Unique prime ideal factorization in domains?
$begingroup$
This is a follow-up to this question.
Let $A$ be a domain; let $mathfrak p_1,dots,mathfrak p_k$ be distinct prime ideals of $A$ such that $mathfrak p_i^{j+1}nemathfrak p_i^j$ for all $1le ile k$, $jge1$; and let $m$ and $n$ be elements of $mathbb N^k$ such that $$mathfrak p_1^{m_1}cdotsmathfrak p_k^{m_k}=mathfrak p_1^{n_1}cdotsmathfrak p_k^{n_k}$$ Can we conclude that $m$ and $n$ are equal?
user26857 proved that the answer is Yes if $A$ is noetherian (see this answer). (Of course in this case the condition $mathfrak p_i^{j+1}nemathfrak p_i^j$ for all $jge1$ is equivalent to $mathfrak p_ine(0)$.)
commutative-algebra maximal-and-prime-ideals integral-domain
$endgroup$
add a comment |
$begingroup$
This is a follow-up to this question.
Let $A$ be a domain; let $mathfrak p_1,dots,mathfrak p_k$ be distinct prime ideals of $A$ such that $mathfrak p_i^{j+1}nemathfrak p_i^j$ for all $1le ile k$, $jge1$; and let $m$ and $n$ be elements of $mathbb N^k$ such that $$mathfrak p_1^{m_1}cdotsmathfrak p_k^{m_k}=mathfrak p_1^{n_1}cdotsmathfrak p_k^{n_k}$$ Can we conclude that $m$ and $n$ are equal?
user26857 proved that the answer is Yes if $A$ is noetherian (see this answer). (Of course in this case the condition $mathfrak p_i^{j+1}nemathfrak p_i^j$ for all $jge1$ is equivalent to $mathfrak p_ine(0)$.)
commutative-algebra maximal-and-prime-ideals integral-domain
$endgroup$
add a comment |
$begingroup$
This is a follow-up to this question.
Let $A$ be a domain; let $mathfrak p_1,dots,mathfrak p_k$ be distinct prime ideals of $A$ such that $mathfrak p_i^{j+1}nemathfrak p_i^j$ for all $1le ile k$, $jge1$; and let $m$ and $n$ be elements of $mathbb N^k$ such that $$mathfrak p_1^{m_1}cdotsmathfrak p_k^{m_k}=mathfrak p_1^{n_1}cdotsmathfrak p_k^{n_k}$$ Can we conclude that $m$ and $n$ are equal?
user26857 proved that the answer is Yes if $A$ is noetherian (see this answer). (Of course in this case the condition $mathfrak p_i^{j+1}nemathfrak p_i^j$ for all $jge1$ is equivalent to $mathfrak p_ine(0)$.)
commutative-algebra maximal-and-prime-ideals integral-domain
$endgroup$
This is a follow-up to this question.
Let $A$ be a domain; let $mathfrak p_1,dots,mathfrak p_k$ be distinct prime ideals of $A$ such that $mathfrak p_i^{j+1}nemathfrak p_i^j$ for all $1le ile k$, $jge1$; and let $m$ and $n$ be elements of $mathbb N^k$ such that $$mathfrak p_1^{m_1}cdotsmathfrak p_k^{m_k}=mathfrak p_1^{n_1}cdotsmathfrak p_k^{n_k}$$ Can we conclude that $m$ and $n$ are equal?
user26857 proved that the answer is Yes if $A$ is noetherian (see this answer). (Of course in this case the condition $mathfrak p_i^{j+1}nemathfrak p_i^j$ for all $jge1$ is equivalent to $mathfrak p_ine(0)$.)
commutative-algebra maximal-and-prime-ideals integral-domain
commutative-algebra maximal-and-prime-ideals integral-domain
asked Dec 31 '18 at 13:21
Pierre-Yves GaillardPierre-Yves Gaillard
13.5k23184
13.5k23184
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The answer is no.
Let $G$ be the abelian group $mathbb{Z}times mathbb{Z}$ with the lexicographic order, and let $Msubset G$ be the sub-monoid of elements that are greater than or equal to $(0,0)$. Define monoid ideals $I_1:={(m,n):mgeq 1text{ or }ngeq 1}subset M$ and $I_2:={(m,n):mgeq 1}subset M$. For $jinmathbb{Z}_{geq 0}$ and $Isubset M$ an ideal, write $jI:={i_1+ldots+i_j:i_1,ldots,i_jin I}subset M$. Check that for all $j$, we have $jI_1neq (j+1)I_1$ and $jI_2neq (j+1)I_2$, but $I_1+I_2=I_2$.
We get a counterexample to your question by taking $A=k[M]$ to be the monoid ring of $M$ (where $k$ is any field), $mathfrak{p}_1=k[I_1]$, and $mathfrak{p}_2=k[I_2]$. Then $mathfrak{p}_1^jneq mathfrak{p}_1^{j+1}$ and $mathfrak{p}_2^jneq mathfrak{p}_2^{j+1}$, but $mathfrak{p}_1mathfrak{p}_2=mathfrak{p}_2$.
An alternate way to describe this example is $A=k[x,y,yx^{-1},yx^{-2},ldots]$, $mathfrak{p}_1=(x)$, $mathfrak{p}_2=(y,yx^{-1},yx^{-2},ldots)$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057707%2funique-prime-ideal-factorization-in-domains%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The answer is no.
Let $G$ be the abelian group $mathbb{Z}times mathbb{Z}$ with the lexicographic order, and let $Msubset G$ be the sub-monoid of elements that are greater than or equal to $(0,0)$. Define monoid ideals $I_1:={(m,n):mgeq 1text{ or }ngeq 1}subset M$ and $I_2:={(m,n):mgeq 1}subset M$. For $jinmathbb{Z}_{geq 0}$ and $Isubset M$ an ideal, write $jI:={i_1+ldots+i_j:i_1,ldots,i_jin I}subset M$. Check that for all $j$, we have $jI_1neq (j+1)I_1$ and $jI_2neq (j+1)I_2$, but $I_1+I_2=I_2$.
We get a counterexample to your question by taking $A=k[M]$ to be the monoid ring of $M$ (where $k$ is any field), $mathfrak{p}_1=k[I_1]$, and $mathfrak{p}_2=k[I_2]$. Then $mathfrak{p}_1^jneq mathfrak{p}_1^{j+1}$ and $mathfrak{p}_2^jneq mathfrak{p}_2^{j+1}$, but $mathfrak{p}_1mathfrak{p}_2=mathfrak{p}_2$.
An alternate way to describe this example is $A=k[x,y,yx^{-1},yx^{-2},ldots]$, $mathfrak{p}_1=(x)$, $mathfrak{p}_2=(y,yx^{-1},yx^{-2},ldots)$.
$endgroup$
add a comment |
$begingroup$
The answer is no.
Let $G$ be the abelian group $mathbb{Z}times mathbb{Z}$ with the lexicographic order, and let $Msubset G$ be the sub-monoid of elements that are greater than or equal to $(0,0)$. Define monoid ideals $I_1:={(m,n):mgeq 1text{ or }ngeq 1}subset M$ and $I_2:={(m,n):mgeq 1}subset M$. For $jinmathbb{Z}_{geq 0}$ and $Isubset M$ an ideal, write $jI:={i_1+ldots+i_j:i_1,ldots,i_jin I}subset M$. Check that for all $j$, we have $jI_1neq (j+1)I_1$ and $jI_2neq (j+1)I_2$, but $I_1+I_2=I_2$.
We get a counterexample to your question by taking $A=k[M]$ to be the monoid ring of $M$ (where $k$ is any field), $mathfrak{p}_1=k[I_1]$, and $mathfrak{p}_2=k[I_2]$. Then $mathfrak{p}_1^jneq mathfrak{p}_1^{j+1}$ and $mathfrak{p}_2^jneq mathfrak{p}_2^{j+1}$, but $mathfrak{p}_1mathfrak{p}_2=mathfrak{p}_2$.
An alternate way to describe this example is $A=k[x,y,yx^{-1},yx^{-2},ldots]$, $mathfrak{p}_1=(x)$, $mathfrak{p}_2=(y,yx^{-1},yx^{-2},ldots)$.
$endgroup$
add a comment |
$begingroup$
The answer is no.
Let $G$ be the abelian group $mathbb{Z}times mathbb{Z}$ with the lexicographic order, and let $Msubset G$ be the sub-monoid of elements that are greater than or equal to $(0,0)$. Define monoid ideals $I_1:={(m,n):mgeq 1text{ or }ngeq 1}subset M$ and $I_2:={(m,n):mgeq 1}subset M$. For $jinmathbb{Z}_{geq 0}$ and $Isubset M$ an ideal, write $jI:={i_1+ldots+i_j:i_1,ldots,i_jin I}subset M$. Check that for all $j$, we have $jI_1neq (j+1)I_1$ and $jI_2neq (j+1)I_2$, but $I_1+I_2=I_2$.
We get a counterexample to your question by taking $A=k[M]$ to be the monoid ring of $M$ (where $k$ is any field), $mathfrak{p}_1=k[I_1]$, and $mathfrak{p}_2=k[I_2]$. Then $mathfrak{p}_1^jneq mathfrak{p}_1^{j+1}$ and $mathfrak{p}_2^jneq mathfrak{p}_2^{j+1}$, but $mathfrak{p}_1mathfrak{p}_2=mathfrak{p}_2$.
An alternate way to describe this example is $A=k[x,y,yx^{-1},yx^{-2},ldots]$, $mathfrak{p}_1=(x)$, $mathfrak{p}_2=(y,yx^{-1},yx^{-2},ldots)$.
$endgroup$
The answer is no.
Let $G$ be the abelian group $mathbb{Z}times mathbb{Z}$ with the lexicographic order, and let $Msubset G$ be the sub-monoid of elements that are greater than or equal to $(0,0)$. Define monoid ideals $I_1:={(m,n):mgeq 1text{ or }ngeq 1}subset M$ and $I_2:={(m,n):mgeq 1}subset M$. For $jinmathbb{Z}_{geq 0}$ and $Isubset M$ an ideal, write $jI:={i_1+ldots+i_j:i_1,ldots,i_jin I}subset M$. Check that for all $j$, we have $jI_1neq (j+1)I_1$ and $jI_2neq (j+1)I_2$, but $I_1+I_2=I_2$.
We get a counterexample to your question by taking $A=k[M]$ to be the monoid ring of $M$ (where $k$ is any field), $mathfrak{p}_1=k[I_1]$, and $mathfrak{p}_2=k[I_2]$. Then $mathfrak{p}_1^jneq mathfrak{p}_1^{j+1}$ and $mathfrak{p}_2^jneq mathfrak{p}_2^{j+1}$, but $mathfrak{p}_1mathfrak{p}_2=mathfrak{p}_2$.
An alternate way to describe this example is $A=k[x,y,yx^{-1},yx^{-2},ldots]$, $mathfrak{p}_1=(x)$, $mathfrak{p}_2=(y,yx^{-1},yx^{-2},ldots)$.
answered Jan 3 at 0:46
Julian RosenJulian Rosen
12.1k12349
12.1k12349
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057707%2funique-prime-ideal-factorization-in-domains%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown