How to take the derivative of product of a sequence?
$begingroup$
How to take the derivative of $prod_{i=1}^{n}(1-e^{-lambda _{i}cdot x})I(x>0)$ with regard to x?
Here $F(X)=prod_{i=1}^{n}(1-e^{-lambda _{i}cdot x})I(x>0)$ is a CDF, and I want to take the derivative of it and get the pdf of X.
I try to take the log of F(X), so $frac{partial}{partial x}logF(x)=frac{partial logF(x)}{partial F(x)}cdot frac{partial F(x)}{partial x}$, then I can get $f(x)= frac{partial F(x)}{partial x} $, but I don't know how the move on with $frac{partial}{partial x}logF(x)$
calculus probability derivatives
$endgroup$
add a comment |
$begingroup$
How to take the derivative of $prod_{i=1}^{n}(1-e^{-lambda _{i}cdot x})I(x>0)$ with regard to x?
Here $F(X)=prod_{i=1}^{n}(1-e^{-lambda _{i}cdot x})I(x>0)$ is a CDF, and I want to take the derivative of it and get the pdf of X.
I try to take the log of F(X), so $frac{partial}{partial x}logF(x)=frac{partial logF(x)}{partial F(x)}cdot frac{partial F(x)}{partial x}$, then I can get $f(x)= frac{partial F(x)}{partial x} $, but I don't know how the move on with $frac{partial}{partial x}logF(x)$
calculus probability derivatives
$endgroup$
add a comment |
$begingroup$
How to take the derivative of $prod_{i=1}^{n}(1-e^{-lambda _{i}cdot x})I(x>0)$ with regard to x?
Here $F(X)=prod_{i=1}^{n}(1-e^{-lambda _{i}cdot x})I(x>0)$ is a CDF, and I want to take the derivative of it and get the pdf of X.
I try to take the log of F(X), so $frac{partial}{partial x}logF(x)=frac{partial logF(x)}{partial F(x)}cdot frac{partial F(x)}{partial x}$, then I can get $f(x)= frac{partial F(x)}{partial x} $, but I don't know how the move on with $frac{partial}{partial x}logF(x)$
calculus probability derivatives
$endgroup$
How to take the derivative of $prod_{i=1}^{n}(1-e^{-lambda _{i}cdot x})I(x>0)$ with regard to x?
Here $F(X)=prod_{i=1}^{n}(1-e^{-lambda _{i}cdot x})I(x>0)$ is a CDF, and I want to take the derivative of it and get the pdf of X.
I try to take the log of F(X), so $frac{partial}{partial x}logF(x)=frac{partial logF(x)}{partial F(x)}cdot frac{partial F(x)}{partial x}$, then I can get $f(x)= frac{partial F(x)}{partial x} $, but I don't know how the move on with $frac{partial}{partial x}logF(x)$
calculus probability derivatives
calculus probability derivatives
asked Dec 9 '18 at 4:20
CrispCrisp
133
133
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$$
frac{d}{dx}prod_{i=1}^{n}(1-e^{-lambda _{i}x})I(x>0)=frac{d}{dx}left(prod_{i=1}^{n}(1-e^{-lambda _{i}x})right)I(x>0)+prod_{i=1}^{n}(1-e^{-lambda _{i}x})frac{d}{dx}I(x>0) .
$$
Note that
$$
frac{d}{dx}I(x>0)=delta(x) ,
$$
therefore in principle your pdf would have a Dirac mass at $x=0$, whose coefficient is $prod_{i=1}^{n}(1-e^{-lambda _{i}x})Big|_{x=0}=0$ (so no point mass after all...).
Evaluating $frac{d}{dx}left(prod_{i=1}^{n}(1-e^{-lambda _{i}x})right)$ is not hard, just rewrite
$$
frac{d}{dx}left(prod_{i=1}^{n}(1-e^{-lambda _{i}x})right)=frac{d}{dx}e^{sum_{i=1}^n log(1-e^{-lambda _{i}x})}=e^{sum_{i=1}^n log(1-e^{-lambda _{i}x})}sum_{i=1}^n frac{d}{dx}log(1-e^{-lambda _{i}x})
$$
$$
=left(prod_{i=1}^{n}(1-e^{-lambda _{i}x})right)sum_{j=1}^nfrac{lambda_j e^{-lambda_j x}}{1-e^{-lambda_j x}} .
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032002%2fhow-to-take-the-derivative-of-product-of-a-sequence%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$
frac{d}{dx}prod_{i=1}^{n}(1-e^{-lambda _{i}x})I(x>0)=frac{d}{dx}left(prod_{i=1}^{n}(1-e^{-lambda _{i}x})right)I(x>0)+prod_{i=1}^{n}(1-e^{-lambda _{i}x})frac{d}{dx}I(x>0) .
$$
Note that
$$
frac{d}{dx}I(x>0)=delta(x) ,
$$
therefore in principle your pdf would have a Dirac mass at $x=0$, whose coefficient is $prod_{i=1}^{n}(1-e^{-lambda _{i}x})Big|_{x=0}=0$ (so no point mass after all...).
Evaluating $frac{d}{dx}left(prod_{i=1}^{n}(1-e^{-lambda _{i}x})right)$ is not hard, just rewrite
$$
frac{d}{dx}left(prod_{i=1}^{n}(1-e^{-lambda _{i}x})right)=frac{d}{dx}e^{sum_{i=1}^n log(1-e^{-lambda _{i}x})}=e^{sum_{i=1}^n log(1-e^{-lambda _{i}x})}sum_{i=1}^n frac{d}{dx}log(1-e^{-lambda _{i}x})
$$
$$
=left(prod_{i=1}^{n}(1-e^{-lambda _{i}x})right)sum_{j=1}^nfrac{lambda_j e^{-lambda_j x}}{1-e^{-lambda_j x}} .
$$
$endgroup$
add a comment |
$begingroup$
$$
frac{d}{dx}prod_{i=1}^{n}(1-e^{-lambda _{i}x})I(x>0)=frac{d}{dx}left(prod_{i=1}^{n}(1-e^{-lambda _{i}x})right)I(x>0)+prod_{i=1}^{n}(1-e^{-lambda _{i}x})frac{d}{dx}I(x>0) .
$$
Note that
$$
frac{d}{dx}I(x>0)=delta(x) ,
$$
therefore in principle your pdf would have a Dirac mass at $x=0$, whose coefficient is $prod_{i=1}^{n}(1-e^{-lambda _{i}x})Big|_{x=0}=0$ (so no point mass after all...).
Evaluating $frac{d}{dx}left(prod_{i=1}^{n}(1-e^{-lambda _{i}x})right)$ is not hard, just rewrite
$$
frac{d}{dx}left(prod_{i=1}^{n}(1-e^{-lambda _{i}x})right)=frac{d}{dx}e^{sum_{i=1}^n log(1-e^{-lambda _{i}x})}=e^{sum_{i=1}^n log(1-e^{-lambda _{i}x})}sum_{i=1}^n frac{d}{dx}log(1-e^{-lambda _{i}x})
$$
$$
=left(prod_{i=1}^{n}(1-e^{-lambda _{i}x})right)sum_{j=1}^nfrac{lambda_j e^{-lambda_j x}}{1-e^{-lambda_j x}} .
$$
$endgroup$
add a comment |
$begingroup$
$$
frac{d}{dx}prod_{i=1}^{n}(1-e^{-lambda _{i}x})I(x>0)=frac{d}{dx}left(prod_{i=1}^{n}(1-e^{-lambda _{i}x})right)I(x>0)+prod_{i=1}^{n}(1-e^{-lambda _{i}x})frac{d}{dx}I(x>0) .
$$
Note that
$$
frac{d}{dx}I(x>0)=delta(x) ,
$$
therefore in principle your pdf would have a Dirac mass at $x=0$, whose coefficient is $prod_{i=1}^{n}(1-e^{-lambda _{i}x})Big|_{x=0}=0$ (so no point mass after all...).
Evaluating $frac{d}{dx}left(prod_{i=1}^{n}(1-e^{-lambda _{i}x})right)$ is not hard, just rewrite
$$
frac{d}{dx}left(prod_{i=1}^{n}(1-e^{-lambda _{i}x})right)=frac{d}{dx}e^{sum_{i=1}^n log(1-e^{-lambda _{i}x})}=e^{sum_{i=1}^n log(1-e^{-lambda _{i}x})}sum_{i=1}^n frac{d}{dx}log(1-e^{-lambda _{i}x})
$$
$$
=left(prod_{i=1}^{n}(1-e^{-lambda _{i}x})right)sum_{j=1}^nfrac{lambda_j e^{-lambda_j x}}{1-e^{-lambda_j x}} .
$$
$endgroup$
$$
frac{d}{dx}prod_{i=1}^{n}(1-e^{-lambda _{i}x})I(x>0)=frac{d}{dx}left(prod_{i=1}^{n}(1-e^{-lambda _{i}x})right)I(x>0)+prod_{i=1}^{n}(1-e^{-lambda _{i}x})frac{d}{dx}I(x>0) .
$$
Note that
$$
frac{d}{dx}I(x>0)=delta(x) ,
$$
therefore in principle your pdf would have a Dirac mass at $x=0$, whose coefficient is $prod_{i=1}^{n}(1-e^{-lambda _{i}x})Big|_{x=0}=0$ (so no point mass after all...).
Evaluating $frac{d}{dx}left(prod_{i=1}^{n}(1-e^{-lambda _{i}x})right)$ is not hard, just rewrite
$$
frac{d}{dx}left(prod_{i=1}^{n}(1-e^{-lambda _{i}x})right)=frac{d}{dx}e^{sum_{i=1}^n log(1-e^{-lambda _{i}x})}=e^{sum_{i=1}^n log(1-e^{-lambda _{i}x})}sum_{i=1}^n frac{d}{dx}log(1-e^{-lambda _{i}x})
$$
$$
=left(prod_{i=1}^{n}(1-e^{-lambda _{i}x})right)sum_{j=1}^nfrac{lambda_j e^{-lambda_j x}}{1-e^{-lambda_j x}} .
$$
answered Dec 24 '18 at 15:30
Pierpaolo VivoPierpaolo Vivo
5,3462724
5,3462724
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032002%2fhow-to-take-the-derivative-of-product-of-a-sequence%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown