Gaussians as good kernels
$begingroup$
Theorem. If $delta>0$ and
$$K_{delta}(x) = delta^{-frac{1}{2}}e^{- pi frac{x^2}{delta}},$$
then
$$widehat{K_{delta}}(xi) = e^{- pi delta xi^2}.$$
Proof.
I started the proof in a very expected way.
$$widehat{K_{delta}}(xi) = int limits_{-infty}^{infty} delta^{-frac{1}{2}}e^{- pi frac{x^2}{delta}} e^{-2 pi ix xi} mbox{d}x. tag{1}$$
Unfortunately I don't know how to evaluate $(1)$. I think using the following equality might help
$$int limits_{-infty}^{infty} e^{- pi x} mbox{d}x =1$$
but I don't know how to use it. I would appreciate any hints or tips.
real-analysis fourier-transform
$endgroup$
add a comment |
$begingroup$
Theorem. If $delta>0$ and
$$K_{delta}(x) = delta^{-frac{1}{2}}e^{- pi frac{x^2}{delta}},$$
then
$$widehat{K_{delta}}(xi) = e^{- pi delta xi^2}.$$
Proof.
I started the proof in a very expected way.
$$widehat{K_{delta}}(xi) = int limits_{-infty}^{infty} delta^{-frac{1}{2}}e^{- pi frac{x^2}{delta}} e^{-2 pi ix xi} mbox{d}x. tag{1}$$
Unfortunately I don't know how to evaluate $(1)$. I think using the following equality might help
$$int limits_{-infty}^{infty} e^{- pi x} mbox{d}x =1$$
but I don't know how to use it. I would appreciate any hints or tips.
real-analysis fourier-transform
$endgroup$
add a comment |
$begingroup$
Theorem. If $delta>0$ and
$$K_{delta}(x) = delta^{-frac{1}{2}}e^{- pi frac{x^2}{delta}},$$
then
$$widehat{K_{delta}}(xi) = e^{- pi delta xi^2}.$$
Proof.
I started the proof in a very expected way.
$$widehat{K_{delta}}(xi) = int limits_{-infty}^{infty} delta^{-frac{1}{2}}e^{- pi frac{x^2}{delta}} e^{-2 pi ix xi} mbox{d}x. tag{1}$$
Unfortunately I don't know how to evaluate $(1)$. I think using the following equality might help
$$int limits_{-infty}^{infty} e^{- pi x} mbox{d}x =1$$
but I don't know how to use it. I would appreciate any hints or tips.
real-analysis fourier-transform
$endgroup$
Theorem. If $delta>0$ and
$$K_{delta}(x) = delta^{-frac{1}{2}}e^{- pi frac{x^2}{delta}},$$
then
$$widehat{K_{delta}}(xi) = e^{- pi delta xi^2}.$$
Proof.
I started the proof in a very expected way.
$$widehat{K_{delta}}(xi) = int limits_{-infty}^{infty} delta^{-frac{1}{2}}e^{- pi frac{x^2}{delta}} e^{-2 pi ix xi} mbox{d}x. tag{1}$$
Unfortunately I don't know how to evaluate $(1)$. I think using the following equality might help
$$int limits_{-infty}^{infty} e^{- pi x} mbox{d}x =1$$
but I don't know how to use it. I would appreciate any hints or tips.
real-analysis fourier-transform
real-analysis fourier-transform
asked Dec 19 '18 at 14:54
HendrraHendrra
1,200516
1,200516
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The integral is equal to
$$
int _{-infty}^{infty} delta^{-frac{1}{2}}e^{- pi frac{x^2}{delta}} e^{-2 pi ix xi}dx = int _{-infty}^{infty}e^{- pi x^2} e^{-2 pi isqrt{delta} x xi}dx= e^{-pideltaxi^2}int _{-infty}^{infty}e^{- pi (x+isqrt{delta}xi)^2} dx.
$$
Note that
$$
int _{-infty}^{infty}e^{- pi (x+isqrt{delta}xi)^2} dx=int_{Im(z)=sqrt{delta}xi}e^{- pi z^2} dz.
$$ By Cauchy's integral theorem, we can show that
$$
int_{Im(z)=sqrt{delta}xi}e^{- pi z^2} dz =int_{Im(z)=0}e^{- pi z^2} dz=int_{-infty}^infty e^{- pi z^2} dz=1.
$$
$endgroup$
$begingroup$
Can you explain a bit more the second line? I can't see how did you get $Im{z}$ in the integration limit.
$endgroup$
– Hendrra
Dec 19 '18 at 15:09
1
$begingroup$
The left hand side is just the line integral of $zmapsto e^{-pi z^2}$ over $Im(z) = sqrt{delta}xi$ parametrized by $gamma(t) = t+isqrt{delta}xi, quad -infty <t<infty$.
$endgroup$
– Song
Dec 19 '18 at 15:12
$begingroup$
Thank you! I appreciate your help and knowledge!
$endgroup$
– Hendrra
Dec 19 '18 at 15:16
$begingroup$
I'm glad it helped :)
$endgroup$
– Song
Dec 19 '18 at 15:19
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046471%2fgaussians-as-good-kernels%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The integral is equal to
$$
int _{-infty}^{infty} delta^{-frac{1}{2}}e^{- pi frac{x^2}{delta}} e^{-2 pi ix xi}dx = int _{-infty}^{infty}e^{- pi x^2} e^{-2 pi isqrt{delta} x xi}dx= e^{-pideltaxi^2}int _{-infty}^{infty}e^{- pi (x+isqrt{delta}xi)^2} dx.
$$
Note that
$$
int _{-infty}^{infty}e^{- pi (x+isqrt{delta}xi)^2} dx=int_{Im(z)=sqrt{delta}xi}e^{- pi z^2} dz.
$$ By Cauchy's integral theorem, we can show that
$$
int_{Im(z)=sqrt{delta}xi}e^{- pi z^2} dz =int_{Im(z)=0}e^{- pi z^2} dz=int_{-infty}^infty e^{- pi z^2} dz=1.
$$
$endgroup$
$begingroup$
Can you explain a bit more the second line? I can't see how did you get $Im{z}$ in the integration limit.
$endgroup$
– Hendrra
Dec 19 '18 at 15:09
1
$begingroup$
The left hand side is just the line integral of $zmapsto e^{-pi z^2}$ over $Im(z) = sqrt{delta}xi$ parametrized by $gamma(t) = t+isqrt{delta}xi, quad -infty <t<infty$.
$endgroup$
– Song
Dec 19 '18 at 15:12
$begingroup$
Thank you! I appreciate your help and knowledge!
$endgroup$
– Hendrra
Dec 19 '18 at 15:16
$begingroup$
I'm glad it helped :)
$endgroup$
– Song
Dec 19 '18 at 15:19
add a comment |
$begingroup$
The integral is equal to
$$
int _{-infty}^{infty} delta^{-frac{1}{2}}e^{- pi frac{x^2}{delta}} e^{-2 pi ix xi}dx = int _{-infty}^{infty}e^{- pi x^2} e^{-2 pi isqrt{delta} x xi}dx= e^{-pideltaxi^2}int _{-infty}^{infty}e^{- pi (x+isqrt{delta}xi)^2} dx.
$$
Note that
$$
int _{-infty}^{infty}e^{- pi (x+isqrt{delta}xi)^2} dx=int_{Im(z)=sqrt{delta}xi}e^{- pi z^2} dz.
$$ By Cauchy's integral theorem, we can show that
$$
int_{Im(z)=sqrt{delta}xi}e^{- pi z^2} dz =int_{Im(z)=0}e^{- pi z^2} dz=int_{-infty}^infty e^{- pi z^2} dz=1.
$$
$endgroup$
$begingroup$
Can you explain a bit more the second line? I can't see how did you get $Im{z}$ in the integration limit.
$endgroup$
– Hendrra
Dec 19 '18 at 15:09
1
$begingroup$
The left hand side is just the line integral of $zmapsto e^{-pi z^2}$ over $Im(z) = sqrt{delta}xi$ parametrized by $gamma(t) = t+isqrt{delta}xi, quad -infty <t<infty$.
$endgroup$
– Song
Dec 19 '18 at 15:12
$begingroup$
Thank you! I appreciate your help and knowledge!
$endgroup$
– Hendrra
Dec 19 '18 at 15:16
$begingroup$
I'm glad it helped :)
$endgroup$
– Song
Dec 19 '18 at 15:19
add a comment |
$begingroup$
The integral is equal to
$$
int _{-infty}^{infty} delta^{-frac{1}{2}}e^{- pi frac{x^2}{delta}} e^{-2 pi ix xi}dx = int _{-infty}^{infty}e^{- pi x^2} e^{-2 pi isqrt{delta} x xi}dx= e^{-pideltaxi^2}int _{-infty}^{infty}e^{- pi (x+isqrt{delta}xi)^2} dx.
$$
Note that
$$
int _{-infty}^{infty}e^{- pi (x+isqrt{delta}xi)^2} dx=int_{Im(z)=sqrt{delta}xi}e^{- pi z^2} dz.
$$ By Cauchy's integral theorem, we can show that
$$
int_{Im(z)=sqrt{delta}xi}e^{- pi z^2} dz =int_{Im(z)=0}e^{- pi z^2} dz=int_{-infty}^infty e^{- pi z^2} dz=1.
$$
$endgroup$
The integral is equal to
$$
int _{-infty}^{infty} delta^{-frac{1}{2}}e^{- pi frac{x^2}{delta}} e^{-2 pi ix xi}dx = int _{-infty}^{infty}e^{- pi x^2} e^{-2 pi isqrt{delta} x xi}dx= e^{-pideltaxi^2}int _{-infty}^{infty}e^{- pi (x+isqrt{delta}xi)^2} dx.
$$
Note that
$$
int _{-infty}^{infty}e^{- pi (x+isqrt{delta}xi)^2} dx=int_{Im(z)=sqrt{delta}xi}e^{- pi z^2} dz.
$$ By Cauchy's integral theorem, we can show that
$$
int_{Im(z)=sqrt{delta}xi}e^{- pi z^2} dz =int_{Im(z)=0}e^{- pi z^2} dz=int_{-infty}^infty e^{- pi z^2} dz=1.
$$
answered Dec 19 '18 at 15:07
SongSong
14.8k1635
14.8k1635
$begingroup$
Can you explain a bit more the second line? I can't see how did you get $Im{z}$ in the integration limit.
$endgroup$
– Hendrra
Dec 19 '18 at 15:09
1
$begingroup$
The left hand side is just the line integral of $zmapsto e^{-pi z^2}$ over $Im(z) = sqrt{delta}xi$ parametrized by $gamma(t) = t+isqrt{delta}xi, quad -infty <t<infty$.
$endgroup$
– Song
Dec 19 '18 at 15:12
$begingroup$
Thank you! I appreciate your help and knowledge!
$endgroup$
– Hendrra
Dec 19 '18 at 15:16
$begingroup$
I'm glad it helped :)
$endgroup$
– Song
Dec 19 '18 at 15:19
add a comment |
$begingroup$
Can you explain a bit more the second line? I can't see how did you get $Im{z}$ in the integration limit.
$endgroup$
– Hendrra
Dec 19 '18 at 15:09
1
$begingroup$
The left hand side is just the line integral of $zmapsto e^{-pi z^2}$ over $Im(z) = sqrt{delta}xi$ parametrized by $gamma(t) = t+isqrt{delta}xi, quad -infty <t<infty$.
$endgroup$
– Song
Dec 19 '18 at 15:12
$begingroup$
Thank you! I appreciate your help and knowledge!
$endgroup$
– Hendrra
Dec 19 '18 at 15:16
$begingroup$
I'm glad it helped :)
$endgroup$
– Song
Dec 19 '18 at 15:19
$begingroup$
Can you explain a bit more the second line? I can't see how did you get $Im{z}$ in the integration limit.
$endgroup$
– Hendrra
Dec 19 '18 at 15:09
$begingroup$
Can you explain a bit more the second line? I can't see how did you get $Im{z}$ in the integration limit.
$endgroup$
– Hendrra
Dec 19 '18 at 15:09
1
1
$begingroup$
The left hand side is just the line integral of $zmapsto e^{-pi z^2}$ over $Im(z) = sqrt{delta}xi$ parametrized by $gamma(t) = t+isqrt{delta}xi, quad -infty <t<infty$.
$endgroup$
– Song
Dec 19 '18 at 15:12
$begingroup$
The left hand side is just the line integral of $zmapsto e^{-pi z^2}$ over $Im(z) = sqrt{delta}xi$ parametrized by $gamma(t) = t+isqrt{delta}xi, quad -infty <t<infty$.
$endgroup$
– Song
Dec 19 '18 at 15:12
$begingroup$
Thank you! I appreciate your help and knowledge!
$endgroup$
– Hendrra
Dec 19 '18 at 15:16
$begingroup$
Thank you! I appreciate your help and knowledge!
$endgroup$
– Hendrra
Dec 19 '18 at 15:16
$begingroup$
I'm glad it helped :)
$endgroup$
– Song
Dec 19 '18 at 15:19
$begingroup$
I'm glad it helped :)
$endgroup$
– Song
Dec 19 '18 at 15:19
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046471%2fgaussians-as-good-kernels%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown