Help with computation and Gröbner basis












2












$begingroup$


I am learning a new software and a new topic (Gröbner basis). I have the following system of polynomial equations



$$begin{align}
6-21(x_1x_2+x_1x_3+x_1x_4) &= 0 \
10-21(x_2x_1+x_2x_3+x_2x_4) &= 0 \
12-21(x_3x_1+x_3x_2+x_3x_4) &= 0 \
14-21(x_4x_1+x_4x_2+x_4x_3) &= 0
end{align}$$



and I need to find the number of solutions. I have been told I need to use Gröbner basis. The problem is that I do not know for what ideal I am supposed to find the Gröbner basis.



Secondly, if someone has experience with Macaulay2, I would appreciate if he can walk me through how we input this. What I was thinking was QQ[x1,x2,x3,x4, MonomialTOrder =>Lex] to get a ring and then use lex. Then I= ideal( ) here my lack of understanding kicks in.



Thank you guys for the time and patience.










share|cite|improve this question











$endgroup$












  • $begingroup$
    "CoCoA" can compute Gröbner basis with the command "GBasis(I)"
    $endgroup$
    – user 1
    May 16 '15 at 6:12
















2












$begingroup$


I am learning a new software and a new topic (Gröbner basis). I have the following system of polynomial equations



$$begin{align}
6-21(x_1x_2+x_1x_3+x_1x_4) &= 0 \
10-21(x_2x_1+x_2x_3+x_2x_4) &= 0 \
12-21(x_3x_1+x_3x_2+x_3x_4) &= 0 \
14-21(x_4x_1+x_4x_2+x_4x_3) &= 0
end{align}$$



and I need to find the number of solutions. I have been told I need to use Gröbner basis. The problem is that I do not know for what ideal I am supposed to find the Gröbner basis.



Secondly, if someone has experience with Macaulay2, I would appreciate if he can walk me through how we input this. What I was thinking was QQ[x1,x2,x3,x4, MonomialTOrder =>Lex] to get a ring and then use lex. Then I= ideal( ) here my lack of understanding kicks in.



Thank you guys for the time and patience.










share|cite|improve this question











$endgroup$












  • $begingroup$
    "CoCoA" can compute Gröbner basis with the command "GBasis(I)"
    $endgroup$
    – user 1
    May 16 '15 at 6:12














2












2








2


2



$begingroup$


I am learning a new software and a new topic (Gröbner basis). I have the following system of polynomial equations



$$begin{align}
6-21(x_1x_2+x_1x_3+x_1x_4) &= 0 \
10-21(x_2x_1+x_2x_3+x_2x_4) &= 0 \
12-21(x_3x_1+x_3x_2+x_3x_4) &= 0 \
14-21(x_4x_1+x_4x_2+x_4x_3) &= 0
end{align}$$



and I need to find the number of solutions. I have been told I need to use Gröbner basis. The problem is that I do not know for what ideal I am supposed to find the Gröbner basis.



Secondly, if someone has experience with Macaulay2, I would appreciate if he can walk me through how we input this. What I was thinking was QQ[x1,x2,x3,x4, MonomialTOrder =>Lex] to get a ring and then use lex. Then I= ideal( ) here my lack of understanding kicks in.



Thank you guys for the time and patience.










share|cite|improve this question











$endgroup$




I am learning a new software and a new topic (Gröbner basis). I have the following system of polynomial equations



$$begin{align}
6-21(x_1x_2+x_1x_3+x_1x_4) &= 0 \
10-21(x_2x_1+x_2x_3+x_2x_4) &= 0 \
12-21(x_3x_1+x_3x_2+x_3x_4) &= 0 \
14-21(x_4x_1+x_4x_2+x_4x_3) &= 0
end{align}$$



and I need to find the number of solutions. I have been told I need to use Gröbner basis. The problem is that I do not know for what ideal I am supposed to find the Gröbner basis.



Secondly, if someone has experience with Macaulay2, I would appreciate if he can walk me through how we input this. What I was thinking was QQ[x1,x2,x3,x4, MonomialTOrder =>Lex] to get a ring and then use lex. Then I= ideal( ) here my lack of understanding kicks in.



Thank you guys for the time and patience.







commutative-algebra groebner-basis macaulay2






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 9 '18 at 0:15









Rodrigo de Azevedo

12.9k41857




12.9k41857










asked May 15 '15 at 17:33









KoriKori

6561519




6561519












  • $begingroup$
    "CoCoA" can compute Gröbner basis with the command "GBasis(I)"
    $endgroup$
    – user 1
    May 16 '15 at 6:12


















  • $begingroup$
    "CoCoA" can compute Gröbner basis with the command "GBasis(I)"
    $endgroup$
    – user 1
    May 16 '15 at 6:12
















$begingroup$
"CoCoA" can compute Gröbner basis with the command "GBasis(I)"
$endgroup$
– user 1
May 16 '15 at 6:12




$begingroup$
"CoCoA" can compute Gröbner basis with the command "GBasis(I)"
$endgroup$
– user 1
May 16 '15 at 6:12










1 Answer
1






active

oldest

votes


















4












$begingroup$

Entering



R=QQ[x_1,x_2,x_3,x_4,MonomialOrder=>Lex]
I=ideal(6-21*(x_1*x_2+x_1*x_3+x_1*x_4),10-21*(x_2*x_1+x_2*x_3+x_2*x_4),12-21*(x_3*x_1+x_3*x_2+x_3*x_4),14-21*(x_4*x_1+x_4*x_2+x_4*x_3))
gens gb I


in Macaulay2 yields



$(9261x_4^8+11907x_4^6+2119x_4^4-2083x_4^2-660,\14868x_3+1713285x_4^7+1397088x_4^5-282715x_4^3-263654x_4,\36344x_2-4806459x_4^7-3836700x_4^5+724215x_4^3+703040x_4,\49560x_1+379701x_4^7-21168x_4^5-151261x_4^3+24432x_4)$.



The first generator is in $x_4$ only and set to $0$ has $8$ complex solutions, two real by wolfram alpha. The other generators have $x_i, i=1,2,3$ enter linearly so they are determined uniquely by $x_4$.





Added: For the actual solutions, add toString oo to the commands above, and get:



matrix {{9261*x_4^8+11907*x_4^6+2119*x_4^4-2083*x_4^2-660,
14868*x_3+1713285*x_4^7+1397088*x_4^5-282715*x_4^3-263654*x_4,
36344*x_2-4806459*x_4^7-3836700*x_4^5+724215*x_4^3+703040*x_4,
49560*x_1+379701*x_4^7-21168*x_4^5-151261*x_4^3+24432*x_4}}


Then go to, say, maxima, setting $x_4^2=t$



allroots(ratsubst(t,x_4^2,9261*x_4^8+11907*x_4^6+2119*x_4^4-2083*x_4^2-660));


[t = 0.418936018521825, t = - 0.4422977258287621, t = - 0.5138272911813384, t = - 0.7485252872260103]



Then to take one of the eight $x_4=pm sqrt{t}$



x_4:sqrt(0.418936018521825);
float(solve(14868*x_3+1713285*x_4^7+1397088*x_4^5-282715*x_4^3-263654*x_4,x_3));
float(solve(36344*x_2-4806459*x_4^7-3836700*x_4^5+724215*x_4^3+703040*x_4,x_2));
float(solve(49560*x_1+379701*x_4^7-21168*x_4^5-151261*x_4^3+24432*x_4,x_1));
x_4:'x_4;


we get $(x_1,x_2,x_3,x_4) approx (0.1924229778886889, 0.3620745025257184, 0.4754969835800162, 0.6472526697680164)$



The other seven are:



$(-0.1924229778886889, -0.3620745025257184, -0.4754969835800162, -0.6472526697680164)$,



$(-0.7291921856328131 i, -0.8790682559168096 i, 0.6058365989819648 i, 0.6650546788263069 i)$,



$(0.7291921856328131 i, 0.8790682559168096 i, -0.6058365989819648 i, -0.6650546788263069 i)$,



$(-0.6516600637949471 i, 0.5916424877796417 i, -0.8700192754156101 i, 0.7168174741043486 i)$,



$(0.6516600637949471 i, -0.5916424877796417 i, 0.8700192754156101 i, -0.7168174741043486 i)$,



$(0.5839194982220037 i, -0.6443776225155836 i, -0.7101001755028209 i, 0.8651735590192353 i)$,



$(-0.5839194982220037 i, 0.6443776225155836 i, 0.7101001755028209 i, -0.8651735590192353 i)$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Sorry one small question say I am interested what the actual solutions are what command can we use in Macaulay 2
    $endgroup$
    – Kori
    May 25 '15 at 17:42










  • $begingroup$
    @Kori Macaulay2 doesn't cater for the rest. I added some maxima code.
    $endgroup$
    – Jan-Magnus Økland
    May 25 '15 at 20:00











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1283838%2fhelp-with-computation-and-gr%25c3%25b6bner-basis%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









4












$begingroup$

Entering



R=QQ[x_1,x_2,x_3,x_4,MonomialOrder=>Lex]
I=ideal(6-21*(x_1*x_2+x_1*x_3+x_1*x_4),10-21*(x_2*x_1+x_2*x_3+x_2*x_4),12-21*(x_3*x_1+x_3*x_2+x_3*x_4),14-21*(x_4*x_1+x_4*x_2+x_4*x_3))
gens gb I


in Macaulay2 yields



$(9261x_4^8+11907x_4^6+2119x_4^4-2083x_4^2-660,\14868x_3+1713285x_4^7+1397088x_4^5-282715x_4^3-263654x_4,\36344x_2-4806459x_4^7-3836700x_4^5+724215x_4^3+703040x_4,\49560x_1+379701x_4^7-21168x_4^5-151261x_4^3+24432x_4)$.



The first generator is in $x_4$ only and set to $0$ has $8$ complex solutions, two real by wolfram alpha. The other generators have $x_i, i=1,2,3$ enter linearly so they are determined uniquely by $x_4$.





Added: For the actual solutions, add toString oo to the commands above, and get:



matrix {{9261*x_4^8+11907*x_4^6+2119*x_4^4-2083*x_4^2-660,
14868*x_3+1713285*x_4^7+1397088*x_4^5-282715*x_4^3-263654*x_4,
36344*x_2-4806459*x_4^7-3836700*x_4^5+724215*x_4^3+703040*x_4,
49560*x_1+379701*x_4^7-21168*x_4^5-151261*x_4^3+24432*x_4}}


Then go to, say, maxima, setting $x_4^2=t$



allroots(ratsubst(t,x_4^2,9261*x_4^8+11907*x_4^6+2119*x_4^4-2083*x_4^2-660));


[t = 0.418936018521825, t = - 0.4422977258287621, t = - 0.5138272911813384, t = - 0.7485252872260103]



Then to take one of the eight $x_4=pm sqrt{t}$



x_4:sqrt(0.418936018521825);
float(solve(14868*x_3+1713285*x_4^7+1397088*x_4^5-282715*x_4^3-263654*x_4,x_3));
float(solve(36344*x_2-4806459*x_4^7-3836700*x_4^5+724215*x_4^3+703040*x_4,x_2));
float(solve(49560*x_1+379701*x_4^7-21168*x_4^5-151261*x_4^3+24432*x_4,x_1));
x_4:'x_4;


we get $(x_1,x_2,x_3,x_4) approx (0.1924229778886889, 0.3620745025257184, 0.4754969835800162, 0.6472526697680164)$



The other seven are:



$(-0.1924229778886889, -0.3620745025257184, -0.4754969835800162, -0.6472526697680164)$,



$(-0.7291921856328131 i, -0.8790682559168096 i, 0.6058365989819648 i, 0.6650546788263069 i)$,



$(0.7291921856328131 i, 0.8790682559168096 i, -0.6058365989819648 i, -0.6650546788263069 i)$,



$(-0.6516600637949471 i, 0.5916424877796417 i, -0.8700192754156101 i, 0.7168174741043486 i)$,



$(0.6516600637949471 i, -0.5916424877796417 i, 0.8700192754156101 i, -0.7168174741043486 i)$,



$(0.5839194982220037 i, -0.6443776225155836 i, -0.7101001755028209 i, 0.8651735590192353 i)$,



$(-0.5839194982220037 i, 0.6443776225155836 i, 0.7101001755028209 i, -0.8651735590192353 i)$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Sorry one small question say I am interested what the actual solutions are what command can we use in Macaulay 2
    $endgroup$
    – Kori
    May 25 '15 at 17:42










  • $begingroup$
    @Kori Macaulay2 doesn't cater for the rest. I added some maxima code.
    $endgroup$
    – Jan-Magnus Økland
    May 25 '15 at 20:00
















4












$begingroup$

Entering



R=QQ[x_1,x_2,x_3,x_4,MonomialOrder=>Lex]
I=ideal(6-21*(x_1*x_2+x_1*x_3+x_1*x_4),10-21*(x_2*x_1+x_2*x_3+x_2*x_4),12-21*(x_3*x_1+x_3*x_2+x_3*x_4),14-21*(x_4*x_1+x_4*x_2+x_4*x_3))
gens gb I


in Macaulay2 yields



$(9261x_4^8+11907x_4^6+2119x_4^4-2083x_4^2-660,\14868x_3+1713285x_4^7+1397088x_4^5-282715x_4^3-263654x_4,\36344x_2-4806459x_4^7-3836700x_4^5+724215x_4^3+703040x_4,\49560x_1+379701x_4^7-21168x_4^5-151261x_4^3+24432x_4)$.



The first generator is in $x_4$ only and set to $0$ has $8$ complex solutions, two real by wolfram alpha. The other generators have $x_i, i=1,2,3$ enter linearly so they are determined uniquely by $x_4$.





Added: For the actual solutions, add toString oo to the commands above, and get:



matrix {{9261*x_4^8+11907*x_4^6+2119*x_4^4-2083*x_4^2-660,
14868*x_3+1713285*x_4^7+1397088*x_4^5-282715*x_4^3-263654*x_4,
36344*x_2-4806459*x_4^7-3836700*x_4^5+724215*x_4^3+703040*x_4,
49560*x_1+379701*x_4^7-21168*x_4^5-151261*x_4^3+24432*x_4}}


Then go to, say, maxima, setting $x_4^2=t$



allroots(ratsubst(t,x_4^2,9261*x_4^8+11907*x_4^6+2119*x_4^4-2083*x_4^2-660));


[t = 0.418936018521825, t = - 0.4422977258287621, t = - 0.5138272911813384, t = - 0.7485252872260103]



Then to take one of the eight $x_4=pm sqrt{t}$



x_4:sqrt(0.418936018521825);
float(solve(14868*x_3+1713285*x_4^7+1397088*x_4^5-282715*x_4^3-263654*x_4,x_3));
float(solve(36344*x_2-4806459*x_4^7-3836700*x_4^5+724215*x_4^3+703040*x_4,x_2));
float(solve(49560*x_1+379701*x_4^7-21168*x_4^5-151261*x_4^3+24432*x_4,x_1));
x_4:'x_4;


we get $(x_1,x_2,x_3,x_4) approx (0.1924229778886889, 0.3620745025257184, 0.4754969835800162, 0.6472526697680164)$



The other seven are:



$(-0.1924229778886889, -0.3620745025257184, -0.4754969835800162, -0.6472526697680164)$,



$(-0.7291921856328131 i, -0.8790682559168096 i, 0.6058365989819648 i, 0.6650546788263069 i)$,



$(0.7291921856328131 i, 0.8790682559168096 i, -0.6058365989819648 i, -0.6650546788263069 i)$,



$(-0.6516600637949471 i, 0.5916424877796417 i, -0.8700192754156101 i, 0.7168174741043486 i)$,



$(0.6516600637949471 i, -0.5916424877796417 i, 0.8700192754156101 i, -0.7168174741043486 i)$,



$(0.5839194982220037 i, -0.6443776225155836 i, -0.7101001755028209 i, 0.8651735590192353 i)$,



$(-0.5839194982220037 i, 0.6443776225155836 i, 0.7101001755028209 i, -0.8651735590192353 i)$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Sorry one small question say I am interested what the actual solutions are what command can we use in Macaulay 2
    $endgroup$
    – Kori
    May 25 '15 at 17:42










  • $begingroup$
    @Kori Macaulay2 doesn't cater for the rest. I added some maxima code.
    $endgroup$
    – Jan-Magnus Økland
    May 25 '15 at 20:00














4












4








4





$begingroup$

Entering



R=QQ[x_1,x_2,x_3,x_4,MonomialOrder=>Lex]
I=ideal(6-21*(x_1*x_2+x_1*x_3+x_1*x_4),10-21*(x_2*x_1+x_2*x_3+x_2*x_4),12-21*(x_3*x_1+x_3*x_2+x_3*x_4),14-21*(x_4*x_1+x_4*x_2+x_4*x_3))
gens gb I


in Macaulay2 yields



$(9261x_4^8+11907x_4^6+2119x_4^4-2083x_4^2-660,\14868x_3+1713285x_4^7+1397088x_4^5-282715x_4^3-263654x_4,\36344x_2-4806459x_4^7-3836700x_4^5+724215x_4^3+703040x_4,\49560x_1+379701x_4^7-21168x_4^5-151261x_4^3+24432x_4)$.



The first generator is in $x_4$ only and set to $0$ has $8$ complex solutions, two real by wolfram alpha. The other generators have $x_i, i=1,2,3$ enter linearly so they are determined uniquely by $x_4$.





Added: For the actual solutions, add toString oo to the commands above, and get:



matrix {{9261*x_4^8+11907*x_4^6+2119*x_4^4-2083*x_4^2-660,
14868*x_3+1713285*x_4^7+1397088*x_4^5-282715*x_4^3-263654*x_4,
36344*x_2-4806459*x_4^7-3836700*x_4^5+724215*x_4^3+703040*x_4,
49560*x_1+379701*x_4^7-21168*x_4^5-151261*x_4^3+24432*x_4}}


Then go to, say, maxima, setting $x_4^2=t$



allroots(ratsubst(t,x_4^2,9261*x_4^8+11907*x_4^6+2119*x_4^4-2083*x_4^2-660));


[t = 0.418936018521825, t = - 0.4422977258287621, t = - 0.5138272911813384, t = - 0.7485252872260103]



Then to take one of the eight $x_4=pm sqrt{t}$



x_4:sqrt(0.418936018521825);
float(solve(14868*x_3+1713285*x_4^7+1397088*x_4^5-282715*x_4^3-263654*x_4,x_3));
float(solve(36344*x_2-4806459*x_4^7-3836700*x_4^5+724215*x_4^3+703040*x_4,x_2));
float(solve(49560*x_1+379701*x_4^7-21168*x_4^5-151261*x_4^3+24432*x_4,x_1));
x_4:'x_4;


we get $(x_1,x_2,x_3,x_4) approx (0.1924229778886889, 0.3620745025257184, 0.4754969835800162, 0.6472526697680164)$



The other seven are:



$(-0.1924229778886889, -0.3620745025257184, -0.4754969835800162, -0.6472526697680164)$,



$(-0.7291921856328131 i, -0.8790682559168096 i, 0.6058365989819648 i, 0.6650546788263069 i)$,



$(0.7291921856328131 i, 0.8790682559168096 i, -0.6058365989819648 i, -0.6650546788263069 i)$,



$(-0.6516600637949471 i, 0.5916424877796417 i, -0.8700192754156101 i, 0.7168174741043486 i)$,



$(0.6516600637949471 i, -0.5916424877796417 i, 0.8700192754156101 i, -0.7168174741043486 i)$,



$(0.5839194982220037 i, -0.6443776225155836 i, -0.7101001755028209 i, 0.8651735590192353 i)$,



$(-0.5839194982220037 i, 0.6443776225155836 i, 0.7101001755028209 i, -0.8651735590192353 i)$






share|cite|improve this answer











$endgroup$



Entering



R=QQ[x_1,x_2,x_3,x_4,MonomialOrder=>Lex]
I=ideal(6-21*(x_1*x_2+x_1*x_3+x_1*x_4),10-21*(x_2*x_1+x_2*x_3+x_2*x_4),12-21*(x_3*x_1+x_3*x_2+x_3*x_4),14-21*(x_4*x_1+x_4*x_2+x_4*x_3))
gens gb I


in Macaulay2 yields



$(9261x_4^8+11907x_4^6+2119x_4^4-2083x_4^2-660,\14868x_3+1713285x_4^7+1397088x_4^5-282715x_4^3-263654x_4,\36344x_2-4806459x_4^7-3836700x_4^5+724215x_4^3+703040x_4,\49560x_1+379701x_4^7-21168x_4^5-151261x_4^3+24432x_4)$.



The first generator is in $x_4$ only and set to $0$ has $8$ complex solutions, two real by wolfram alpha. The other generators have $x_i, i=1,2,3$ enter linearly so they are determined uniquely by $x_4$.





Added: For the actual solutions, add toString oo to the commands above, and get:



matrix {{9261*x_4^8+11907*x_4^6+2119*x_4^4-2083*x_4^2-660,
14868*x_3+1713285*x_4^7+1397088*x_4^5-282715*x_4^3-263654*x_4,
36344*x_2-4806459*x_4^7-3836700*x_4^5+724215*x_4^3+703040*x_4,
49560*x_1+379701*x_4^7-21168*x_4^5-151261*x_4^3+24432*x_4}}


Then go to, say, maxima, setting $x_4^2=t$



allroots(ratsubst(t,x_4^2,9261*x_4^8+11907*x_4^6+2119*x_4^4-2083*x_4^2-660));


[t = 0.418936018521825, t = - 0.4422977258287621, t = - 0.5138272911813384, t = - 0.7485252872260103]



Then to take one of the eight $x_4=pm sqrt{t}$



x_4:sqrt(0.418936018521825);
float(solve(14868*x_3+1713285*x_4^7+1397088*x_4^5-282715*x_4^3-263654*x_4,x_3));
float(solve(36344*x_2-4806459*x_4^7-3836700*x_4^5+724215*x_4^3+703040*x_4,x_2));
float(solve(49560*x_1+379701*x_4^7-21168*x_4^5-151261*x_4^3+24432*x_4,x_1));
x_4:'x_4;


we get $(x_1,x_2,x_3,x_4) approx (0.1924229778886889, 0.3620745025257184, 0.4754969835800162, 0.6472526697680164)$



The other seven are:



$(-0.1924229778886889, -0.3620745025257184, -0.4754969835800162, -0.6472526697680164)$,



$(-0.7291921856328131 i, -0.8790682559168096 i, 0.6058365989819648 i, 0.6650546788263069 i)$,



$(0.7291921856328131 i, 0.8790682559168096 i, -0.6058365989819648 i, -0.6650546788263069 i)$,



$(-0.6516600637949471 i, 0.5916424877796417 i, -0.8700192754156101 i, 0.7168174741043486 i)$,



$(0.6516600637949471 i, -0.5916424877796417 i, 0.8700192754156101 i, -0.7168174741043486 i)$,



$(0.5839194982220037 i, -0.6443776225155836 i, -0.7101001755028209 i, 0.8651735590192353 i)$,



$(-0.5839194982220037 i, 0.6443776225155836 i, 0.7101001755028209 i, -0.8651735590192353 i)$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited May 26 '15 at 1:51

























answered May 15 '15 at 18:46









Jan-Magnus ØklandJan-Magnus Økland

1,9111914




1,9111914












  • $begingroup$
    Sorry one small question say I am interested what the actual solutions are what command can we use in Macaulay 2
    $endgroup$
    – Kori
    May 25 '15 at 17:42










  • $begingroup$
    @Kori Macaulay2 doesn't cater for the rest. I added some maxima code.
    $endgroup$
    – Jan-Magnus Økland
    May 25 '15 at 20:00


















  • $begingroup$
    Sorry one small question say I am interested what the actual solutions are what command can we use in Macaulay 2
    $endgroup$
    – Kori
    May 25 '15 at 17:42










  • $begingroup$
    @Kori Macaulay2 doesn't cater for the rest. I added some maxima code.
    $endgroup$
    – Jan-Magnus Økland
    May 25 '15 at 20:00
















$begingroup$
Sorry one small question say I am interested what the actual solutions are what command can we use in Macaulay 2
$endgroup$
– Kori
May 25 '15 at 17:42




$begingroup$
Sorry one small question say I am interested what the actual solutions are what command can we use in Macaulay 2
$endgroup$
– Kori
May 25 '15 at 17:42












$begingroup$
@Kori Macaulay2 doesn't cater for the rest. I added some maxima code.
$endgroup$
– Jan-Magnus Økland
May 25 '15 at 20:00




$begingroup$
@Kori Macaulay2 doesn't cater for the rest. I added some maxima code.
$endgroup$
– Jan-Magnus Økland
May 25 '15 at 20:00


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1283838%2fhelp-with-computation-and-gr%25c3%25b6bner-basis%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Wiesbaden

Marschland

Dieringhausen