Convergence in total variation distance of Markov kernel $n$-fold composition to the stationary measure
$begingroup$
Let
$(E,mathcal E)$ be a measurable space
$mu$ be a measure on $(E,mathcal E)$
$p:Eto(0,infty)$ with $$int p:{rm d}mu=1$$ and $pi$ denote the measure with density $p$ with respect to $mu$
$kappa$ be a Markov kernel on $(E,mathcal E)$
Assume $kappa$ is reversible with respect to $pi$, i.e. $$intpi({rm d}x)intkappa(x,{rm d}y)f(x,y)=intpi({rm d}y)intkappa(y,{rm d}x)f(x,y)tag1$$ for all bounded $mathcal Eotimesmathcal E$-measurable $f:Etimes Etomathbb R$. From $(1)$, we're able to conclude that $pi$ is invariant with respect to $kappa$, i.e. $$pikappa=pitag2,$$ where the left-hand side denotes the composition of $pi$ and $kappa$.
I want to show that $$left|kappa^n(x,;cdot;)-piright|xrightarrow{ntoinfty}0;;;text{for }pitext{-almost all }xin Etag3,$$ where the left-hand side denotes the total variation distance of $kappa^n(x,;cdot;)$ and $pi$ and $kappa^n$ denotes the $n$-fold composition of $kappa$.
As usual, $$kappa f:=intkappa(;cdot;,{rm d}y)f(y)$$ for all $mathcal E$-measurable $f:Etomathbb R$ such that the integral is well-defined. In addition, let $$hatkappa f:=intkappa({rm d}x,;cdot;)f(x).$$
Now, suppose that we're able to show $$left|hatkappa^n f-pright|_{L^1(mu)}xrightarrow{ntoinfty}0tag4$$ for all $mathcal E$-measurable $f:Eto[0,infty)$ with $$int f:{rm d}mu=1tag5.$$ Are we able to conclude $(3)$?
Clearly, the left-hand side in $(4)$ is equal to $$2left|(hatkappa^n f)mu-pmuright|,$$ where $(hatkappa^n f)mu$ and $pmu$ denote the measures with density $hatkappa^n f$ and $p$ with respect to $mu$, respectively.
probability-theory measure-theory markov-chains markov-process monte-carlo
$endgroup$
add a comment |
$begingroup$
Let
$(E,mathcal E)$ be a measurable space
$mu$ be a measure on $(E,mathcal E)$
$p:Eto(0,infty)$ with $$int p:{rm d}mu=1$$ and $pi$ denote the measure with density $p$ with respect to $mu$
$kappa$ be a Markov kernel on $(E,mathcal E)$
Assume $kappa$ is reversible with respect to $pi$, i.e. $$intpi({rm d}x)intkappa(x,{rm d}y)f(x,y)=intpi({rm d}y)intkappa(y,{rm d}x)f(x,y)tag1$$ for all bounded $mathcal Eotimesmathcal E$-measurable $f:Etimes Etomathbb R$. From $(1)$, we're able to conclude that $pi$ is invariant with respect to $kappa$, i.e. $$pikappa=pitag2,$$ where the left-hand side denotes the composition of $pi$ and $kappa$.
I want to show that $$left|kappa^n(x,;cdot;)-piright|xrightarrow{ntoinfty}0;;;text{for }pitext{-almost all }xin Etag3,$$ where the left-hand side denotes the total variation distance of $kappa^n(x,;cdot;)$ and $pi$ and $kappa^n$ denotes the $n$-fold composition of $kappa$.
As usual, $$kappa f:=intkappa(;cdot;,{rm d}y)f(y)$$ for all $mathcal E$-measurable $f:Etomathbb R$ such that the integral is well-defined. In addition, let $$hatkappa f:=intkappa({rm d}x,;cdot;)f(x).$$
Now, suppose that we're able to show $$left|hatkappa^n f-pright|_{L^1(mu)}xrightarrow{ntoinfty}0tag4$$ for all $mathcal E$-measurable $f:Eto[0,infty)$ with $$int f:{rm d}mu=1tag5.$$ Are we able to conclude $(3)$?
Clearly, the left-hand side in $(4)$ is equal to $$2left|(hatkappa^n f)mu-pmuright|,$$ where $(hatkappa^n f)mu$ and $pmu$ denote the measures with density $hatkappa^n f$ and $p$ with respect to $mu$, respectively.
probability-theory measure-theory markov-chains markov-process monte-carlo
$endgroup$
add a comment |
$begingroup$
Let
$(E,mathcal E)$ be a measurable space
$mu$ be a measure on $(E,mathcal E)$
$p:Eto(0,infty)$ with $$int p:{rm d}mu=1$$ and $pi$ denote the measure with density $p$ with respect to $mu$
$kappa$ be a Markov kernel on $(E,mathcal E)$
Assume $kappa$ is reversible with respect to $pi$, i.e. $$intpi({rm d}x)intkappa(x,{rm d}y)f(x,y)=intpi({rm d}y)intkappa(y,{rm d}x)f(x,y)tag1$$ for all bounded $mathcal Eotimesmathcal E$-measurable $f:Etimes Etomathbb R$. From $(1)$, we're able to conclude that $pi$ is invariant with respect to $kappa$, i.e. $$pikappa=pitag2,$$ where the left-hand side denotes the composition of $pi$ and $kappa$.
I want to show that $$left|kappa^n(x,;cdot;)-piright|xrightarrow{ntoinfty}0;;;text{for }pitext{-almost all }xin Etag3,$$ where the left-hand side denotes the total variation distance of $kappa^n(x,;cdot;)$ and $pi$ and $kappa^n$ denotes the $n$-fold composition of $kappa$.
As usual, $$kappa f:=intkappa(;cdot;,{rm d}y)f(y)$$ for all $mathcal E$-measurable $f:Etomathbb R$ such that the integral is well-defined. In addition, let $$hatkappa f:=intkappa({rm d}x,;cdot;)f(x).$$
Now, suppose that we're able to show $$left|hatkappa^n f-pright|_{L^1(mu)}xrightarrow{ntoinfty}0tag4$$ for all $mathcal E$-measurable $f:Eto[0,infty)$ with $$int f:{rm d}mu=1tag5.$$ Are we able to conclude $(3)$?
Clearly, the left-hand side in $(4)$ is equal to $$2left|(hatkappa^n f)mu-pmuright|,$$ where $(hatkappa^n f)mu$ and $pmu$ denote the measures with density $hatkappa^n f$ and $p$ with respect to $mu$, respectively.
probability-theory measure-theory markov-chains markov-process monte-carlo
$endgroup$
Let
$(E,mathcal E)$ be a measurable space
$mu$ be a measure on $(E,mathcal E)$
$p:Eto(0,infty)$ with $$int p:{rm d}mu=1$$ and $pi$ denote the measure with density $p$ with respect to $mu$
$kappa$ be a Markov kernel on $(E,mathcal E)$
Assume $kappa$ is reversible with respect to $pi$, i.e. $$intpi({rm d}x)intkappa(x,{rm d}y)f(x,y)=intpi({rm d}y)intkappa(y,{rm d}x)f(x,y)tag1$$ for all bounded $mathcal Eotimesmathcal E$-measurable $f:Etimes Etomathbb R$. From $(1)$, we're able to conclude that $pi$ is invariant with respect to $kappa$, i.e. $$pikappa=pitag2,$$ where the left-hand side denotes the composition of $pi$ and $kappa$.
I want to show that $$left|kappa^n(x,;cdot;)-piright|xrightarrow{ntoinfty}0;;;text{for }pitext{-almost all }xin Etag3,$$ where the left-hand side denotes the total variation distance of $kappa^n(x,;cdot;)$ and $pi$ and $kappa^n$ denotes the $n$-fold composition of $kappa$.
As usual, $$kappa f:=intkappa(;cdot;,{rm d}y)f(y)$$ for all $mathcal E$-measurable $f:Etomathbb R$ such that the integral is well-defined. In addition, let $$hatkappa f:=intkappa({rm d}x,;cdot;)f(x).$$
Now, suppose that we're able to show $$left|hatkappa^n f-pright|_{L^1(mu)}xrightarrow{ntoinfty}0tag4$$ for all $mathcal E$-measurable $f:Eto[0,infty)$ with $$int f:{rm d}mu=1tag5.$$ Are we able to conclude $(3)$?
Clearly, the left-hand side in $(4)$ is equal to $$2left|(hatkappa^n f)mu-pmuright|,$$ where $(hatkappa^n f)mu$ and $pmu$ denote the measures with density $hatkappa^n f$ and $p$ with respect to $mu$, respectively.
probability-theory measure-theory markov-chains markov-process monte-carlo
probability-theory measure-theory markov-chains markov-process monte-carlo
asked Dec 31 '18 at 12:19
0xbadf00d0xbadf00d
1,88741533
1,88741533
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057653%2fconvergence-in-total-variation-distance-of-markov-kernel-n-fold-composition-to%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057653%2fconvergence-in-total-variation-distance-of-markov-kernel-n-fold-composition-to%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown