Convergence in total variation distance of Markov kernel $n$-fold composition to the stationary measure

Multi tool use
Multi tool use












0












$begingroup$


Let





  • $(E,mathcal E)$ be a measurable space


  • $mu$ be a measure on $(E,mathcal E)$


  • $p:Eto(0,infty)$ with $$int p:{rm d}mu=1$$ and $pi$ denote the measure with density $p$ with respect to $mu$


  • $kappa$ be a Markov kernel on $(E,mathcal E)$


Assume $kappa$ is reversible with respect to $pi$, i.e. $$intpi({rm d}x)intkappa(x,{rm d}y)f(x,y)=intpi({rm d}y)intkappa(y,{rm d}x)f(x,y)tag1$$ for all bounded $mathcal Eotimesmathcal E$-measurable $f:Etimes Etomathbb R$. From $(1)$, we're able to conclude that $pi$ is invariant with respect to $kappa$, i.e. $$pikappa=pitag2,$$ where the left-hand side denotes the composition of $pi$ and $kappa$.




I want to show that $$left|kappa^n(x,;cdot;)-piright|xrightarrow{ntoinfty}0;;;text{for }pitext{-almost all }xin Etag3,$$ where the left-hand side denotes the total variation distance of $kappa^n(x,;cdot;)$ and $pi$ and $kappa^n$ denotes the $n$-fold composition of $kappa$.




As usual, $$kappa f:=intkappa(;cdot;,{rm d}y)f(y)$$ for all $mathcal E$-measurable $f:Etomathbb R$ such that the integral is well-defined. In addition, let $$hatkappa f:=intkappa({rm d}x,;cdot;)f(x).$$




Now, suppose that we're able to show $$left|hatkappa^n f-pright|_{L^1(mu)}xrightarrow{ntoinfty}0tag4$$ for all $mathcal E$-measurable $f:Eto[0,infty)$ with $$int f:{rm d}mu=1tag5.$$ Are we able to conclude $(3)$?




Clearly, the left-hand side in $(4)$ is equal to $$2left|(hatkappa^n f)mu-pmuright|,$$ where $(hatkappa^n f)mu$ and $pmu$ denote the measures with density $hatkappa^n f$ and $p$ with respect to $mu$, respectively.










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Let





    • $(E,mathcal E)$ be a measurable space


    • $mu$ be a measure on $(E,mathcal E)$


    • $p:Eto(0,infty)$ with $$int p:{rm d}mu=1$$ and $pi$ denote the measure with density $p$ with respect to $mu$


    • $kappa$ be a Markov kernel on $(E,mathcal E)$


    Assume $kappa$ is reversible with respect to $pi$, i.e. $$intpi({rm d}x)intkappa(x,{rm d}y)f(x,y)=intpi({rm d}y)intkappa(y,{rm d}x)f(x,y)tag1$$ for all bounded $mathcal Eotimesmathcal E$-measurable $f:Etimes Etomathbb R$. From $(1)$, we're able to conclude that $pi$ is invariant with respect to $kappa$, i.e. $$pikappa=pitag2,$$ where the left-hand side denotes the composition of $pi$ and $kappa$.




    I want to show that $$left|kappa^n(x,;cdot;)-piright|xrightarrow{ntoinfty}0;;;text{for }pitext{-almost all }xin Etag3,$$ where the left-hand side denotes the total variation distance of $kappa^n(x,;cdot;)$ and $pi$ and $kappa^n$ denotes the $n$-fold composition of $kappa$.




    As usual, $$kappa f:=intkappa(;cdot;,{rm d}y)f(y)$$ for all $mathcal E$-measurable $f:Etomathbb R$ such that the integral is well-defined. In addition, let $$hatkappa f:=intkappa({rm d}x,;cdot;)f(x).$$




    Now, suppose that we're able to show $$left|hatkappa^n f-pright|_{L^1(mu)}xrightarrow{ntoinfty}0tag4$$ for all $mathcal E$-measurable $f:Eto[0,infty)$ with $$int f:{rm d}mu=1tag5.$$ Are we able to conclude $(3)$?




    Clearly, the left-hand side in $(4)$ is equal to $$2left|(hatkappa^n f)mu-pmuright|,$$ where $(hatkappa^n f)mu$ and $pmu$ denote the measures with density $hatkappa^n f$ and $p$ with respect to $mu$, respectively.










    share|cite|improve this question









    $endgroup$















      0












      0








      0


      1



      $begingroup$


      Let





      • $(E,mathcal E)$ be a measurable space


      • $mu$ be a measure on $(E,mathcal E)$


      • $p:Eto(0,infty)$ with $$int p:{rm d}mu=1$$ and $pi$ denote the measure with density $p$ with respect to $mu$


      • $kappa$ be a Markov kernel on $(E,mathcal E)$


      Assume $kappa$ is reversible with respect to $pi$, i.e. $$intpi({rm d}x)intkappa(x,{rm d}y)f(x,y)=intpi({rm d}y)intkappa(y,{rm d}x)f(x,y)tag1$$ for all bounded $mathcal Eotimesmathcal E$-measurable $f:Etimes Etomathbb R$. From $(1)$, we're able to conclude that $pi$ is invariant with respect to $kappa$, i.e. $$pikappa=pitag2,$$ where the left-hand side denotes the composition of $pi$ and $kappa$.




      I want to show that $$left|kappa^n(x,;cdot;)-piright|xrightarrow{ntoinfty}0;;;text{for }pitext{-almost all }xin Etag3,$$ where the left-hand side denotes the total variation distance of $kappa^n(x,;cdot;)$ and $pi$ and $kappa^n$ denotes the $n$-fold composition of $kappa$.




      As usual, $$kappa f:=intkappa(;cdot;,{rm d}y)f(y)$$ for all $mathcal E$-measurable $f:Etomathbb R$ such that the integral is well-defined. In addition, let $$hatkappa f:=intkappa({rm d}x,;cdot;)f(x).$$




      Now, suppose that we're able to show $$left|hatkappa^n f-pright|_{L^1(mu)}xrightarrow{ntoinfty}0tag4$$ for all $mathcal E$-measurable $f:Eto[0,infty)$ with $$int f:{rm d}mu=1tag5.$$ Are we able to conclude $(3)$?




      Clearly, the left-hand side in $(4)$ is equal to $$2left|(hatkappa^n f)mu-pmuright|,$$ where $(hatkappa^n f)mu$ and $pmu$ denote the measures with density $hatkappa^n f$ and $p$ with respect to $mu$, respectively.










      share|cite|improve this question









      $endgroup$




      Let





      • $(E,mathcal E)$ be a measurable space


      • $mu$ be a measure on $(E,mathcal E)$


      • $p:Eto(0,infty)$ with $$int p:{rm d}mu=1$$ and $pi$ denote the measure with density $p$ with respect to $mu$


      • $kappa$ be a Markov kernel on $(E,mathcal E)$


      Assume $kappa$ is reversible with respect to $pi$, i.e. $$intpi({rm d}x)intkappa(x,{rm d}y)f(x,y)=intpi({rm d}y)intkappa(y,{rm d}x)f(x,y)tag1$$ for all bounded $mathcal Eotimesmathcal E$-measurable $f:Etimes Etomathbb R$. From $(1)$, we're able to conclude that $pi$ is invariant with respect to $kappa$, i.e. $$pikappa=pitag2,$$ where the left-hand side denotes the composition of $pi$ and $kappa$.




      I want to show that $$left|kappa^n(x,;cdot;)-piright|xrightarrow{ntoinfty}0;;;text{for }pitext{-almost all }xin Etag3,$$ where the left-hand side denotes the total variation distance of $kappa^n(x,;cdot;)$ and $pi$ and $kappa^n$ denotes the $n$-fold composition of $kappa$.




      As usual, $$kappa f:=intkappa(;cdot;,{rm d}y)f(y)$$ for all $mathcal E$-measurable $f:Etomathbb R$ such that the integral is well-defined. In addition, let $$hatkappa f:=intkappa({rm d}x,;cdot;)f(x).$$




      Now, suppose that we're able to show $$left|hatkappa^n f-pright|_{L^1(mu)}xrightarrow{ntoinfty}0tag4$$ for all $mathcal E$-measurable $f:Eto[0,infty)$ with $$int f:{rm d}mu=1tag5.$$ Are we able to conclude $(3)$?




      Clearly, the left-hand side in $(4)$ is equal to $$2left|(hatkappa^n f)mu-pmuright|,$$ where $(hatkappa^n f)mu$ and $pmu$ denote the measures with density $hatkappa^n f$ and $p$ with respect to $mu$, respectively.







      probability-theory measure-theory markov-chains markov-process monte-carlo






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 31 '18 at 12:19









      0xbadf00d0xbadf00d

      1,88741533




      1,88741533






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057653%2fconvergence-in-total-variation-distance-of-markov-kernel-n-fold-composition-to%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057653%2fconvergence-in-total-variation-distance-of-markov-kernel-n-fold-composition-to%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          islXkux9qbPjTX ghweDahFUcEgPz,DMjS
          K2zjipba,kttw0LcWUNkyKr0GRxa5 8v,auFCt4JjcVJO,RJSi F2Lom,hph 3JdgzBC 0gx4F6qXzGyR7 5GivSltd1,tU37UjUgjINSPC

          Popular posts from this blog

          Wiesbaden

          Marschland

          Dieringhausen