Relaxing hypotheses for the mean value theorem for integrals











up vote
0
down vote

favorite












If a function $f$ is continuous in $[0,Delta]$ it is pretty easy to prove that



$$
exists cin(0,Delta):frac{1}{Delta},int_{0}^{Delta}f(t)dt=f(c)
$$



It is enough to apply Lagrange's to the function $F(t)=int_0^tf(s)ds$. Is it possible to derive the same result assuming only that $f$ is Riemann-integrable in $[0,Delta]$ ?










share|cite|improve this question


























    up vote
    0
    down vote

    favorite












    If a function $f$ is continuous in $[0,Delta]$ it is pretty easy to prove that



    $$
    exists cin(0,Delta):frac{1}{Delta},int_{0}^{Delta}f(t)dt=f(c)
    $$



    It is enough to apply Lagrange's to the function $F(t)=int_0^tf(s)ds$. Is it possible to derive the same result assuming only that $f$ is Riemann-integrable in $[0,Delta]$ ?










    share|cite|improve this question
























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      If a function $f$ is continuous in $[0,Delta]$ it is pretty easy to prove that



      $$
      exists cin(0,Delta):frac{1}{Delta},int_{0}^{Delta}f(t)dt=f(c)
      $$



      It is enough to apply Lagrange's to the function $F(t)=int_0^tf(s)ds$. Is it possible to derive the same result assuming only that $f$ is Riemann-integrable in $[0,Delta]$ ?










      share|cite|improve this question













      If a function $f$ is continuous in $[0,Delta]$ it is pretty easy to prove that



      $$
      exists cin(0,Delta):frac{1}{Delta},int_{0}^{Delta}f(t)dt=f(c)
      $$



      It is enough to apply Lagrange's to the function $F(t)=int_0^tf(s)ds$. Is it possible to derive the same result assuming only that $f$ is Riemann-integrable in $[0,Delta]$ ?







      riemann-integration






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 21 at 16:33









      AlmostSureUser

      307416




      307416






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          1
          down vote



          accepted










          No. For example consider the Riemann integrable function $f:[0,1]rightarrow {0,1}$ defined by



          $$f(x)=
          begin{cases}
          0, & 0leq xleq frac{1}{2}\
          1, & frac{1}{2}<xleq 1.
          end{cases}$$



          Then $int_{0}^{1}f(x)dx=frac{1}{2}$(For this example $Delta=1$) which is not equals to $f(c)$ for any $cin[0,1].$






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














             

            draft saved


            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007970%2frelaxing-hypotheses-for-the-mean-value-theorem-for-integrals%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            1
            down vote



            accepted










            No. For example consider the Riemann integrable function $f:[0,1]rightarrow {0,1}$ defined by



            $$f(x)=
            begin{cases}
            0, & 0leq xleq frac{1}{2}\
            1, & frac{1}{2}<xleq 1.
            end{cases}$$



            Then $int_{0}^{1}f(x)dx=frac{1}{2}$(For this example $Delta=1$) which is not equals to $f(c)$ for any $cin[0,1].$






            share|cite|improve this answer

























              up vote
              1
              down vote



              accepted










              No. For example consider the Riemann integrable function $f:[0,1]rightarrow {0,1}$ defined by



              $$f(x)=
              begin{cases}
              0, & 0leq xleq frac{1}{2}\
              1, & frac{1}{2}<xleq 1.
              end{cases}$$



              Then $int_{0}^{1}f(x)dx=frac{1}{2}$(For this example $Delta=1$) which is not equals to $f(c)$ for any $cin[0,1].$






              share|cite|improve this answer























                up vote
                1
                down vote



                accepted







                up vote
                1
                down vote



                accepted






                No. For example consider the Riemann integrable function $f:[0,1]rightarrow {0,1}$ defined by



                $$f(x)=
                begin{cases}
                0, & 0leq xleq frac{1}{2}\
                1, & frac{1}{2}<xleq 1.
                end{cases}$$



                Then $int_{0}^{1}f(x)dx=frac{1}{2}$(For this example $Delta=1$) which is not equals to $f(c)$ for any $cin[0,1].$






                share|cite|improve this answer












                No. For example consider the Riemann integrable function $f:[0,1]rightarrow {0,1}$ defined by



                $$f(x)=
                begin{cases}
                0, & 0leq xleq frac{1}{2}\
                1, & frac{1}{2}<xleq 1.
                end{cases}$$



                Then $int_{0}^{1}f(x)dx=frac{1}{2}$(For this example $Delta=1$) which is not equals to $f(c)$ for any $cin[0,1].$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Nov 21 at 16:51









                Tomath

                5268




                5268






























                     

                    draft saved


                    draft discarded



















































                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007970%2frelaxing-hypotheses-for-the-mean-value-theorem-for-integrals%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Wiesbaden

                    Marschland

                    Dieringhausen