Upper bound for differences between two expectations
$begingroup$
$f : mathbb R^n rightarrow mathbb R$. Is there a good upper bound for the following difference?
begin{equation*}
big| mathbb E_{(x_1, ldots, x_n) sim nu} f(x_1, ldots, x_n)
- mathbb E_{(x_1, ldots, x_n) sim mu^n} f(x_1, ldots, x_n) big|
end{equation*}
the marginal probability distribution of $nu$ is $mu$
probability probability-distributions expected-value upper-lower-bounds marginal-distribution
$endgroup$
add a comment |
$begingroup$
$f : mathbb R^n rightarrow mathbb R$. Is there a good upper bound for the following difference?
begin{equation*}
big| mathbb E_{(x_1, ldots, x_n) sim nu} f(x_1, ldots, x_n)
- mathbb E_{(x_1, ldots, x_n) sim mu^n} f(x_1, ldots, x_n) big|
end{equation*}
the marginal probability distribution of $nu$ is $mu$
probability probability-distributions expected-value upper-lower-bounds marginal-distribution
$endgroup$
1
$begingroup$
Unfortunately the best bound is $(sup f) - (inf f)$. For example, for bounded $inf$ and $sup$, take $U, V$ iid uniform over $[0,1]$ and for distribution 1 consider $(X_1,Y_1)=(U,U)$, for distribution 2 consider $(X_2,Y_2)=(U,V)$. Then define $f(x,x)=a$ and $f(x,y) = b$ whenever $x neq y$. So the difference is $|a-b|$ which is arbitrarily large.
$endgroup$
– Michael
Dec 27 '18 at 15:03
add a comment |
$begingroup$
$f : mathbb R^n rightarrow mathbb R$. Is there a good upper bound for the following difference?
begin{equation*}
big| mathbb E_{(x_1, ldots, x_n) sim nu} f(x_1, ldots, x_n)
- mathbb E_{(x_1, ldots, x_n) sim mu^n} f(x_1, ldots, x_n) big|
end{equation*}
the marginal probability distribution of $nu$ is $mu$
probability probability-distributions expected-value upper-lower-bounds marginal-distribution
$endgroup$
$f : mathbb R^n rightarrow mathbb R$. Is there a good upper bound for the following difference?
begin{equation*}
big| mathbb E_{(x_1, ldots, x_n) sim nu} f(x_1, ldots, x_n)
- mathbb E_{(x_1, ldots, x_n) sim mu^n} f(x_1, ldots, x_n) big|
end{equation*}
the marginal probability distribution of $nu$ is $mu$
probability probability-distributions expected-value upper-lower-bounds marginal-distribution
probability probability-distributions expected-value upper-lower-bounds marginal-distribution
asked Dec 27 '18 at 14:37
Rui ZhangRui Zhang
316
316
1
$begingroup$
Unfortunately the best bound is $(sup f) - (inf f)$. For example, for bounded $inf$ and $sup$, take $U, V$ iid uniform over $[0,1]$ and for distribution 1 consider $(X_1,Y_1)=(U,U)$, for distribution 2 consider $(X_2,Y_2)=(U,V)$. Then define $f(x,x)=a$ and $f(x,y) = b$ whenever $x neq y$. So the difference is $|a-b|$ which is arbitrarily large.
$endgroup$
– Michael
Dec 27 '18 at 15:03
add a comment |
1
$begingroup$
Unfortunately the best bound is $(sup f) - (inf f)$. For example, for bounded $inf$ and $sup$, take $U, V$ iid uniform over $[0,1]$ and for distribution 1 consider $(X_1,Y_1)=(U,U)$, for distribution 2 consider $(X_2,Y_2)=(U,V)$. Then define $f(x,x)=a$ and $f(x,y) = b$ whenever $x neq y$. So the difference is $|a-b|$ which is arbitrarily large.
$endgroup$
– Michael
Dec 27 '18 at 15:03
1
1
$begingroup$
Unfortunately the best bound is $(sup f) - (inf f)$. For example, for bounded $inf$ and $sup$, take $U, V$ iid uniform over $[0,1]$ and for distribution 1 consider $(X_1,Y_1)=(U,U)$, for distribution 2 consider $(X_2,Y_2)=(U,V)$. Then define $f(x,x)=a$ and $f(x,y) = b$ whenever $x neq y$. So the difference is $|a-b|$ which is arbitrarily large.
$endgroup$
– Michael
Dec 27 '18 at 15:03
$begingroup$
Unfortunately the best bound is $(sup f) - (inf f)$. For example, for bounded $inf$ and $sup$, take $U, V$ iid uniform over $[0,1]$ and for distribution 1 consider $(X_1,Y_1)=(U,U)$, for distribution 2 consider $(X_2,Y_2)=(U,V)$. Then define $f(x,x)=a$ and $f(x,y) = b$ whenever $x neq y$. So the difference is $|a-b|$ which is arbitrarily large.
$endgroup$
– Michael
Dec 27 '18 at 15:03
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3053983%2fupper-bound-for-differences-between-two-expectations%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3053983%2fupper-bound-for-differences-between-two-expectations%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Unfortunately the best bound is $(sup f) - (inf f)$. For example, for bounded $inf$ and $sup$, take $U, V$ iid uniform over $[0,1]$ and for distribution 1 consider $(X_1,Y_1)=(U,U)$, for distribution 2 consider $(X_2,Y_2)=(U,V)$. Then define $f(x,x)=a$ and $f(x,y) = b$ whenever $x neq y$. So the difference is $|a-b|$ which is arbitrarily large.
$endgroup$
– Michael
Dec 27 '18 at 15:03