delta^{-frac{1}{2}}e^{- pi frac{x^2}{delta}} e^{-2 pi ix xi}dx = int _{-infty}^{infty}e^{- pi x^2} e^{-2 pi isqrt{delta} x xi}dx= e^{-pideltaxi^2}int _{-infty}^{infty}e^{- pi (x+isqrt{delta}xi)^2} dx.
          $$

          Note that
          $$
          int _{-infty}^{infty}e^{- pi (x+isqrt{delta}xi)^2} dx=int_{Im(z)=sqrt{delta}xi}e^{- pi z^2} dz.
          $$
          By Cauchy's integral theorem, we can show that
          $$
          int_{Im(z)=sqrt{delta}xi}e^{- pi z^2} dz =int_{Im(z)=0}e^{- pi z^2} dz=int_{-infty}^infty e^{- pi z^2} dz=1.
          $$






          share|cite|improve this answer









          $endgroup$



          The integral is equal to
          $$
          int _{-infty}^{infty} delta^{-frac{1}{2}}e^{- pi frac{x^2}{delta}} e^{-2 pi ix xi}dx = int _{-infty}^{infty}e^{- pi x^2} e^{-2 pi isqrt{delta} x xi}dx= e^{-pideltaxi^2}int _{-infty}^{infty}e^{- pi (x+isqrt{delta}xi)^2} dx.
          $$

          Note that
          $$
          int _{-infty}^{infty}e^{- pi (x+isqrt{delta}xi)^2} dx=int_{Im(z)=sqrt{delta}xi}e^{- pi z^2} dz.
          $$
          By Cauchy's integral theorem, we can show that
          $$
          int_{Im(z)=sqrt{delta}xi}e^{- pi z^2} dz =int_{Im(z)=0}e^{- pi z^2} dz=int_{-infty}^infty e^{- pi z^2} dz=1.
          $$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 19 '18 at 15:07









          SongSong

          14.8k1635




          14.8k1635












          • $begingroup$
            Can you explain a bit more the second line? I can't see how did you get $Im{z}$ in the integration limit.
            $endgroup$
            – Hendrra
            Dec 19 '18 at 15:09






          • 1




            $begingroup$
            The left hand side is just the line integral of $zmapsto e^{-pi z^2}$ over $Im(z) = sqrt{delta}xi$ parametrized by $gamma(t) = t+isqrt{delta}xi, quad -infty <t<infty$.
            $endgroup$
            – Song
            Dec 19 '18 at 15:12










          • $begingroup$
            Thank you! I appreciate your help and knowledge!
            $endgroup$
            – Hendrra
            Dec 19 '18 at 15:16










          • $begingroup$
            I'm glad it helped :)
            $endgroup$
            – Song
            Dec 19 '18 at 15:19


















          • $begingroup$
            Can you explain a bit more the second line? I can't see how did you get $Im{z}$ in the integration limit.
            $endgroup$
            – Hendrra
            Dec 19 '18 at 15:09






          • 1




            $begingroup$
            The left hand side is just the line integral of $zmapsto e^{-pi z^2}$ over $Im(z) = sqrt{delta}xi$ parametrized by $gamma(t) = t+isqrt{delta}xi, quad -infty <t<infty$.
            $endgroup$
            – Song
            Dec 19 '18 at 15:12










          • $begingroup$
            Thank you! I appreciate your help and knowledge!
            $endgroup$
            – Hendrra
            Dec 19 '18 at 15:16










          • $begingroup$
            I'm glad it helped :)
            $endgroup$
            – Song
            Dec 19 '18 at 15:19
















          $begingroup$
          Can you explain a bit more the second line? I can't see how did you get $Im{z}$ in the integration limit.
          $endgroup$
          – Hendrra
          Dec 19 '18 at 15:09




          $begingroup$
          Can you explain a bit more the second line? I can't see how did you get $Im{z}$ in the integration limit.
          $endgroup$
          – Hendrra
          Dec 19 '18 at 15:09




          1




          1




          $begingroup$
          The left hand side is just the line integral of $zmapsto e^{-pi z^2}$ over $Im(z) = sqrt{delta}xi$ parametrized by $gamma(t) = t+isqrt{delta}xi, quad -infty <t<infty$.
          $endgroup$
          – Song
          Dec 19 '18 at 15:12




          $begingroup$
          The left hand side is just the line integral of $zmapsto e^{-pi z^2}$ over $Im(z) = sqrt{delta}xi$ parametrized by $gamma(t) = t+isqrt{delta}xi, quad -infty <t<infty$.
          $endgroup$
          – Song
          Dec 19 '18 at 15:12












          $begingroup$
          Thank you! I appreciate your help and knowledge!
          $endgroup$
          – Hendrra
          Dec 19 '18 at 15:16




          $begingroup$
          Thank you! I appreciate your help and knowledge!
          $endgroup$
          – Hendrra
          Dec 19 '18 at 15:16












          $begingroup$
          I'm glad it helped :)
          $endgroup$
          – Song
          Dec 19 '18 at 15:19




          $begingroup$
          I'm glad it helped :)
          $endgroup$
          – Song
          Dec 19 '18 at 15:19


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046471%2fgaussians-as-good-kernels%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Wiesbaden

          Marschland

          Dieringhausen