Help with computation and Gröbner basis
$begingroup$
I am learning a new software and a new topic (Gröbner basis). I have the following system of polynomial equations
$$begin{align}
6-21(x_1x_2+x_1x_3+x_1x_4) &= 0 \
10-21(x_2x_1+x_2x_3+x_2x_4) &= 0 \
12-21(x_3x_1+x_3x_2+x_3x_4) &= 0 \
14-21(x_4x_1+x_4x_2+x_4x_3) &= 0
end{align}$$
and I need to find the number of solutions. I have been told I need to use Gröbner basis. The problem is that I do not know for what ideal I am supposed to find the Gröbner basis.
Secondly, if someone has experience with Macaulay2, I would appreciate if he can walk me through how we input this. What I was thinking was QQ[x1,x2,x3,x4, MonomialTOrder =>Lex]
to get a ring and then use lex
. Then I= ideal( )
here my lack of understanding kicks in.
Thank you guys for the time and patience.
commutative-algebra groebner-basis macaulay2
$endgroup$
add a comment |
$begingroup$
I am learning a new software and a new topic (Gröbner basis). I have the following system of polynomial equations
$$begin{align}
6-21(x_1x_2+x_1x_3+x_1x_4) &= 0 \
10-21(x_2x_1+x_2x_3+x_2x_4) &= 0 \
12-21(x_3x_1+x_3x_2+x_3x_4) &= 0 \
14-21(x_4x_1+x_4x_2+x_4x_3) &= 0
end{align}$$
and I need to find the number of solutions. I have been told I need to use Gröbner basis. The problem is that I do not know for what ideal I am supposed to find the Gröbner basis.
Secondly, if someone has experience with Macaulay2, I would appreciate if he can walk me through how we input this. What I was thinking was QQ[x1,x2,x3,x4, MonomialTOrder =>Lex]
to get a ring and then use lex
. Then I= ideal( )
here my lack of understanding kicks in.
Thank you guys for the time and patience.
commutative-algebra groebner-basis macaulay2
$endgroup$
$begingroup$
"CoCoA" can compute Gröbner basis with the command "GBasis(I)"
$endgroup$
– user 1
May 16 '15 at 6:12
add a comment |
$begingroup$
I am learning a new software and a new topic (Gröbner basis). I have the following system of polynomial equations
$$begin{align}
6-21(x_1x_2+x_1x_3+x_1x_4) &= 0 \
10-21(x_2x_1+x_2x_3+x_2x_4) &= 0 \
12-21(x_3x_1+x_3x_2+x_3x_4) &= 0 \
14-21(x_4x_1+x_4x_2+x_4x_3) &= 0
end{align}$$
and I need to find the number of solutions. I have been told I need to use Gröbner basis. The problem is that I do not know for what ideal I am supposed to find the Gröbner basis.
Secondly, if someone has experience with Macaulay2, I would appreciate if he can walk me through how we input this. What I was thinking was QQ[x1,x2,x3,x4, MonomialTOrder =>Lex]
to get a ring and then use lex
. Then I= ideal( )
here my lack of understanding kicks in.
Thank you guys for the time and patience.
commutative-algebra groebner-basis macaulay2
$endgroup$
I am learning a new software and a new topic (Gröbner basis). I have the following system of polynomial equations
$$begin{align}
6-21(x_1x_2+x_1x_3+x_1x_4) &= 0 \
10-21(x_2x_1+x_2x_3+x_2x_4) &= 0 \
12-21(x_3x_1+x_3x_2+x_3x_4) &= 0 \
14-21(x_4x_1+x_4x_2+x_4x_3) &= 0
end{align}$$
and I need to find the number of solutions. I have been told I need to use Gröbner basis. The problem is that I do not know for what ideal I am supposed to find the Gröbner basis.
Secondly, if someone has experience with Macaulay2, I would appreciate if he can walk me through how we input this. What I was thinking was QQ[x1,x2,x3,x4, MonomialTOrder =>Lex]
to get a ring and then use lex
. Then I= ideal( )
here my lack of understanding kicks in.
Thank you guys for the time and patience.
commutative-algebra groebner-basis macaulay2
commutative-algebra groebner-basis macaulay2
edited Dec 9 '18 at 0:15
Rodrigo de Azevedo
12.9k41857
12.9k41857
asked May 15 '15 at 17:33
KoriKori
6561519
6561519
$begingroup$
"CoCoA" can compute Gröbner basis with the command "GBasis(I)"
$endgroup$
– user 1
May 16 '15 at 6:12
add a comment |
$begingroup$
"CoCoA" can compute Gröbner basis with the command "GBasis(I)"
$endgroup$
– user 1
May 16 '15 at 6:12
$begingroup$
"CoCoA" can compute Gröbner basis with the command "GBasis(I)"
$endgroup$
– user 1
May 16 '15 at 6:12
$begingroup$
"CoCoA" can compute Gröbner basis with the command "GBasis(I)"
$endgroup$
– user 1
May 16 '15 at 6:12
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Entering
R=QQ[x_1,x_2,x_3,x_4,MonomialOrder=>Lex]
I=ideal(6-21*(x_1*x_2+x_1*x_3+x_1*x_4),10-21*(x_2*x_1+x_2*x_3+x_2*x_4),12-21*(x_3*x_1+x_3*x_2+x_3*x_4),14-21*(x_4*x_1+x_4*x_2+x_4*x_3))
gens gb I
in Macaulay2 yields
$(9261x_4^8+11907x_4^6+2119x_4^4-2083x_4^2-660,\14868x_3+1713285x_4^7+1397088x_4^5-282715x_4^3-263654x_4,\36344x_2-4806459x_4^7-3836700x_4^5+724215x_4^3+703040x_4,\49560x_1+379701x_4^7-21168x_4^5-151261x_4^3+24432x_4)$.
The first generator is in $x_4$ only and set to $0$ has $8$ complex solutions, two real by wolfram alpha. The other generators have $x_i, i=1,2,3$ enter linearly so they are determined uniquely by $x_4$.
Added: For the actual solutions, add toString oo
to the commands above, and get:
matrix {{9261*x_4^8+11907*x_4^6+2119*x_4^4-2083*x_4^2-660,
14868*x_3+1713285*x_4^7+1397088*x_4^5-282715*x_4^3-263654*x_4,
36344*x_2-4806459*x_4^7-3836700*x_4^5+724215*x_4^3+703040*x_4,
49560*x_1+379701*x_4^7-21168*x_4^5-151261*x_4^3+24432*x_4}}
Then go to, say, maxima, setting $x_4^2=t$
allroots(ratsubst(t,x_4^2,9261*x_4^8+11907*x_4^6+2119*x_4^4-2083*x_4^2-660));
[t = 0.418936018521825, t = - 0.4422977258287621, t = - 0.5138272911813384, t = - 0.7485252872260103]
Then to take one of the eight $x_4=pm sqrt{t}$
x_4:sqrt(0.418936018521825);
float(solve(14868*x_3+1713285*x_4^7+1397088*x_4^5-282715*x_4^3-263654*x_4,x_3));
float(solve(36344*x_2-4806459*x_4^7-3836700*x_4^5+724215*x_4^3+703040*x_4,x_2));
float(solve(49560*x_1+379701*x_4^7-21168*x_4^5-151261*x_4^3+24432*x_4,x_1));
x_4:'x_4;
we get $(x_1,x_2,x_3,x_4) approx (0.1924229778886889, 0.3620745025257184, 0.4754969835800162, 0.6472526697680164)$
The other seven are:
$(-0.1924229778886889, -0.3620745025257184, -0.4754969835800162, -0.6472526697680164)$,
$(-0.7291921856328131 i, -0.8790682559168096 i, 0.6058365989819648 i, 0.6650546788263069 i)$,
$(0.7291921856328131 i, 0.8790682559168096 i, -0.6058365989819648 i, -0.6650546788263069 i)$,
$(-0.6516600637949471 i, 0.5916424877796417 i, -0.8700192754156101 i, 0.7168174741043486 i)$,
$(0.6516600637949471 i, -0.5916424877796417 i, 0.8700192754156101 i, -0.7168174741043486 i)$,
$(0.5839194982220037 i, -0.6443776225155836 i, -0.7101001755028209 i, 0.8651735590192353 i)$,
$(-0.5839194982220037 i, 0.6443776225155836 i, 0.7101001755028209 i, -0.8651735590192353 i)$
$endgroup$
$begingroup$
Sorry one small question say I am interested what the actual solutions are what command can we use in Macaulay 2
$endgroup$
– Kori
May 25 '15 at 17:42
$begingroup$
@Kori Macaulay2 doesn't cater for the rest. I added some maxima code.
$endgroup$
– Jan-Magnus Økland
May 25 '15 at 20:00
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1283838%2fhelp-with-computation-and-gr%25c3%25b6bner-basis%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Entering
R=QQ[x_1,x_2,x_3,x_4,MonomialOrder=>Lex]
I=ideal(6-21*(x_1*x_2+x_1*x_3+x_1*x_4),10-21*(x_2*x_1+x_2*x_3+x_2*x_4),12-21*(x_3*x_1+x_3*x_2+x_3*x_4),14-21*(x_4*x_1+x_4*x_2+x_4*x_3))
gens gb I
in Macaulay2 yields
$(9261x_4^8+11907x_4^6+2119x_4^4-2083x_4^2-660,\14868x_3+1713285x_4^7+1397088x_4^5-282715x_4^3-263654x_4,\36344x_2-4806459x_4^7-3836700x_4^5+724215x_4^3+703040x_4,\49560x_1+379701x_4^7-21168x_4^5-151261x_4^3+24432x_4)$.
The first generator is in $x_4$ only and set to $0$ has $8$ complex solutions, two real by wolfram alpha. The other generators have $x_i, i=1,2,3$ enter linearly so they are determined uniquely by $x_4$.
Added: For the actual solutions, add toString oo
to the commands above, and get:
matrix {{9261*x_4^8+11907*x_4^6+2119*x_4^4-2083*x_4^2-660,
14868*x_3+1713285*x_4^7+1397088*x_4^5-282715*x_4^3-263654*x_4,
36344*x_2-4806459*x_4^7-3836700*x_4^5+724215*x_4^3+703040*x_4,
49560*x_1+379701*x_4^7-21168*x_4^5-151261*x_4^3+24432*x_4}}
Then go to, say, maxima, setting $x_4^2=t$
allroots(ratsubst(t,x_4^2,9261*x_4^8+11907*x_4^6+2119*x_4^4-2083*x_4^2-660));
[t = 0.418936018521825, t = - 0.4422977258287621, t = - 0.5138272911813384, t = - 0.7485252872260103]
Then to take one of the eight $x_4=pm sqrt{t}$
x_4:sqrt(0.418936018521825);
float(solve(14868*x_3+1713285*x_4^7+1397088*x_4^5-282715*x_4^3-263654*x_4,x_3));
float(solve(36344*x_2-4806459*x_4^7-3836700*x_4^5+724215*x_4^3+703040*x_4,x_2));
float(solve(49560*x_1+379701*x_4^7-21168*x_4^5-151261*x_4^3+24432*x_4,x_1));
x_4:'x_4;
we get $(x_1,x_2,x_3,x_4) approx (0.1924229778886889, 0.3620745025257184, 0.4754969835800162, 0.6472526697680164)$
The other seven are:
$(-0.1924229778886889, -0.3620745025257184, -0.4754969835800162, -0.6472526697680164)$,
$(-0.7291921856328131 i, -0.8790682559168096 i, 0.6058365989819648 i, 0.6650546788263069 i)$,
$(0.7291921856328131 i, 0.8790682559168096 i, -0.6058365989819648 i, -0.6650546788263069 i)$,
$(-0.6516600637949471 i, 0.5916424877796417 i, -0.8700192754156101 i, 0.7168174741043486 i)$,
$(0.6516600637949471 i, -0.5916424877796417 i, 0.8700192754156101 i, -0.7168174741043486 i)$,
$(0.5839194982220037 i, -0.6443776225155836 i, -0.7101001755028209 i, 0.8651735590192353 i)$,
$(-0.5839194982220037 i, 0.6443776225155836 i, 0.7101001755028209 i, -0.8651735590192353 i)$
$endgroup$
$begingroup$
Sorry one small question say I am interested what the actual solutions are what command can we use in Macaulay 2
$endgroup$
– Kori
May 25 '15 at 17:42
$begingroup$
@Kori Macaulay2 doesn't cater for the rest. I added some maxima code.
$endgroup$
– Jan-Magnus Økland
May 25 '15 at 20:00
add a comment |
$begingroup$
Entering
R=QQ[x_1,x_2,x_3,x_4,MonomialOrder=>Lex]
I=ideal(6-21*(x_1*x_2+x_1*x_3+x_1*x_4),10-21*(x_2*x_1+x_2*x_3+x_2*x_4),12-21*(x_3*x_1+x_3*x_2+x_3*x_4),14-21*(x_4*x_1+x_4*x_2+x_4*x_3))
gens gb I
in Macaulay2 yields
$(9261x_4^8+11907x_4^6+2119x_4^4-2083x_4^2-660,\14868x_3+1713285x_4^7+1397088x_4^5-282715x_4^3-263654x_4,\36344x_2-4806459x_4^7-3836700x_4^5+724215x_4^3+703040x_4,\49560x_1+379701x_4^7-21168x_4^5-151261x_4^3+24432x_4)$.
The first generator is in $x_4$ only and set to $0$ has $8$ complex solutions, two real by wolfram alpha. The other generators have $x_i, i=1,2,3$ enter linearly so they are determined uniquely by $x_4$.
Added: For the actual solutions, add toString oo
to the commands above, and get:
matrix {{9261*x_4^8+11907*x_4^6+2119*x_4^4-2083*x_4^2-660,
14868*x_3+1713285*x_4^7+1397088*x_4^5-282715*x_4^3-263654*x_4,
36344*x_2-4806459*x_4^7-3836700*x_4^5+724215*x_4^3+703040*x_4,
49560*x_1+379701*x_4^7-21168*x_4^5-151261*x_4^3+24432*x_4}}
Then go to, say, maxima, setting $x_4^2=t$
allroots(ratsubst(t,x_4^2,9261*x_4^8+11907*x_4^6+2119*x_4^4-2083*x_4^2-660));
[t = 0.418936018521825, t = - 0.4422977258287621, t = - 0.5138272911813384, t = - 0.7485252872260103]
Then to take one of the eight $x_4=pm sqrt{t}$
x_4:sqrt(0.418936018521825);
float(solve(14868*x_3+1713285*x_4^7+1397088*x_4^5-282715*x_4^3-263654*x_4,x_3));
float(solve(36344*x_2-4806459*x_4^7-3836700*x_4^5+724215*x_4^3+703040*x_4,x_2));
float(solve(49560*x_1+379701*x_4^7-21168*x_4^5-151261*x_4^3+24432*x_4,x_1));
x_4:'x_4;
we get $(x_1,x_2,x_3,x_4) approx (0.1924229778886889, 0.3620745025257184, 0.4754969835800162, 0.6472526697680164)$
The other seven are:
$(-0.1924229778886889, -0.3620745025257184, -0.4754969835800162, -0.6472526697680164)$,
$(-0.7291921856328131 i, -0.8790682559168096 i, 0.6058365989819648 i, 0.6650546788263069 i)$,
$(0.7291921856328131 i, 0.8790682559168096 i, -0.6058365989819648 i, -0.6650546788263069 i)$,
$(-0.6516600637949471 i, 0.5916424877796417 i, -0.8700192754156101 i, 0.7168174741043486 i)$,
$(0.6516600637949471 i, -0.5916424877796417 i, 0.8700192754156101 i, -0.7168174741043486 i)$,
$(0.5839194982220037 i, -0.6443776225155836 i, -0.7101001755028209 i, 0.8651735590192353 i)$,
$(-0.5839194982220037 i, 0.6443776225155836 i, 0.7101001755028209 i, -0.8651735590192353 i)$
$endgroup$
$begingroup$
Sorry one small question say I am interested what the actual solutions are what command can we use in Macaulay 2
$endgroup$
– Kori
May 25 '15 at 17:42
$begingroup$
@Kori Macaulay2 doesn't cater for the rest. I added some maxima code.
$endgroup$
– Jan-Magnus Økland
May 25 '15 at 20:00
add a comment |
$begingroup$
Entering
R=QQ[x_1,x_2,x_3,x_4,MonomialOrder=>Lex]
I=ideal(6-21*(x_1*x_2+x_1*x_3+x_1*x_4),10-21*(x_2*x_1+x_2*x_3+x_2*x_4),12-21*(x_3*x_1+x_3*x_2+x_3*x_4),14-21*(x_4*x_1+x_4*x_2+x_4*x_3))
gens gb I
in Macaulay2 yields
$(9261x_4^8+11907x_4^6+2119x_4^4-2083x_4^2-660,\14868x_3+1713285x_4^7+1397088x_4^5-282715x_4^3-263654x_4,\36344x_2-4806459x_4^7-3836700x_4^5+724215x_4^3+703040x_4,\49560x_1+379701x_4^7-21168x_4^5-151261x_4^3+24432x_4)$.
The first generator is in $x_4$ only and set to $0$ has $8$ complex solutions, two real by wolfram alpha. The other generators have $x_i, i=1,2,3$ enter linearly so they are determined uniquely by $x_4$.
Added: For the actual solutions, add toString oo
to the commands above, and get:
matrix {{9261*x_4^8+11907*x_4^6+2119*x_4^4-2083*x_4^2-660,
14868*x_3+1713285*x_4^7+1397088*x_4^5-282715*x_4^3-263654*x_4,
36344*x_2-4806459*x_4^7-3836700*x_4^5+724215*x_4^3+703040*x_4,
49560*x_1+379701*x_4^7-21168*x_4^5-151261*x_4^3+24432*x_4}}
Then go to, say, maxima, setting $x_4^2=t$
allroots(ratsubst(t,x_4^2,9261*x_4^8+11907*x_4^6+2119*x_4^4-2083*x_4^2-660));
[t = 0.418936018521825, t = - 0.4422977258287621, t = - 0.5138272911813384, t = - 0.7485252872260103]
Then to take one of the eight $x_4=pm sqrt{t}$
x_4:sqrt(0.418936018521825);
float(solve(14868*x_3+1713285*x_4^7+1397088*x_4^5-282715*x_4^3-263654*x_4,x_3));
float(solve(36344*x_2-4806459*x_4^7-3836700*x_4^5+724215*x_4^3+703040*x_4,x_2));
float(solve(49560*x_1+379701*x_4^7-21168*x_4^5-151261*x_4^3+24432*x_4,x_1));
x_4:'x_4;
we get $(x_1,x_2,x_3,x_4) approx (0.1924229778886889, 0.3620745025257184, 0.4754969835800162, 0.6472526697680164)$
The other seven are:
$(-0.1924229778886889, -0.3620745025257184, -0.4754969835800162, -0.6472526697680164)$,
$(-0.7291921856328131 i, -0.8790682559168096 i, 0.6058365989819648 i, 0.6650546788263069 i)$,
$(0.7291921856328131 i, 0.8790682559168096 i, -0.6058365989819648 i, -0.6650546788263069 i)$,
$(-0.6516600637949471 i, 0.5916424877796417 i, -0.8700192754156101 i, 0.7168174741043486 i)$,
$(0.6516600637949471 i, -0.5916424877796417 i, 0.8700192754156101 i, -0.7168174741043486 i)$,
$(0.5839194982220037 i, -0.6443776225155836 i, -0.7101001755028209 i, 0.8651735590192353 i)$,
$(-0.5839194982220037 i, 0.6443776225155836 i, 0.7101001755028209 i, -0.8651735590192353 i)$
$endgroup$
Entering
R=QQ[x_1,x_2,x_3,x_4,MonomialOrder=>Lex]
I=ideal(6-21*(x_1*x_2+x_1*x_3+x_1*x_4),10-21*(x_2*x_1+x_2*x_3+x_2*x_4),12-21*(x_3*x_1+x_3*x_2+x_3*x_4),14-21*(x_4*x_1+x_4*x_2+x_4*x_3))
gens gb I
in Macaulay2 yields
$(9261x_4^8+11907x_4^6+2119x_4^4-2083x_4^2-660,\14868x_3+1713285x_4^7+1397088x_4^5-282715x_4^3-263654x_4,\36344x_2-4806459x_4^7-3836700x_4^5+724215x_4^3+703040x_4,\49560x_1+379701x_4^7-21168x_4^5-151261x_4^3+24432x_4)$.
The first generator is in $x_4$ only and set to $0$ has $8$ complex solutions, two real by wolfram alpha. The other generators have $x_i, i=1,2,3$ enter linearly so they are determined uniquely by $x_4$.
Added: For the actual solutions, add toString oo
to the commands above, and get:
matrix {{9261*x_4^8+11907*x_4^6+2119*x_4^4-2083*x_4^2-660,
14868*x_3+1713285*x_4^7+1397088*x_4^5-282715*x_4^3-263654*x_4,
36344*x_2-4806459*x_4^7-3836700*x_4^5+724215*x_4^3+703040*x_4,
49560*x_1+379701*x_4^7-21168*x_4^5-151261*x_4^3+24432*x_4}}
Then go to, say, maxima, setting $x_4^2=t$
allroots(ratsubst(t,x_4^2,9261*x_4^8+11907*x_4^6+2119*x_4^4-2083*x_4^2-660));
[t = 0.418936018521825, t = - 0.4422977258287621, t = - 0.5138272911813384, t = - 0.7485252872260103]
Then to take one of the eight $x_4=pm sqrt{t}$
x_4:sqrt(0.418936018521825);
float(solve(14868*x_3+1713285*x_4^7+1397088*x_4^5-282715*x_4^3-263654*x_4,x_3));
float(solve(36344*x_2-4806459*x_4^7-3836700*x_4^5+724215*x_4^3+703040*x_4,x_2));
float(solve(49560*x_1+379701*x_4^7-21168*x_4^5-151261*x_4^3+24432*x_4,x_1));
x_4:'x_4;
we get $(x_1,x_2,x_3,x_4) approx (0.1924229778886889, 0.3620745025257184, 0.4754969835800162, 0.6472526697680164)$
The other seven are:
$(-0.1924229778886889, -0.3620745025257184, -0.4754969835800162, -0.6472526697680164)$,
$(-0.7291921856328131 i, -0.8790682559168096 i, 0.6058365989819648 i, 0.6650546788263069 i)$,
$(0.7291921856328131 i, 0.8790682559168096 i, -0.6058365989819648 i, -0.6650546788263069 i)$,
$(-0.6516600637949471 i, 0.5916424877796417 i, -0.8700192754156101 i, 0.7168174741043486 i)$,
$(0.6516600637949471 i, -0.5916424877796417 i, 0.8700192754156101 i, -0.7168174741043486 i)$,
$(0.5839194982220037 i, -0.6443776225155836 i, -0.7101001755028209 i, 0.8651735590192353 i)$,
$(-0.5839194982220037 i, 0.6443776225155836 i, 0.7101001755028209 i, -0.8651735590192353 i)$
edited May 26 '15 at 1:51
answered May 15 '15 at 18:46
Jan-Magnus ØklandJan-Magnus Økland
1,9111914
1,9111914
$begingroup$
Sorry one small question say I am interested what the actual solutions are what command can we use in Macaulay 2
$endgroup$
– Kori
May 25 '15 at 17:42
$begingroup$
@Kori Macaulay2 doesn't cater for the rest. I added some maxima code.
$endgroup$
– Jan-Magnus Økland
May 25 '15 at 20:00
add a comment |
$begingroup$
Sorry one small question say I am interested what the actual solutions are what command can we use in Macaulay 2
$endgroup$
– Kori
May 25 '15 at 17:42
$begingroup$
@Kori Macaulay2 doesn't cater for the rest. I added some maxima code.
$endgroup$
– Jan-Magnus Økland
May 25 '15 at 20:00
$begingroup$
Sorry one small question say I am interested what the actual solutions are what command can we use in Macaulay 2
$endgroup$
– Kori
May 25 '15 at 17:42
$begingroup$
Sorry one small question say I am interested what the actual solutions are what command can we use in Macaulay 2
$endgroup$
– Kori
May 25 '15 at 17:42
$begingroup$
@Kori Macaulay2 doesn't cater for the rest. I added some maxima code.
$endgroup$
– Jan-Magnus Økland
May 25 '15 at 20:00
$begingroup$
@Kori Macaulay2 doesn't cater for the rest. I added some maxima code.
$endgroup$
– Jan-Magnus Økland
May 25 '15 at 20:00
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1283838%2fhelp-with-computation-and-gr%25c3%25b6bner-basis%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
"CoCoA" can compute Gröbner basis with the command "GBasis(I)"
$endgroup$
– user 1
May 16 '15 at 6:12