Relaxing hypotheses for the mean value theorem for integrals
up vote
0
down vote
favorite
If a function $f$ is continuous in $[0,Delta]$ it is pretty easy to prove that
$$
exists cin(0,Delta):frac{1}{Delta},int_{0}^{Delta}f(t)dt=f(c)
$$
It is enough to apply Lagrange's to the function $F(t)=int_0^tf(s)ds$. Is it possible to derive the same result assuming only that $f$ is Riemann-integrable in $[0,Delta]$ ?
riemann-integration
add a comment |
up vote
0
down vote
favorite
If a function $f$ is continuous in $[0,Delta]$ it is pretty easy to prove that
$$
exists cin(0,Delta):frac{1}{Delta},int_{0}^{Delta}f(t)dt=f(c)
$$
It is enough to apply Lagrange's to the function $F(t)=int_0^tf(s)ds$. Is it possible to derive the same result assuming only that $f$ is Riemann-integrable in $[0,Delta]$ ?
riemann-integration
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
If a function $f$ is continuous in $[0,Delta]$ it is pretty easy to prove that
$$
exists cin(0,Delta):frac{1}{Delta},int_{0}^{Delta}f(t)dt=f(c)
$$
It is enough to apply Lagrange's to the function $F(t)=int_0^tf(s)ds$. Is it possible to derive the same result assuming only that $f$ is Riemann-integrable in $[0,Delta]$ ?
riemann-integration
If a function $f$ is continuous in $[0,Delta]$ it is pretty easy to prove that
$$
exists cin(0,Delta):frac{1}{Delta},int_{0}^{Delta}f(t)dt=f(c)
$$
It is enough to apply Lagrange's to the function $F(t)=int_0^tf(s)ds$. Is it possible to derive the same result assuming only that $f$ is Riemann-integrable in $[0,Delta]$ ?
riemann-integration
riemann-integration
asked Nov 21 at 16:33
AlmostSureUser
307416
307416
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
No. For example consider the Riemann integrable function $f:[0,1]rightarrow {0,1}$ defined by
$$f(x)=
begin{cases}
0, & 0leq xleq frac{1}{2}\
1, & frac{1}{2}<xleq 1.
end{cases}$$
Then $int_{0}^{1}f(x)dx=frac{1}{2}$(For this example $Delta=1$) which is not equals to $f(c)$ for any $cin[0,1].$
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
No. For example consider the Riemann integrable function $f:[0,1]rightarrow {0,1}$ defined by
$$f(x)=
begin{cases}
0, & 0leq xleq frac{1}{2}\
1, & frac{1}{2}<xleq 1.
end{cases}$$
Then $int_{0}^{1}f(x)dx=frac{1}{2}$(For this example $Delta=1$) which is not equals to $f(c)$ for any $cin[0,1].$
add a comment |
up vote
1
down vote
accepted
No. For example consider the Riemann integrable function $f:[0,1]rightarrow {0,1}$ defined by
$$f(x)=
begin{cases}
0, & 0leq xleq frac{1}{2}\
1, & frac{1}{2}<xleq 1.
end{cases}$$
Then $int_{0}^{1}f(x)dx=frac{1}{2}$(For this example $Delta=1$) which is not equals to $f(c)$ for any $cin[0,1].$
add a comment |
up vote
1
down vote
accepted
up vote
1
down vote
accepted
No. For example consider the Riemann integrable function $f:[0,1]rightarrow {0,1}$ defined by
$$f(x)=
begin{cases}
0, & 0leq xleq frac{1}{2}\
1, & frac{1}{2}<xleq 1.
end{cases}$$
Then $int_{0}^{1}f(x)dx=frac{1}{2}$(For this example $Delta=1$) which is not equals to $f(c)$ for any $cin[0,1].$
No. For example consider the Riemann integrable function $f:[0,1]rightarrow {0,1}$ defined by
$$f(x)=
begin{cases}
0, & 0leq xleq frac{1}{2}\
1, & frac{1}{2}<xleq 1.
end{cases}$$
Then $int_{0}^{1}f(x)dx=frac{1}{2}$(For this example $Delta=1$) which is not equals to $f(c)$ for any $cin[0,1].$
answered Nov 21 at 16:51
Tomath
5268
5268
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007970%2frelaxing-hypotheses-for-the-mean-value-theorem-for-integrals%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown