Random variable and maximum metric.
up vote
1
down vote
favorite
Let $Omega := [0,1] times [0,1]$. Consider on $sigma$-algebra Borel sets with Lebesgue measure .Let $X(w)$ describe the distance (in maximum metric) between the point and the nearest corner of the square. Is $X(w)$ a random variable? If so, find probability distribution and CDF.
I need help,beacuse it is quite difficult.
probability probability-distributions
add a comment |
up vote
1
down vote
favorite
Let $Omega := [0,1] times [0,1]$. Consider on $sigma$-algebra Borel sets with Lebesgue measure .Let $X(w)$ describe the distance (in maximum metric) between the point and the nearest corner of the square. Is $X(w)$ a random variable? If so, find probability distribution and CDF.
I need help,beacuse it is quite difficult.
probability probability-distributions
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Let $Omega := [0,1] times [0,1]$. Consider on $sigma$-algebra Borel sets with Lebesgue measure .Let $X(w)$ describe the distance (in maximum metric) between the point and the nearest corner of the square. Is $X(w)$ a random variable? If so, find probability distribution and CDF.
I need help,beacuse it is quite difficult.
probability probability-distributions
Let $Omega := [0,1] times [0,1]$. Consider on $sigma$-algebra Borel sets with Lebesgue measure .Let $X(w)$ describe the distance (in maximum metric) between the point and the nearest corner of the square. Is $X(w)$ a random variable? If so, find probability distribution and CDF.
I need help,beacuse it is quite difficult.
probability probability-distributions
probability probability-distributions
asked 2 days ago
PabloZ392
1356
1356
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
Hint
Let $omega =(omega _1,omega _2)in Omega $. Then,$$X(omega )=infBig{sup{omega _1,omega _2}, sup{omega _1,1-omega _2 }, sup{1-omega _1,1-omega _2}, sup{1-omega _2,omega_2}Big}.$$
Added
Set
begin{align*}
X_1(omega )&=sup{omega _1,omega _2}\
X_2(omega )&=sup{omega _1,1-omega _2}\
X_3(omega )&=sup{1-omega _1,omega _2}\
X_4(omega )&=sup{1-omega _1,1-omega _2}.
end{align*}
$$mathbb P{Xleq x}=mathbb P{Xboldsymbol 1_{[0,1/2]^2}leq x}+mathbb P{Xboldsymbol 1_{[0,1/2]times [1/2,1]}leq x}+mathbb P{Xboldsymbol 1_{[1/2,1]times [0,1/2]}leq x}+mathbb P{Xboldsymbol 1_{[1/2,1]^2}leq x}.$$
Now $$mathbb P{Xboldsymbol 1_{[0,1/2]^2}leq x}=mathbb P{omega in [0,1/2]^2mid X_1leq x}=mathbb P{omegain [0,1/2]^2mid omega _1leq x, omega _2leq x }=mathbb P{omega _1in [0,1/2]mid omega _1leq x}mathbb P{omega _2in [0,1/2]mid omega _2leq x},$$
the last inequality come from independence of $omega _1mapsto omega _1$ and $omega _2mapsto omega _2$. Notice that that r.v. follow uniform law on $[0,1/2]$.
The rest goes the same.
We know, that $X(w) in[0,1/2]$. Now I have to "take" any Borel set $B in[0,1/2]. Is $X^{-1}(B)$ measurable? I think so
– PabloZ392
2 days ago
I have problem with probability distribution and CDF.
– PabloZ392
2 days ago
@PabloZ392: I edited my answer.
– idm
yesterday
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
Hint
Let $omega =(omega _1,omega _2)in Omega $. Then,$$X(omega )=infBig{sup{omega _1,omega _2}, sup{omega _1,1-omega _2 }, sup{1-omega _1,1-omega _2}, sup{1-omega _2,omega_2}Big}.$$
Added
Set
begin{align*}
X_1(omega )&=sup{omega _1,omega _2}\
X_2(omega )&=sup{omega _1,1-omega _2}\
X_3(omega )&=sup{1-omega _1,omega _2}\
X_4(omega )&=sup{1-omega _1,1-omega _2}.
end{align*}
$$mathbb P{Xleq x}=mathbb P{Xboldsymbol 1_{[0,1/2]^2}leq x}+mathbb P{Xboldsymbol 1_{[0,1/2]times [1/2,1]}leq x}+mathbb P{Xboldsymbol 1_{[1/2,1]times [0,1/2]}leq x}+mathbb P{Xboldsymbol 1_{[1/2,1]^2}leq x}.$$
Now $$mathbb P{Xboldsymbol 1_{[0,1/2]^2}leq x}=mathbb P{omega in [0,1/2]^2mid X_1leq x}=mathbb P{omegain [0,1/2]^2mid omega _1leq x, omega _2leq x }=mathbb P{omega _1in [0,1/2]mid omega _1leq x}mathbb P{omega _2in [0,1/2]mid omega _2leq x},$$
the last inequality come from independence of $omega _1mapsto omega _1$ and $omega _2mapsto omega _2$. Notice that that r.v. follow uniform law on $[0,1/2]$.
The rest goes the same.
We know, that $X(w) in[0,1/2]$. Now I have to "take" any Borel set $B in[0,1/2]. Is $X^{-1}(B)$ measurable? I think so
– PabloZ392
2 days ago
I have problem with probability distribution and CDF.
– PabloZ392
2 days ago
@PabloZ392: I edited my answer.
– idm
yesterday
add a comment |
up vote
1
down vote
accepted
Hint
Let $omega =(omega _1,omega _2)in Omega $. Then,$$X(omega )=infBig{sup{omega _1,omega _2}, sup{omega _1,1-omega _2 }, sup{1-omega _1,1-omega _2}, sup{1-omega _2,omega_2}Big}.$$
Added
Set
begin{align*}
X_1(omega )&=sup{omega _1,omega _2}\
X_2(omega )&=sup{omega _1,1-omega _2}\
X_3(omega )&=sup{1-omega _1,omega _2}\
X_4(omega )&=sup{1-omega _1,1-omega _2}.
end{align*}
$$mathbb P{Xleq x}=mathbb P{Xboldsymbol 1_{[0,1/2]^2}leq x}+mathbb P{Xboldsymbol 1_{[0,1/2]times [1/2,1]}leq x}+mathbb P{Xboldsymbol 1_{[1/2,1]times [0,1/2]}leq x}+mathbb P{Xboldsymbol 1_{[1/2,1]^2}leq x}.$$
Now $$mathbb P{Xboldsymbol 1_{[0,1/2]^2}leq x}=mathbb P{omega in [0,1/2]^2mid X_1leq x}=mathbb P{omegain [0,1/2]^2mid omega _1leq x, omega _2leq x }=mathbb P{omega _1in [0,1/2]mid omega _1leq x}mathbb P{omega _2in [0,1/2]mid omega _2leq x},$$
the last inequality come from independence of $omega _1mapsto omega _1$ and $omega _2mapsto omega _2$. Notice that that r.v. follow uniform law on $[0,1/2]$.
The rest goes the same.
We know, that $X(w) in[0,1/2]$. Now I have to "take" any Borel set $B in[0,1/2]. Is $X^{-1}(B)$ measurable? I think so
– PabloZ392
2 days ago
I have problem with probability distribution and CDF.
– PabloZ392
2 days ago
@PabloZ392: I edited my answer.
– idm
yesterday
add a comment |
up vote
1
down vote
accepted
up vote
1
down vote
accepted
Hint
Let $omega =(omega _1,omega _2)in Omega $. Then,$$X(omega )=infBig{sup{omega _1,omega _2}, sup{omega _1,1-omega _2 }, sup{1-omega _1,1-omega _2}, sup{1-omega _2,omega_2}Big}.$$
Added
Set
begin{align*}
X_1(omega )&=sup{omega _1,omega _2}\
X_2(omega )&=sup{omega _1,1-omega _2}\
X_3(omega )&=sup{1-omega _1,omega _2}\
X_4(omega )&=sup{1-omega _1,1-omega _2}.
end{align*}
$$mathbb P{Xleq x}=mathbb P{Xboldsymbol 1_{[0,1/2]^2}leq x}+mathbb P{Xboldsymbol 1_{[0,1/2]times [1/2,1]}leq x}+mathbb P{Xboldsymbol 1_{[1/2,1]times [0,1/2]}leq x}+mathbb P{Xboldsymbol 1_{[1/2,1]^2}leq x}.$$
Now $$mathbb P{Xboldsymbol 1_{[0,1/2]^2}leq x}=mathbb P{omega in [0,1/2]^2mid X_1leq x}=mathbb P{omegain [0,1/2]^2mid omega _1leq x, omega _2leq x }=mathbb P{omega _1in [0,1/2]mid omega _1leq x}mathbb P{omega _2in [0,1/2]mid omega _2leq x},$$
the last inequality come from independence of $omega _1mapsto omega _1$ and $omega _2mapsto omega _2$. Notice that that r.v. follow uniform law on $[0,1/2]$.
The rest goes the same.
Hint
Let $omega =(omega _1,omega _2)in Omega $. Then,$$X(omega )=infBig{sup{omega _1,omega _2}, sup{omega _1,1-omega _2 }, sup{1-omega _1,1-omega _2}, sup{1-omega _2,omega_2}Big}.$$
Added
Set
begin{align*}
X_1(omega )&=sup{omega _1,omega _2}\
X_2(omega )&=sup{omega _1,1-omega _2}\
X_3(omega )&=sup{1-omega _1,omega _2}\
X_4(omega )&=sup{1-omega _1,1-omega _2}.
end{align*}
$$mathbb P{Xleq x}=mathbb P{Xboldsymbol 1_{[0,1/2]^2}leq x}+mathbb P{Xboldsymbol 1_{[0,1/2]times [1/2,1]}leq x}+mathbb P{Xboldsymbol 1_{[1/2,1]times [0,1/2]}leq x}+mathbb P{Xboldsymbol 1_{[1/2,1]^2}leq x}.$$
Now $$mathbb P{Xboldsymbol 1_{[0,1/2]^2}leq x}=mathbb P{omega in [0,1/2]^2mid X_1leq x}=mathbb P{omegain [0,1/2]^2mid omega _1leq x, omega _2leq x }=mathbb P{omega _1in [0,1/2]mid omega _1leq x}mathbb P{omega _2in [0,1/2]mid omega _2leq x},$$
the last inequality come from independence of $omega _1mapsto omega _1$ and $omega _2mapsto omega _2$. Notice that that r.v. follow uniform law on $[0,1/2]$.
The rest goes the same.
edited yesterday
answered 2 days ago
idm
8,53021245
8,53021245
We know, that $X(w) in[0,1/2]$. Now I have to "take" any Borel set $B in[0,1/2]. Is $X^{-1}(B)$ measurable? I think so
– PabloZ392
2 days ago
I have problem with probability distribution and CDF.
– PabloZ392
2 days ago
@PabloZ392: I edited my answer.
– idm
yesterday
add a comment |
We know, that $X(w) in[0,1/2]$. Now I have to "take" any Borel set $B in[0,1/2]. Is $X^{-1}(B)$ measurable? I think so
– PabloZ392
2 days ago
I have problem with probability distribution and CDF.
– PabloZ392
2 days ago
@PabloZ392: I edited my answer.
– idm
yesterday
We know, that $X(w) in[0,1/2]$. Now I have to "take" any Borel set $B in[0,1/2]. Is $X^{-1}(B)$ measurable? I think so
– PabloZ392
2 days ago
We know, that $X(w) in[0,1/2]$. Now I have to "take" any Borel set $B in[0,1/2]. Is $X^{-1}(B)$ measurable? I think so
– PabloZ392
2 days ago
I have problem with probability distribution and CDF.
– PabloZ392
2 days ago
I have problem with probability distribution and CDF.
– PabloZ392
2 days ago
@PabloZ392: I edited my answer.
– idm
yesterday
@PabloZ392: I edited my answer.
– idm
yesterday
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3003536%2frandom-variable-and-maximum-metric%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown