Proof of an inequality: is it correct?












2












$begingroup$



Let $x_{1},cdots, x_{n}>-1$ be real numbers such that
$sum{x_{i}}=n$. Prove that: $$sum_{i=1}^{n}{frac{1}{x_{i}+1}}geq sum_{i=1}^{n}{frac{x_{i}}{x_{i}^{2}+1}}$$




My proof: By AM-HM and $sum{x_{i}}=n$, LHS $geq frac{n^{2}}{n+ntimes 1}=frac{n}{2}$



On the other hand, by using AM-GM in the denominator, RHS $leq sum{frac{x_{i}}{2x_{i}}}=frac{n}{2} rightarrow$ LHS $geq$ RHS, with equality iff for all $i$, $x_{i}=1$.



Is this proof correct?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Yes, it’s correct.
    $endgroup$
    – Macavity
    Dec 11 '18 at 12:25
















2












$begingroup$



Let $x_{1},cdots, x_{n}>-1$ be real numbers such that
$sum{x_{i}}=n$. Prove that: $$sum_{i=1}^{n}{frac{1}{x_{i}+1}}geq sum_{i=1}^{n}{frac{x_{i}}{x_{i}^{2}+1}}$$




My proof: By AM-HM and $sum{x_{i}}=n$, LHS $geq frac{n^{2}}{n+ntimes 1}=frac{n}{2}$



On the other hand, by using AM-GM in the denominator, RHS $leq sum{frac{x_{i}}{2x_{i}}}=frac{n}{2} rightarrow$ LHS $geq$ RHS, with equality iff for all $i$, $x_{i}=1$.



Is this proof correct?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Yes, it’s correct.
    $endgroup$
    – Macavity
    Dec 11 '18 at 12:25














2












2








2


1



$begingroup$



Let $x_{1},cdots, x_{n}>-1$ be real numbers such that
$sum{x_{i}}=n$. Prove that: $$sum_{i=1}^{n}{frac{1}{x_{i}+1}}geq sum_{i=1}^{n}{frac{x_{i}}{x_{i}^{2}+1}}$$




My proof: By AM-HM and $sum{x_{i}}=n$, LHS $geq frac{n^{2}}{n+ntimes 1}=frac{n}{2}$



On the other hand, by using AM-GM in the denominator, RHS $leq sum{frac{x_{i}}{2x_{i}}}=frac{n}{2} rightarrow$ LHS $geq$ RHS, with equality iff for all $i$, $x_{i}=1$.



Is this proof correct?










share|cite|improve this question











$endgroup$





Let $x_{1},cdots, x_{n}>-1$ be real numbers such that
$sum{x_{i}}=n$. Prove that: $$sum_{i=1}^{n}{frac{1}{x_{i}+1}}geq sum_{i=1}^{n}{frac{x_{i}}{x_{i}^{2}+1}}$$




My proof: By AM-HM and $sum{x_{i}}=n$, LHS $geq frac{n^{2}}{n+ntimes 1}=frac{n}{2}$



On the other hand, by using AM-GM in the denominator, RHS $leq sum{frac{x_{i}}{2x_{i}}}=frac{n}{2} rightarrow$ LHS $geq$ RHS, with equality iff for all $i$, $x_{i}=1$.



Is this proof correct?







proof-verification inequality a.m.-g.m.-inequality cauchy-schwarz-inequality tangent-line-method






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 6 '18 at 14:42









Michael Rozenberg

98.3k1590188




98.3k1590188










asked Dec 6 '18 at 14:06







user542970



















  • $begingroup$
    Yes, it’s correct.
    $endgroup$
    – Macavity
    Dec 11 '18 at 12:25


















  • $begingroup$
    Yes, it’s correct.
    $endgroup$
    – Macavity
    Dec 11 '18 at 12:25
















$begingroup$
Yes, it’s correct.
$endgroup$
– Macavity
Dec 11 '18 at 12:25




$begingroup$
Yes, it’s correct.
$endgroup$
– Macavity
Dec 11 '18 at 12:25










1 Answer
1






active

oldest

votes


















1












$begingroup$

Your first step is right.



Now, your inequality follows from the following C-S.



$$sum_{i=1}^n(1+x_i)sum_{cyc}frac{1}{1+x_i}geq n^2.$$



Also, we can use the TL method:
$$sum_{i=1}^nleft(frac{1}{1+x_i}-frac{1}{1+x_i^2}right)=sum_{i=1}^nfrac{1-x_i}{(1+x_i)(1+x_i^2)}=$$
$$=sum_{i=1}^nleft(frac{1-x_i}{(1+x_i)(1+x_i^2)}+frac{1}{4}(x_i-1)right)=sum_{i=1}^nfrac{(x_i-1)^2(x_i^2+2x_i+3)}{4(1+x_i)(1+x_i^2)}geq0.$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    I was at that first step but I can't go further! Sorry for the (maybe) stupid question, but what is TL method?
    $endgroup$
    – gimusi
    Dec 6 '18 at 14:44










  • $begingroup$
    Because $sum (x_i-1)=0$?
    $endgroup$
    – gimusi
    Dec 6 '18 at 14:45










  • $begingroup$
    @gimusi Yes, of course! TL it's the Tangent Line method. See here: math.stackexchange.com/tags/tangent-line-method/info
    $endgroup$
    – Michael Rozenberg
    Dec 6 '18 at 14:45












  • $begingroup$
    What was wrong with the second step?
    $endgroup$
    – user542970
    Dec 6 '18 at 14:48






  • 1




    $begingroup$
    Yes, of course. Now, I see this point. Id est, your solution is right!
    $endgroup$
    – Michael Rozenberg
    Dec 6 '18 at 14:57













Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028527%2fproof-of-an-inequality-is-it-correct%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown
























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

Your first step is right.



Now, your inequality follows from the following C-S.



$$sum_{i=1}^n(1+x_i)sum_{cyc}frac{1}{1+x_i}geq n^2.$$



Also, we can use the TL method:
$$sum_{i=1}^nleft(frac{1}{1+x_i}-frac{1}{1+x_i^2}right)=sum_{i=1}^nfrac{1-x_i}{(1+x_i)(1+x_i^2)}=$$
$$=sum_{i=1}^nleft(frac{1-x_i}{(1+x_i)(1+x_i^2)}+frac{1}{4}(x_i-1)right)=sum_{i=1}^nfrac{(x_i-1)^2(x_i^2+2x_i+3)}{4(1+x_i)(1+x_i^2)}geq0.$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    I was at that first step but I can't go further! Sorry for the (maybe) stupid question, but what is TL method?
    $endgroup$
    – gimusi
    Dec 6 '18 at 14:44










  • $begingroup$
    Because $sum (x_i-1)=0$?
    $endgroup$
    – gimusi
    Dec 6 '18 at 14:45










  • $begingroup$
    @gimusi Yes, of course! TL it's the Tangent Line method. See here: math.stackexchange.com/tags/tangent-line-method/info
    $endgroup$
    – Michael Rozenberg
    Dec 6 '18 at 14:45












  • $begingroup$
    What was wrong with the second step?
    $endgroup$
    – user542970
    Dec 6 '18 at 14:48






  • 1




    $begingroup$
    Yes, of course. Now, I see this point. Id est, your solution is right!
    $endgroup$
    – Michael Rozenberg
    Dec 6 '18 at 14:57


















1












$begingroup$

Your first step is right.



Now, your inequality follows from the following C-S.



$$sum_{i=1}^n(1+x_i)sum_{cyc}frac{1}{1+x_i}geq n^2.$$



Also, we can use the TL method:
$$sum_{i=1}^nleft(frac{1}{1+x_i}-frac{1}{1+x_i^2}right)=sum_{i=1}^nfrac{1-x_i}{(1+x_i)(1+x_i^2)}=$$
$$=sum_{i=1}^nleft(frac{1-x_i}{(1+x_i)(1+x_i^2)}+frac{1}{4}(x_i-1)right)=sum_{i=1}^nfrac{(x_i-1)^2(x_i^2+2x_i+3)}{4(1+x_i)(1+x_i^2)}geq0.$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    I was at that first step but I can't go further! Sorry for the (maybe) stupid question, but what is TL method?
    $endgroup$
    – gimusi
    Dec 6 '18 at 14:44










  • $begingroup$
    Because $sum (x_i-1)=0$?
    $endgroup$
    – gimusi
    Dec 6 '18 at 14:45










  • $begingroup$
    @gimusi Yes, of course! TL it's the Tangent Line method. See here: math.stackexchange.com/tags/tangent-line-method/info
    $endgroup$
    – Michael Rozenberg
    Dec 6 '18 at 14:45












  • $begingroup$
    What was wrong with the second step?
    $endgroup$
    – user542970
    Dec 6 '18 at 14:48






  • 1




    $begingroup$
    Yes, of course. Now, I see this point. Id est, your solution is right!
    $endgroup$
    – Michael Rozenberg
    Dec 6 '18 at 14:57
















1












1








1





$begingroup$

Your first step is right.



Now, your inequality follows from the following C-S.



$$sum_{i=1}^n(1+x_i)sum_{cyc}frac{1}{1+x_i}geq n^2.$$



Also, we can use the TL method:
$$sum_{i=1}^nleft(frac{1}{1+x_i}-frac{1}{1+x_i^2}right)=sum_{i=1}^nfrac{1-x_i}{(1+x_i)(1+x_i^2)}=$$
$$=sum_{i=1}^nleft(frac{1-x_i}{(1+x_i)(1+x_i^2)}+frac{1}{4}(x_i-1)right)=sum_{i=1}^nfrac{(x_i-1)^2(x_i^2+2x_i+3)}{4(1+x_i)(1+x_i^2)}geq0.$$






share|cite|improve this answer









$endgroup$



Your first step is right.



Now, your inequality follows from the following C-S.



$$sum_{i=1}^n(1+x_i)sum_{cyc}frac{1}{1+x_i}geq n^2.$$



Also, we can use the TL method:
$$sum_{i=1}^nleft(frac{1}{1+x_i}-frac{1}{1+x_i^2}right)=sum_{i=1}^nfrac{1-x_i}{(1+x_i)(1+x_i^2)}=$$
$$=sum_{i=1}^nleft(frac{1-x_i}{(1+x_i)(1+x_i^2)}+frac{1}{4}(x_i-1)right)=sum_{i=1}^nfrac{(x_i-1)^2(x_i^2+2x_i+3)}{4(1+x_i)(1+x_i^2)}geq0.$$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 6 '18 at 14:41









Michael RozenbergMichael Rozenberg

98.3k1590188




98.3k1590188












  • $begingroup$
    I was at that first step but I can't go further! Sorry for the (maybe) stupid question, but what is TL method?
    $endgroup$
    – gimusi
    Dec 6 '18 at 14:44










  • $begingroup$
    Because $sum (x_i-1)=0$?
    $endgroup$
    – gimusi
    Dec 6 '18 at 14:45










  • $begingroup$
    @gimusi Yes, of course! TL it's the Tangent Line method. See here: math.stackexchange.com/tags/tangent-line-method/info
    $endgroup$
    – Michael Rozenberg
    Dec 6 '18 at 14:45












  • $begingroup$
    What was wrong with the second step?
    $endgroup$
    – user542970
    Dec 6 '18 at 14:48






  • 1




    $begingroup$
    Yes, of course. Now, I see this point. Id est, your solution is right!
    $endgroup$
    – Michael Rozenberg
    Dec 6 '18 at 14:57




















  • $begingroup$
    I was at that first step but I can't go further! Sorry for the (maybe) stupid question, but what is TL method?
    $endgroup$
    – gimusi
    Dec 6 '18 at 14:44










  • $begingroup$
    Because $sum (x_i-1)=0$?
    $endgroup$
    – gimusi
    Dec 6 '18 at 14:45










  • $begingroup$
    @gimusi Yes, of course! TL it's the Tangent Line method. See here: math.stackexchange.com/tags/tangent-line-method/info
    $endgroup$
    – Michael Rozenberg
    Dec 6 '18 at 14:45












  • $begingroup$
    What was wrong with the second step?
    $endgroup$
    – user542970
    Dec 6 '18 at 14:48






  • 1




    $begingroup$
    Yes, of course. Now, I see this point. Id est, your solution is right!
    $endgroup$
    – Michael Rozenberg
    Dec 6 '18 at 14:57


















$begingroup$
I was at that first step but I can't go further! Sorry for the (maybe) stupid question, but what is TL method?
$endgroup$
– gimusi
Dec 6 '18 at 14:44




$begingroup$
I was at that first step but I can't go further! Sorry for the (maybe) stupid question, but what is TL method?
$endgroup$
– gimusi
Dec 6 '18 at 14:44












$begingroup$
Because $sum (x_i-1)=0$?
$endgroup$
– gimusi
Dec 6 '18 at 14:45




$begingroup$
Because $sum (x_i-1)=0$?
$endgroup$
– gimusi
Dec 6 '18 at 14:45












$begingroup$
@gimusi Yes, of course! TL it's the Tangent Line method. See here: math.stackexchange.com/tags/tangent-line-method/info
$endgroup$
– Michael Rozenberg
Dec 6 '18 at 14:45






$begingroup$
@gimusi Yes, of course! TL it's the Tangent Line method. See here: math.stackexchange.com/tags/tangent-line-method/info
$endgroup$
– Michael Rozenberg
Dec 6 '18 at 14:45














$begingroup$
What was wrong with the second step?
$endgroup$
– user542970
Dec 6 '18 at 14:48




$begingroup$
What was wrong with the second step?
$endgroup$
– user542970
Dec 6 '18 at 14:48




1




1




$begingroup$
Yes, of course. Now, I see this point. Id est, your solution is right!
$endgroup$
– Michael Rozenberg
Dec 6 '18 at 14:57






$begingroup$
Yes, of course. Now, I see this point. Id est, your solution is right!
$endgroup$
– Michael Rozenberg
Dec 6 '18 at 14:57




















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028527%2fproof-of-an-inequality-is-it-correct%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Wiesbaden

Marschland

Dieringhausen