If $g,h in L[X]$ prime divisors of f irreducible, than it exists $phi in Aut(L/K)$ with $phi(g) = h$.
$begingroup$
Let f $in$ K[X] be irreducible and L/K a normal field extension. If g,h $in$ L[X] normalized prime divisor of f in L[X], so it exist a automorphism $tau in$ Aut(L/K) with $tau$(g)=h.
I got so far:
Set f = gt = hs with t,s $in$ L[X]. Than
- g divides hs
- h divides gt
and because of f irreducible follows with definition that
- g or t $in L[X]^x=L^x$
- h or s $in L[X]^x=L^x$
Since g,h prime, so irreducible, so $notin L[X]^x=L^x$, it must be t,s $in L^x$ and so we can set g = $h cdot frac{s}{t} := h cdot b$ with $b in L^x$.
Any comments or ideas how to go on?
abstract-algebra extension-field automorphism-group
$endgroup$
add a comment |
$begingroup$
Let f $in$ K[X] be irreducible and L/K a normal field extension. If g,h $in$ L[X] normalized prime divisor of f in L[X], so it exist a automorphism $tau in$ Aut(L/K) with $tau$(g)=h.
I got so far:
Set f = gt = hs with t,s $in$ L[X]. Than
- g divides hs
- h divides gt
and because of f irreducible follows with definition that
- g or t $in L[X]^x=L^x$
- h or s $in L[X]^x=L^x$
Since g,h prime, so irreducible, so $notin L[X]^x=L^x$, it must be t,s $in L^x$ and so we can set g = $h cdot frac{s}{t} := h cdot b$ with $b in L^x$.
Any comments or ideas how to go on?
abstract-algebra extension-field automorphism-group
$endgroup$
$begingroup$
What is your $x$ ? To prove everything let $alpha, beta$ some roots of $g,h$. Do you know a field morphism acting on $alpha,beta$ ?
$endgroup$
– reuns
Dec 6 '18 at 13:51
add a comment |
$begingroup$
Let f $in$ K[X] be irreducible and L/K a normal field extension. If g,h $in$ L[X] normalized prime divisor of f in L[X], so it exist a automorphism $tau in$ Aut(L/K) with $tau$(g)=h.
I got so far:
Set f = gt = hs with t,s $in$ L[X]. Than
- g divides hs
- h divides gt
and because of f irreducible follows with definition that
- g or t $in L[X]^x=L^x$
- h or s $in L[X]^x=L^x$
Since g,h prime, so irreducible, so $notin L[X]^x=L^x$, it must be t,s $in L^x$ and so we can set g = $h cdot frac{s}{t} := h cdot b$ with $b in L^x$.
Any comments or ideas how to go on?
abstract-algebra extension-field automorphism-group
$endgroup$
Let f $in$ K[X] be irreducible and L/K a normal field extension. If g,h $in$ L[X] normalized prime divisor of f in L[X], so it exist a automorphism $tau in$ Aut(L/K) with $tau$(g)=h.
I got so far:
Set f = gt = hs with t,s $in$ L[X]. Than
- g divides hs
- h divides gt
and because of f irreducible follows with definition that
- g or t $in L[X]^x=L^x$
- h or s $in L[X]^x=L^x$
Since g,h prime, so irreducible, so $notin L[X]^x=L^x$, it must be t,s $in L^x$ and so we can set g = $h cdot frac{s}{t} := h cdot b$ with $b in L^x$.
Any comments or ideas how to go on?
abstract-algebra extension-field automorphism-group
abstract-algebra extension-field automorphism-group
asked Dec 6 '18 at 13:40
Zorro_CZorro_C
82
82
$begingroup$
What is your $x$ ? To prove everything let $alpha, beta$ some roots of $g,h$. Do you know a field morphism acting on $alpha,beta$ ?
$endgroup$
– reuns
Dec 6 '18 at 13:51
add a comment |
$begingroup$
What is your $x$ ? To prove everything let $alpha, beta$ some roots of $g,h$. Do you know a field morphism acting on $alpha,beta$ ?
$endgroup$
– reuns
Dec 6 '18 at 13:51
$begingroup$
What is your $x$ ? To prove everything let $alpha, beta$ some roots of $g,h$. Do you know a field morphism acting on $alpha,beta$ ?
$endgroup$
– reuns
Dec 6 '18 at 13:51
$begingroup$
What is your $x$ ? To prove everything let $alpha, beta$ some roots of $g,h$. Do you know a field morphism acting on $alpha,beta$ ?
$endgroup$
– reuns
Dec 6 '18 at 13:51
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You can write $f=Pi_if^{n_i}_i$ where $f_i$ is prime in $L[X] $. The polynomial $Pi_{hin Aut(L/K), {f_1}^hneq f_1} {f^{n_1}_1}^h$ is in $K[X] $ and divides $f$ so it is $f$. This implies the result.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028498%2fif-g-h-in-lx-prime-divisors-of-f-irreducible-than-it-exists-phi-in-aut%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You can write $f=Pi_if^{n_i}_i$ where $f_i$ is prime in $L[X] $. The polynomial $Pi_{hin Aut(L/K), {f_1}^hneq f_1} {f^{n_1}_1}^h$ is in $K[X] $ and divides $f$ so it is $f$. This implies the result.
$endgroup$
add a comment |
$begingroup$
You can write $f=Pi_if^{n_i}_i$ where $f_i$ is prime in $L[X] $. The polynomial $Pi_{hin Aut(L/K), {f_1}^hneq f_1} {f^{n_1}_1}^h$ is in $K[X] $ and divides $f$ so it is $f$. This implies the result.
$endgroup$
add a comment |
$begingroup$
You can write $f=Pi_if^{n_i}_i$ where $f_i$ is prime in $L[X] $. The polynomial $Pi_{hin Aut(L/K), {f_1}^hneq f_1} {f^{n_1}_1}^h$ is in $K[X] $ and divides $f$ so it is $f$. This implies the result.
$endgroup$
You can write $f=Pi_if^{n_i}_i$ where $f_i$ is prime in $L[X] $. The polynomial $Pi_{hin Aut(L/K), {f_1}^hneq f_1} {f^{n_1}_1}^h$ is in $K[X] $ and divides $f$ so it is $f$. This implies the result.
answered Dec 6 '18 at 14:07
Tsemo AristideTsemo Aristide
56.9k11444
56.9k11444
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028498%2fif-g-h-in-lx-prime-divisors-of-f-irreducible-than-it-exists-phi-in-aut%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
What is your $x$ ? To prove everything let $alpha, beta$ some roots of $g,h$. Do you know a field morphism acting on $alpha,beta$ ?
$endgroup$
– reuns
Dec 6 '18 at 13:51