Upper bound for differences between two expectations












0












$begingroup$


$f : mathbb R^n rightarrow mathbb R$. Is there a good upper bound for the following difference?
begin{equation*}
big| mathbb E_{(x_1, ldots, x_n) sim nu} f(x_1, ldots, x_n)
- mathbb E_{(x_1, ldots, x_n) sim mu^n} f(x_1, ldots, x_n) big|
end{equation*}

the marginal probability distribution of $nu$ is $mu$










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    Unfortunately the best bound is $(sup f) - (inf f)$. For example, for bounded $inf$ and $sup$, take $U, V$ iid uniform over $[0,1]$ and for distribution 1 consider $(X_1,Y_1)=(U,U)$, for distribution 2 consider $(X_2,Y_2)=(U,V)$. Then define $f(x,x)=a$ and $f(x,y) = b$ whenever $x neq y$. So the difference is $|a-b|$ which is arbitrarily large.
    $endgroup$
    – Michael
    Dec 27 '18 at 15:03


















0












$begingroup$


$f : mathbb R^n rightarrow mathbb R$. Is there a good upper bound for the following difference?
begin{equation*}
big| mathbb E_{(x_1, ldots, x_n) sim nu} f(x_1, ldots, x_n)
- mathbb E_{(x_1, ldots, x_n) sim mu^n} f(x_1, ldots, x_n) big|
end{equation*}

the marginal probability distribution of $nu$ is $mu$










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    Unfortunately the best bound is $(sup f) - (inf f)$. For example, for bounded $inf$ and $sup$, take $U, V$ iid uniform over $[0,1]$ and for distribution 1 consider $(X_1,Y_1)=(U,U)$, for distribution 2 consider $(X_2,Y_2)=(U,V)$. Then define $f(x,x)=a$ and $f(x,y) = b$ whenever $x neq y$. So the difference is $|a-b|$ which is arbitrarily large.
    $endgroup$
    – Michael
    Dec 27 '18 at 15:03
















0












0








0





$begingroup$


$f : mathbb R^n rightarrow mathbb R$. Is there a good upper bound for the following difference?
begin{equation*}
big| mathbb E_{(x_1, ldots, x_n) sim nu} f(x_1, ldots, x_n)
- mathbb E_{(x_1, ldots, x_n) sim mu^n} f(x_1, ldots, x_n) big|
end{equation*}

the marginal probability distribution of $nu$ is $mu$










share|cite|improve this question









$endgroup$




$f : mathbb R^n rightarrow mathbb R$. Is there a good upper bound for the following difference?
begin{equation*}
big| mathbb E_{(x_1, ldots, x_n) sim nu} f(x_1, ldots, x_n)
- mathbb E_{(x_1, ldots, x_n) sim mu^n} f(x_1, ldots, x_n) big|
end{equation*}

the marginal probability distribution of $nu$ is $mu$







probability probability-distributions expected-value upper-lower-bounds marginal-distribution






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 27 '18 at 14:37









Rui ZhangRui Zhang

316




316








  • 1




    $begingroup$
    Unfortunately the best bound is $(sup f) - (inf f)$. For example, for bounded $inf$ and $sup$, take $U, V$ iid uniform over $[0,1]$ and for distribution 1 consider $(X_1,Y_1)=(U,U)$, for distribution 2 consider $(X_2,Y_2)=(U,V)$. Then define $f(x,x)=a$ and $f(x,y) = b$ whenever $x neq y$. So the difference is $|a-b|$ which is arbitrarily large.
    $endgroup$
    – Michael
    Dec 27 '18 at 15:03
















  • 1




    $begingroup$
    Unfortunately the best bound is $(sup f) - (inf f)$. For example, for bounded $inf$ and $sup$, take $U, V$ iid uniform over $[0,1]$ and for distribution 1 consider $(X_1,Y_1)=(U,U)$, for distribution 2 consider $(X_2,Y_2)=(U,V)$. Then define $f(x,x)=a$ and $f(x,y) = b$ whenever $x neq y$. So the difference is $|a-b|$ which is arbitrarily large.
    $endgroup$
    – Michael
    Dec 27 '18 at 15:03










1




1




$begingroup$
Unfortunately the best bound is $(sup f) - (inf f)$. For example, for bounded $inf$ and $sup$, take $U, V$ iid uniform over $[0,1]$ and for distribution 1 consider $(X_1,Y_1)=(U,U)$, for distribution 2 consider $(X_2,Y_2)=(U,V)$. Then define $f(x,x)=a$ and $f(x,y) = b$ whenever $x neq y$. So the difference is $|a-b|$ which is arbitrarily large.
$endgroup$
– Michael
Dec 27 '18 at 15:03






$begingroup$
Unfortunately the best bound is $(sup f) - (inf f)$. For example, for bounded $inf$ and $sup$, take $U, V$ iid uniform over $[0,1]$ and for distribution 1 consider $(X_1,Y_1)=(U,U)$, for distribution 2 consider $(X_2,Y_2)=(U,V)$. Then define $f(x,x)=a$ and $f(x,y) = b$ whenever $x neq y$. So the difference is $|a-b|$ which is arbitrarily large.
$endgroup$
– Michael
Dec 27 '18 at 15:03












0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3053983%2fupper-bound-for-differences-between-two-expectations%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3053983%2fupper-bound-for-differences-between-two-expectations%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Wiesbaden

Marschland

Dieringhausen