Complex integration lemma: shorter proof?
up vote
4
down vote
favorite
The black line is the branch cut.
Lemma
$$lim_{Deltato0^+}left(int_{gamma_1}+int_{gamma_2}right)f(z)ln(z-s)dz=-2pi iint_{pe^{itheta}}^{qe^{itheta}}f(t)dt$$ where $arg(z-s)in[theta,theta+2pi)$, $f$ being holomorphic on the path of integration.
Many advanced users on this site use this lemma without stating, letting alone proving it. I wrote a proof here, but it is quite long.
Is there a shorter proof of this lemma?
complex-analysis complex-integration
add a comment |
up vote
4
down vote
favorite
The black line is the branch cut.
Lemma
$$lim_{Deltato0^+}left(int_{gamma_1}+int_{gamma_2}right)f(z)ln(z-s)dz=-2pi iint_{pe^{itheta}}^{qe^{itheta}}f(t)dt$$ where $arg(z-s)in[theta,theta+2pi)$, $f$ being holomorphic on the path of integration.
Many advanced users on this site use this lemma without stating, letting alone proving it. I wrote a proof here, but it is quite long.
Is there a shorter proof of this lemma?
complex-analysis complex-integration
add a comment |
up vote
4
down vote
favorite
up vote
4
down vote
favorite
The black line is the branch cut.
Lemma
$$lim_{Deltato0^+}left(int_{gamma_1}+int_{gamma_2}right)f(z)ln(z-s)dz=-2pi iint_{pe^{itheta}}^{qe^{itheta}}f(t)dt$$ where $arg(z-s)in[theta,theta+2pi)$, $f$ being holomorphic on the path of integration.
Many advanced users on this site use this lemma without stating, letting alone proving it. I wrote a proof here, but it is quite long.
Is there a shorter proof of this lemma?
complex-analysis complex-integration
The black line is the branch cut.
Lemma
$$lim_{Deltato0^+}left(int_{gamma_1}+int_{gamma_2}right)f(z)ln(z-s)dz=-2pi iint_{pe^{itheta}}^{qe^{itheta}}f(t)dt$$ where $arg(z-s)in[theta,theta+2pi)$, $f$ being holomorphic on the path of integration.
Many advanced users on this site use this lemma without stating, letting alone proving it. I wrote a proof here, but it is quite long.
Is there a shorter proof of this lemma?
complex-analysis complex-integration
complex-analysis complex-integration
asked Nov 19 at 0:27
Szeto
6,1442726
6,1442726
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
0
down vote
I just found a short proof using integration by parts:
Let $hat k=ifrac{s}{|s|}$.
Let $P=pe^{itheta}, Q=qe^{itheta}$.
Let $P^{pm}=Ppm Deltahat k,Q^{pm}=Qpm Deltahat k$.
Let $F$ be the local antiderivative of $f$. (A local antiderivative exists due to local continuity.)
Then,
$$
begin{align}
&~~~~~lim_{Deltato0^+}left(int_{gamma_1}+int_{gamma_2}right)f(z)ln(z-s)dz \
&=lim_{Deltato0^+}left(int_{P^+}^{Q^+}+int_{Q^-}^{P^-}right)f(z)ln(z-s)dz \
&=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+,Q^-}^{Q^+,P^-} -lim_{Deltato0^+}left(int_{P^+}^{Q^+}+int_{Q^-}^{P^-}right)frac{F(z)}{z-s}dz \
&=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+,Q^-}^{Q^+,P^-}+0 \
&=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+}^{P^-}
+lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{Q^-}^{Q^+} \
&=F(P)lim_{Deltato0^+}bigg[ln(z-s)bigg]_{P^+}^{P^-}
+F(Q)lim_{Deltato0^+}bigg[ln(z-s)bigg]_{Q^-}^{Q^+} \
&=F(P)(2pi i)+F(Q)(-2pi i) \
&=-2pi ibigg(F(Q)-F(P)bigg) \
&=-2pi iint_{pe^{itheta}}^{qe^{itheta}}f(t)dt
end{align}
$$
Q.E.D.
Essentially the proof is only 9 lines long.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
I just found a short proof using integration by parts:
Let $hat k=ifrac{s}{|s|}$.
Let $P=pe^{itheta}, Q=qe^{itheta}$.
Let $P^{pm}=Ppm Deltahat k,Q^{pm}=Qpm Deltahat k$.
Let $F$ be the local antiderivative of $f$. (A local antiderivative exists due to local continuity.)
Then,
$$
begin{align}
&~~~~~lim_{Deltato0^+}left(int_{gamma_1}+int_{gamma_2}right)f(z)ln(z-s)dz \
&=lim_{Deltato0^+}left(int_{P^+}^{Q^+}+int_{Q^-}^{P^-}right)f(z)ln(z-s)dz \
&=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+,Q^-}^{Q^+,P^-} -lim_{Deltato0^+}left(int_{P^+}^{Q^+}+int_{Q^-}^{P^-}right)frac{F(z)}{z-s}dz \
&=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+,Q^-}^{Q^+,P^-}+0 \
&=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+}^{P^-}
+lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{Q^-}^{Q^+} \
&=F(P)lim_{Deltato0^+}bigg[ln(z-s)bigg]_{P^+}^{P^-}
+F(Q)lim_{Deltato0^+}bigg[ln(z-s)bigg]_{Q^-}^{Q^+} \
&=F(P)(2pi i)+F(Q)(-2pi i) \
&=-2pi ibigg(F(Q)-F(P)bigg) \
&=-2pi iint_{pe^{itheta}}^{qe^{itheta}}f(t)dt
end{align}
$$
Q.E.D.
Essentially the proof is only 9 lines long.
add a comment |
up vote
0
down vote
I just found a short proof using integration by parts:
Let $hat k=ifrac{s}{|s|}$.
Let $P=pe^{itheta}, Q=qe^{itheta}$.
Let $P^{pm}=Ppm Deltahat k,Q^{pm}=Qpm Deltahat k$.
Let $F$ be the local antiderivative of $f$. (A local antiderivative exists due to local continuity.)
Then,
$$
begin{align}
&~~~~~lim_{Deltato0^+}left(int_{gamma_1}+int_{gamma_2}right)f(z)ln(z-s)dz \
&=lim_{Deltato0^+}left(int_{P^+}^{Q^+}+int_{Q^-}^{P^-}right)f(z)ln(z-s)dz \
&=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+,Q^-}^{Q^+,P^-} -lim_{Deltato0^+}left(int_{P^+}^{Q^+}+int_{Q^-}^{P^-}right)frac{F(z)}{z-s}dz \
&=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+,Q^-}^{Q^+,P^-}+0 \
&=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+}^{P^-}
+lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{Q^-}^{Q^+} \
&=F(P)lim_{Deltato0^+}bigg[ln(z-s)bigg]_{P^+}^{P^-}
+F(Q)lim_{Deltato0^+}bigg[ln(z-s)bigg]_{Q^-}^{Q^+} \
&=F(P)(2pi i)+F(Q)(-2pi i) \
&=-2pi ibigg(F(Q)-F(P)bigg) \
&=-2pi iint_{pe^{itheta}}^{qe^{itheta}}f(t)dt
end{align}
$$
Q.E.D.
Essentially the proof is only 9 lines long.
add a comment |
up vote
0
down vote
up vote
0
down vote
I just found a short proof using integration by parts:
Let $hat k=ifrac{s}{|s|}$.
Let $P=pe^{itheta}, Q=qe^{itheta}$.
Let $P^{pm}=Ppm Deltahat k,Q^{pm}=Qpm Deltahat k$.
Let $F$ be the local antiderivative of $f$. (A local antiderivative exists due to local continuity.)
Then,
$$
begin{align}
&~~~~~lim_{Deltato0^+}left(int_{gamma_1}+int_{gamma_2}right)f(z)ln(z-s)dz \
&=lim_{Deltato0^+}left(int_{P^+}^{Q^+}+int_{Q^-}^{P^-}right)f(z)ln(z-s)dz \
&=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+,Q^-}^{Q^+,P^-} -lim_{Deltato0^+}left(int_{P^+}^{Q^+}+int_{Q^-}^{P^-}right)frac{F(z)}{z-s}dz \
&=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+,Q^-}^{Q^+,P^-}+0 \
&=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+}^{P^-}
+lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{Q^-}^{Q^+} \
&=F(P)lim_{Deltato0^+}bigg[ln(z-s)bigg]_{P^+}^{P^-}
+F(Q)lim_{Deltato0^+}bigg[ln(z-s)bigg]_{Q^-}^{Q^+} \
&=F(P)(2pi i)+F(Q)(-2pi i) \
&=-2pi ibigg(F(Q)-F(P)bigg) \
&=-2pi iint_{pe^{itheta}}^{qe^{itheta}}f(t)dt
end{align}
$$
Q.E.D.
Essentially the proof is only 9 lines long.
I just found a short proof using integration by parts:
Let $hat k=ifrac{s}{|s|}$.
Let $P=pe^{itheta}, Q=qe^{itheta}$.
Let $P^{pm}=Ppm Deltahat k,Q^{pm}=Qpm Deltahat k$.
Let $F$ be the local antiderivative of $f$. (A local antiderivative exists due to local continuity.)
Then,
$$
begin{align}
&~~~~~lim_{Deltato0^+}left(int_{gamma_1}+int_{gamma_2}right)f(z)ln(z-s)dz \
&=lim_{Deltato0^+}left(int_{P^+}^{Q^+}+int_{Q^-}^{P^-}right)f(z)ln(z-s)dz \
&=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+,Q^-}^{Q^+,P^-} -lim_{Deltato0^+}left(int_{P^+}^{Q^+}+int_{Q^-}^{P^-}right)frac{F(z)}{z-s}dz \
&=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+,Q^-}^{Q^+,P^-}+0 \
&=lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{P^+}^{P^-}
+lim_{Deltato0^+}bigg[F(z)ln(z-s)bigg]_{Q^-}^{Q^+} \
&=F(P)lim_{Deltato0^+}bigg[ln(z-s)bigg]_{P^+}^{P^-}
+F(Q)lim_{Deltato0^+}bigg[ln(z-s)bigg]_{Q^-}^{Q^+} \
&=F(P)(2pi i)+F(Q)(-2pi i) \
&=-2pi ibigg(F(Q)-F(P)bigg) \
&=-2pi iint_{pe^{itheta}}^{qe^{itheta}}f(t)dt
end{align}
$$
Q.E.D.
Essentially the proof is only 9 lines long.
edited yesterday
answered Nov 20 at 10:17
Szeto
6,1442726
6,1442726
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004332%2fcomplex-integration-lemma-shorter-proof%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown