Calculate $limlimits_{ xto + infty}xcdot sin(sqrt{x^{2}+3}-sqrt{x^{2}+2})$












3












$begingroup$


I know that $$limlimits_{ xto + infty}xcdot sin(sqrt{x^{2}+3}-sqrt{x^{2}+2})\=limlimits_{ xto + infty}xcdot sinleft(frac{1}{sqrt{x^{2}+3}+sqrt{x^{2}+2}}right).$$ If $x rightarrow + infty$, then $sinleft(frac{1}{sqrt{x^{2}+3}+sqrt{x^{2}+2}}right)rightarrow sin0 $. However I have also $x$ before $sin x$ and I don't know how to calculate it.










share|cite|improve this question











$endgroup$

















    3












    $begingroup$


    I know that $$limlimits_{ xto + infty}xcdot sin(sqrt{x^{2}+3}-sqrt{x^{2}+2})\=limlimits_{ xto + infty}xcdot sinleft(frac{1}{sqrt{x^{2}+3}+sqrt{x^{2}+2}}right).$$ If $x rightarrow + infty$, then $sinleft(frac{1}{sqrt{x^{2}+3}+sqrt{x^{2}+2}}right)rightarrow sin0 $. However I have also $x$ before $sin x$ and I don't know how to calculate it.










    share|cite|improve this question











    $endgroup$















      3












      3








      3


      0



      $begingroup$


      I know that $$limlimits_{ xto + infty}xcdot sin(sqrt{x^{2}+3}-sqrt{x^{2}+2})\=limlimits_{ xto + infty}xcdot sinleft(frac{1}{sqrt{x^{2}+3}+sqrt{x^{2}+2}}right).$$ If $x rightarrow + infty$, then $sinleft(frac{1}{sqrt{x^{2}+3}+sqrt{x^{2}+2}}right)rightarrow sin0 $. However I have also $x$ before $sin x$ and I don't know how to calculate it.










      share|cite|improve this question











      $endgroup$




      I know that $$limlimits_{ xto + infty}xcdot sin(sqrt{x^{2}+3}-sqrt{x^{2}+2})\=limlimits_{ xto + infty}xcdot sinleft(frac{1}{sqrt{x^{2}+3}+sqrt{x^{2}+2}}right).$$ If $x rightarrow + infty$, then $sinleft(frac{1}{sqrt{x^{2}+3}+sqrt{x^{2}+2}}right)rightarrow sin0 $. However I have also $x$ before $sin x$ and I don't know how to calculate it.







      real-analysis limits






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 31 '18 at 13:52









      user376343

      3,9584829




      3,9584829










      asked Dec 31 '18 at 13:23









      MP3129MP3129

      607110




      607110






















          3 Answers
          3






          active

          oldest

          votes


















          4












          $begingroup$

          Letting $h=frac1x$:



          $$begin{array}{cl}
          &displaystyle lim_{x to infty} x sin left( sqrt{x^2+3} - sqrt{x^2+2} right) \
          =&displaystyle lim_{x to infty} x sin left( frac 1 {sqrt{x^2+3} + sqrt{x^2+2} } right) \
          =&displaystyle lim_{h to 0^+} frac1h sin left( frac h {sqrt{1+3h^2} + sqrt{1+2h^2} } right) \
          =&displaystyle lim_{h to 0^+} frac 1 {sqrt{1+3h^2} + sqrt{1+2h^2}} frac {sqrt{1+3h^2} + sqrt{1+2h^2}} h sin left( frac h {sqrt{1+3h^2} + sqrt{1+2h^2} } right) \
          =&displaystyle frac12 times lim_{h to 0^+} frac {sqrt{1+3h^2} + sqrt{1+2h^2}} h sin left( frac h {sqrt{1+3h^2} + sqrt{1+2h^2} } right) \
          =&displaystyle frac12 times 1 \
          =&dfrac12
          end{array}$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Actually the searched limit is equal to $$frac{1}{2}$$
            $endgroup$
            – Dr. Sonnhard Graubner
            Dec 31 '18 at 13:36










          • $begingroup$
            Fixed.${ }$${ }$
            $endgroup$
            – Kenny Lau
            Dec 31 '18 at 13:37



















          4












          $begingroup$

          begin{align}
          lim_{x to infty} x cdot left( sin left( sqrt{x^2+3}-sqrt{x^2+2}right)right)&=lim_{x to infty} x cdot sin left( frac{1}{sqrt{x^2+3}+sqrt{x^2+2}}right)\
          &=lim_{x to infty} frac{x}{sqrt{x^2+3}+sqrt{x^2+2}}\
          &=lim_{x to infty} frac{1}{sqrt{1+frac{3}{x^2}}+sqrt{1+frac{2}{x^2}}}\
          &= frac12
          end{align}






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            You use the assumption that d.d.d. x $sinx = x$, I understand correctly?
            $endgroup$
            – MP3129
            Dec 31 '18 at 14:02






          • 2




            $begingroup$
            not sure what do those $d$ mean.The main trick is $lim_{h to 0^+} frac{sin h}h=1$, hence that is why I can remove the sine.
            $endgroup$
            – Siong Thye Goh
            Dec 31 '18 at 14:07



















          1












          $begingroup$

          The ordo calculus is very useful for such problems. Sometimes you do not need the full power of Taylor series, only the first couple of coefficients.



          $sqrt{x^2+3}- sqrt{x^2+3} = x(sqrt{1+3/x^2}- sqrt{1+2/x^2})=$



          $= x(1+frac{1}{2}cdot(3/x^2)+O(1/x^4)- 1-frac{1}{2}cdot(2/x^2)+O(1/x^4))= frac{1}{2x}+O(1/x^3)$.



          Now $sin(frac{1}{2x}+O(1/x^3))= frac{1}{2x}+O(1/x^2)$ as $xrightarrow infty$, thus the expression is $frac{1}{2}+ O(frac{1}{x})$.






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057710%2fcalculate-lim-limits-x-to-inftyx-cdot-sin-sqrtx23-sqrtx22%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            3 Answers
            3






            active

            oldest

            votes








            3 Answers
            3






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            4












            $begingroup$

            Letting $h=frac1x$:



            $$begin{array}{cl}
            &displaystyle lim_{x to infty} x sin left( sqrt{x^2+3} - sqrt{x^2+2} right) \
            =&displaystyle lim_{x to infty} x sin left( frac 1 {sqrt{x^2+3} + sqrt{x^2+2} } right) \
            =&displaystyle lim_{h to 0^+} frac1h sin left( frac h {sqrt{1+3h^2} + sqrt{1+2h^2} } right) \
            =&displaystyle lim_{h to 0^+} frac 1 {sqrt{1+3h^2} + sqrt{1+2h^2}} frac {sqrt{1+3h^2} + sqrt{1+2h^2}} h sin left( frac h {sqrt{1+3h^2} + sqrt{1+2h^2} } right) \
            =&displaystyle frac12 times lim_{h to 0^+} frac {sqrt{1+3h^2} + sqrt{1+2h^2}} h sin left( frac h {sqrt{1+3h^2} + sqrt{1+2h^2} } right) \
            =&displaystyle frac12 times 1 \
            =&dfrac12
            end{array}$$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Actually the searched limit is equal to $$frac{1}{2}$$
              $endgroup$
              – Dr. Sonnhard Graubner
              Dec 31 '18 at 13:36










            • $begingroup$
              Fixed.${ }$${ }$
              $endgroup$
              – Kenny Lau
              Dec 31 '18 at 13:37
















            4












            $begingroup$

            Letting $h=frac1x$:



            $$begin{array}{cl}
            &displaystyle lim_{x to infty} x sin left( sqrt{x^2+3} - sqrt{x^2+2} right) \
            =&displaystyle lim_{x to infty} x sin left( frac 1 {sqrt{x^2+3} + sqrt{x^2+2} } right) \
            =&displaystyle lim_{h to 0^+} frac1h sin left( frac h {sqrt{1+3h^2} + sqrt{1+2h^2} } right) \
            =&displaystyle lim_{h to 0^+} frac 1 {sqrt{1+3h^2} + sqrt{1+2h^2}} frac {sqrt{1+3h^2} + sqrt{1+2h^2}} h sin left( frac h {sqrt{1+3h^2} + sqrt{1+2h^2} } right) \
            =&displaystyle frac12 times lim_{h to 0^+} frac {sqrt{1+3h^2} + sqrt{1+2h^2}} h sin left( frac h {sqrt{1+3h^2} + sqrt{1+2h^2} } right) \
            =&displaystyle frac12 times 1 \
            =&dfrac12
            end{array}$$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Actually the searched limit is equal to $$frac{1}{2}$$
              $endgroup$
              – Dr. Sonnhard Graubner
              Dec 31 '18 at 13:36










            • $begingroup$
              Fixed.${ }$${ }$
              $endgroup$
              – Kenny Lau
              Dec 31 '18 at 13:37














            4












            4








            4





            $begingroup$

            Letting $h=frac1x$:



            $$begin{array}{cl}
            &displaystyle lim_{x to infty} x sin left( sqrt{x^2+3} - sqrt{x^2+2} right) \
            =&displaystyle lim_{x to infty} x sin left( frac 1 {sqrt{x^2+3} + sqrt{x^2+2} } right) \
            =&displaystyle lim_{h to 0^+} frac1h sin left( frac h {sqrt{1+3h^2} + sqrt{1+2h^2} } right) \
            =&displaystyle lim_{h to 0^+} frac 1 {sqrt{1+3h^2} + sqrt{1+2h^2}} frac {sqrt{1+3h^2} + sqrt{1+2h^2}} h sin left( frac h {sqrt{1+3h^2} + sqrt{1+2h^2} } right) \
            =&displaystyle frac12 times lim_{h to 0^+} frac {sqrt{1+3h^2} + sqrt{1+2h^2}} h sin left( frac h {sqrt{1+3h^2} + sqrt{1+2h^2} } right) \
            =&displaystyle frac12 times 1 \
            =&dfrac12
            end{array}$$






            share|cite|improve this answer











            $endgroup$



            Letting $h=frac1x$:



            $$begin{array}{cl}
            &displaystyle lim_{x to infty} x sin left( sqrt{x^2+3} - sqrt{x^2+2} right) \
            =&displaystyle lim_{x to infty} x sin left( frac 1 {sqrt{x^2+3} + sqrt{x^2+2} } right) \
            =&displaystyle lim_{h to 0^+} frac1h sin left( frac h {sqrt{1+3h^2} + sqrt{1+2h^2} } right) \
            =&displaystyle lim_{h to 0^+} frac 1 {sqrt{1+3h^2} + sqrt{1+2h^2}} frac {sqrt{1+3h^2} + sqrt{1+2h^2}} h sin left( frac h {sqrt{1+3h^2} + sqrt{1+2h^2} } right) \
            =&displaystyle frac12 times lim_{h to 0^+} frac {sqrt{1+3h^2} + sqrt{1+2h^2}} h sin left( frac h {sqrt{1+3h^2} + sqrt{1+2h^2} } right) \
            =&displaystyle frac12 times 1 \
            =&dfrac12
            end{array}$$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Dec 31 '18 at 13:37

























            answered Dec 31 '18 at 13:30









            Kenny LauKenny Lau

            20k2160




            20k2160












            • $begingroup$
              Actually the searched limit is equal to $$frac{1}{2}$$
              $endgroup$
              – Dr. Sonnhard Graubner
              Dec 31 '18 at 13:36










            • $begingroup$
              Fixed.${ }$${ }$
              $endgroup$
              – Kenny Lau
              Dec 31 '18 at 13:37


















            • $begingroup$
              Actually the searched limit is equal to $$frac{1}{2}$$
              $endgroup$
              – Dr. Sonnhard Graubner
              Dec 31 '18 at 13:36










            • $begingroup$
              Fixed.${ }$${ }$
              $endgroup$
              – Kenny Lau
              Dec 31 '18 at 13:37
















            $begingroup$
            Actually the searched limit is equal to $$frac{1}{2}$$
            $endgroup$
            – Dr. Sonnhard Graubner
            Dec 31 '18 at 13:36




            $begingroup$
            Actually the searched limit is equal to $$frac{1}{2}$$
            $endgroup$
            – Dr. Sonnhard Graubner
            Dec 31 '18 at 13:36












            $begingroup$
            Fixed.${ }$${ }$
            $endgroup$
            – Kenny Lau
            Dec 31 '18 at 13:37




            $begingroup$
            Fixed.${ }$${ }$
            $endgroup$
            – Kenny Lau
            Dec 31 '18 at 13:37











            4












            $begingroup$

            begin{align}
            lim_{x to infty} x cdot left( sin left( sqrt{x^2+3}-sqrt{x^2+2}right)right)&=lim_{x to infty} x cdot sin left( frac{1}{sqrt{x^2+3}+sqrt{x^2+2}}right)\
            &=lim_{x to infty} frac{x}{sqrt{x^2+3}+sqrt{x^2+2}}\
            &=lim_{x to infty} frac{1}{sqrt{1+frac{3}{x^2}}+sqrt{1+frac{2}{x^2}}}\
            &= frac12
            end{align}






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              You use the assumption that d.d.d. x $sinx = x$, I understand correctly?
              $endgroup$
              – MP3129
              Dec 31 '18 at 14:02






            • 2




              $begingroup$
              not sure what do those $d$ mean.The main trick is $lim_{h to 0^+} frac{sin h}h=1$, hence that is why I can remove the sine.
              $endgroup$
              – Siong Thye Goh
              Dec 31 '18 at 14:07
















            4












            $begingroup$

            begin{align}
            lim_{x to infty} x cdot left( sin left( sqrt{x^2+3}-sqrt{x^2+2}right)right)&=lim_{x to infty} x cdot sin left( frac{1}{sqrt{x^2+3}+sqrt{x^2+2}}right)\
            &=lim_{x to infty} frac{x}{sqrt{x^2+3}+sqrt{x^2+2}}\
            &=lim_{x to infty} frac{1}{sqrt{1+frac{3}{x^2}}+sqrt{1+frac{2}{x^2}}}\
            &= frac12
            end{align}






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              You use the assumption that d.d.d. x $sinx = x$, I understand correctly?
              $endgroup$
              – MP3129
              Dec 31 '18 at 14:02






            • 2




              $begingroup$
              not sure what do those $d$ mean.The main trick is $lim_{h to 0^+} frac{sin h}h=1$, hence that is why I can remove the sine.
              $endgroup$
              – Siong Thye Goh
              Dec 31 '18 at 14:07














            4












            4








            4





            $begingroup$

            begin{align}
            lim_{x to infty} x cdot left( sin left( sqrt{x^2+3}-sqrt{x^2+2}right)right)&=lim_{x to infty} x cdot sin left( frac{1}{sqrt{x^2+3}+sqrt{x^2+2}}right)\
            &=lim_{x to infty} frac{x}{sqrt{x^2+3}+sqrt{x^2+2}}\
            &=lim_{x to infty} frac{1}{sqrt{1+frac{3}{x^2}}+sqrt{1+frac{2}{x^2}}}\
            &= frac12
            end{align}






            share|cite|improve this answer









            $endgroup$



            begin{align}
            lim_{x to infty} x cdot left( sin left( sqrt{x^2+3}-sqrt{x^2+2}right)right)&=lim_{x to infty} x cdot sin left( frac{1}{sqrt{x^2+3}+sqrt{x^2+2}}right)\
            &=lim_{x to infty} frac{x}{sqrt{x^2+3}+sqrt{x^2+2}}\
            &=lim_{x to infty} frac{1}{sqrt{1+frac{3}{x^2}}+sqrt{1+frac{2}{x^2}}}\
            &= frac12
            end{align}







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Dec 31 '18 at 13:37









            Siong Thye GohSiong Thye Goh

            103k1468119




            103k1468119












            • $begingroup$
              You use the assumption that d.d.d. x $sinx = x$, I understand correctly?
              $endgroup$
              – MP3129
              Dec 31 '18 at 14:02






            • 2




              $begingroup$
              not sure what do those $d$ mean.The main trick is $lim_{h to 0^+} frac{sin h}h=1$, hence that is why I can remove the sine.
              $endgroup$
              – Siong Thye Goh
              Dec 31 '18 at 14:07


















            • $begingroup$
              You use the assumption that d.d.d. x $sinx = x$, I understand correctly?
              $endgroup$
              – MP3129
              Dec 31 '18 at 14:02






            • 2




              $begingroup$
              not sure what do those $d$ mean.The main trick is $lim_{h to 0^+} frac{sin h}h=1$, hence that is why I can remove the sine.
              $endgroup$
              – Siong Thye Goh
              Dec 31 '18 at 14:07
















            $begingroup$
            You use the assumption that d.d.d. x $sinx = x$, I understand correctly?
            $endgroup$
            – MP3129
            Dec 31 '18 at 14:02




            $begingroup$
            You use the assumption that d.d.d. x $sinx = x$, I understand correctly?
            $endgroup$
            – MP3129
            Dec 31 '18 at 14:02




            2




            2




            $begingroup$
            not sure what do those $d$ mean.The main trick is $lim_{h to 0^+} frac{sin h}h=1$, hence that is why I can remove the sine.
            $endgroup$
            – Siong Thye Goh
            Dec 31 '18 at 14:07




            $begingroup$
            not sure what do those $d$ mean.The main trick is $lim_{h to 0^+} frac{sin h}h=1$, hence that is why I can remove the sine.
            $endgroup$
            – Siong Thye Goh
            Dec 31 '18 at 14:07











            1












            $begingroup$

            The ordo calculus is very useful for such problems. Sometimes you do not need the full power of Taylor series, only the first couple of coefficients.



            $sqrt{x^2+3}- sqrt{x^2+3} = x(sqrt{1+3/x^2}- sqrt{1+2/x^2})=$



            $= x(1+frac{1}{2}cdot(3/x^2)+O(1/x^4)- 1-frac{1}{2}cdot(2/x^2)+O(1/x^4))= frac{1}{2x}+O(1/x^3)$.



            Now $sin(frac{1}{2x}+O(1/x^3))= frac{1}{2x}+O(1/x^2)$ as $xrightarrow infty$, thus the expression is $frac{1}{2}+ O(frac{1}{x})$.






            share|cite|improve this answer











            $endgroup$


















              1












              $begingroup$

              The ordo calculus is very useful for such problems. Sometimes you do not need the full power of Taylor series, only the first couple of coefficients.



              $sqrt{x^2+3}- sqrt{x^2+3} = x(sqrt{1+3/x^2}- sqrt{1+2/x^2})=$



              $= x(1+frac{1}{2}cdot(3/x^2)+O(1/x^4)- 1-frac{1}{2}cdot(2/x^2)+O(1/x^4))= frac{1}{2x}+O(1/x^3)$.



              Now $sin(frac{1}{2x}+O(1/x^3))= frac{1}{2x}+O(1/x^2)$ as $xrightarrow infty$, thus the expression is $frac{1}{2}+ O(frac{1}{x})$.






              share|cite|improve this answer











              $endgroup$
















                1












                1








                1





                $begingroup$

                The ordo calculus is very useful for such problems. Sometimes you do not need the full power of Taylor series, only the first couple of coefficients.



                $sqrt{x^2+3}- sqrt{x^2+3} = x(sqrt{1+3/x^2}- sqrt{1+2/x^2})=$



                $= x(1+frac{1}{2}cdot(3/x^2)+O(1/x^4)- 1-frac{1}{2}cdot(2/x^2)+O(1/x^4))= frac{1}{2x}+O(1/x^3)$.



                Now $sin(frac{1}{2x}+O(1/x^3))= frac{1}{2x}+O(1/x^2)$ as $xrightarrow infty$, thus the expression is $frac{1}{2}+ O(frac{1}{x})$.






                share|cite|improve this answer











                $endgroup$



                The ordo calculus is very useful for such problems. Sometimes you do not need the full power of Taylor series, only the first couple of coefficients.



                $sqrt{x^2+3}- sqrt{x^2+3} = x(sqrt{1+3/x^2}- sqrt{1+2/x^2})=$



                $= x(1+frac{1}{2}cdot(3/x^2)+O(1/x^4)- 1-frac{1}{2}cdot(2/x^2)+O(1/x^4))= frac{1}{2x}+O(1/x^3)$.



                Now $sin(frac{1}{2x}+O(1/x^3))= frac{1}{2x}+O(1/x^2)$ as $xrightarrow infty$, thus the expression is $frac{1}{2}+ O(frac{1}{x})$.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Dec 31 '18 at 13:52

























                answered Dec 31 '18 at 13:40









                A. PongráczA. Pongrácz

                5,9981929




                5,9981929






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057710%2fcalculate-lim-limits-x-to-inftyx-cdot-sin-sqrtx23-sqrtx22%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Wiesbaden

                    Marschland

                    Dieringhausen