Mapping headers into PySpark sql Dataframe
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ height:90px;width:728px;box-sizing:border-box;
}
I am working on Azure Databricks, and my scenario is the following:
I'm reading (using: spark.read.format("csv").options().load()) a CSV file stored in Blob storage. Such file contains 1000 columns/variables(one thousand) but data and header are separated (different files). I want to map headers into the pyspark.sql.dataframe.DataFrame but my approach took 1.18 hours.
This is the approached I used.
oldNames = df.schema.names
newNames = ["name", "lastName" ,.........] #Just an example
dfMap= reduce(lambda df, idx: df.withColumnRenamed(oldColumns[idx], newColumns[idx]), range(len(oldColumns)), df)
I am sure there is a faster way/better approach to accomplish such a task.
Thanks!
python pyspark azure-databricks
add a comment |
I am working on Azure Databricks, and my scenario is the following:
I'm reading (using: spark.read.format("csv").options().load()) a CSV file stored in Blob storage. Such file contains 1000 columns/variables(one thousand) but data and header are separated (different files). I want to map headers into the pyspark.sql.dataframe.DataFrame but my approach took 1.18 hours.
This is the approached I used.
oldNames = df.schema.names
newNames = ["name", "lastName" ,.........] #Just an example
dfMap= reduce(lambda df, idx: df.withColumnRenamed(oldColumns[idx], newColumns[idx]), range(len(oldColumns)), df)
I am sure there is a faster way/better approach to accomplish such a task.
Thanks!
python pyspark azure-databricks
add a comment |
I am working on Azure Databricks, and my scenario is the following:
I'm reading (using: spark.read.format("csv").options().load()) a CSV file stored in Blob storage. Such file contains 1000 columns/variables(one thousand) but data and header are separated (different files). I want to map headers into the pyspark.sql.dataframe.DataFrame but my approach took 1.18 hours.
This is the approached I used.
oldNames = df.schema.names
newNames = ["name", "lastName" ,.........] #Just an example
dfMap= reduce(lambda df, idx: df.withColumnRenamed(oldColumns[idx], newColumns[idx]), range(len(oldColumns)), df)
I am sure there is a faster way/better approach to accomplish such a task.
Thanks!
python pyspark azure-databricks
I am working on Azure Databricks, and my scenario is the following:
I'm reading (using: spark.read.format("csv").options().load()) a CSV file stored in Blob storage. Such file contains 1000 columns/variables(one thousand) but data and header are separated (different files). I want to map headers into the pyspark.sql.dataframe.DataFrame but my approach took 1.18 hours.
This is the approached I used.
oldNames = df.schema.names
newNames = ["name", "lastName" ,.........] #Just an example
dfMap= reduce(lambda df, idx: df.withColumnRenamed(oldColumns[idx], newColumns[idx]), range(len(oldColumns)), df)
I am sure there is a faster way/better approach to accomplish such a task.
Thanks!
python pyspark azure-databricks
python pyspark azure-databricks
asked Nov 26 '18 at 23:50
FelipePerezRFelipePerezR
338
338
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53490800%2fmapping-headers-into-pyspark-sql-dataframe%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53490800%2fmapping-headers-into-pyspark-sql-dataframe%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown