Solve the integral $ int{y^2dl}$ where L:$x^2+y^2+z^2=a^2;$ $x+y+z=0$
$begingroup$
Solve the integral $ int{y^2dl}$ where L:$x^2+y^2+z^2=a^2;$ $x+y+z=0$.
I tried to apply a 2 parametrizations:
1)
$x= sqrt{frac{2t^2}{-3t-frac{a^2}{2}}}$
$y= sqrt{-frac{3}{2}t-frac{a^2}{4}}$
$z= sqrt{-6t-a^2}$
From this (using $int{f sqrt{(frac{dx}{dt})^2+(frac{dy}{dt})^2+(frac{dz}{dt})^2}}$ i got something like $int f(t^2) sqrt{frac{p(t^2)}{g^3(t)}}dt$
which I don't know how to solve.
2)
Moving to spherical coordinates (r, fi, theta):
$r=a$
and there is an equation with fi and theta (from $x+y+z=0)$ which seems too complex do deal with.
Now I hope to find the parametrization that will be more fitting.
integration parametrization
$endgroup$
add a comment |
$begingroup$
Solve the integral $ int{y^2dl}$ where L:$x^2+y^2+z^2=a^2;$ $x+y+z=0$.
I tried to apply a 2 parametrizations:
1)
$x= sqrt{frac{2t^2}{-3t-frac{a^2}{2}}}$
$y= sqrt{-frac{3}{2}t-frac{a^2}{4}}$
$z= sqrt{-6t-a^2}$
From this (using $int{f sqrt{(frac{dx}{dt})^2+(frac{dy}{dt})^2+(frac{dz}{dt})^2}}$ i got something like $int f(t^2) sqrt{frac{p(t^2)}{g^3(t)}}dt$
which I don't know how to solve.
2)
Moving to spherical coordinates (r, fi, theta):
$r=a$
and there is an equation with fi and theta (from $x+y+z=0)$ which seems too complex do deal with.
Now I hope to find the parametrization that will be more fitting.
integration parametrization
$endgroup$
add a comment |
$begingroup$
Solve the integral $ int{y^2dl}$ where L:$x^2+y^2+z^2=a^2;$ $x+y+z=0$.
I tried to apply a 2 parametrizations:
1)
$x= sqrt{frac{2t^2}{-3t-frac{a^2}{2}}}$
$y= sqrt{-frac{3}{2}t-frac{a^2}{4}}$
$z= sqrt{-6t-a^2}$
From this (using $int{f sqrt{(frac{dx}{dt})^2+(frac{dy}{dt})^2+(frac{dz}{dt})^2}}$ i got something like $int f(t^2) sqrt{frac{p(t^2)}{g^3(t)}}dt$
which I don't know how to solve.
2)
Moving to spherical coordinates (r, fi, theta):
$r=a$
and there is an equation with fi and theta (from $x+y+z=0)$ which seems too complex do deal with.
Now I hope to find the parametrization that will be more fitting.
integration parametrization
$endgroup$
Solve the integral $ int{y^2dl}$ where L:$x^2+y^2+z^2=a^2;$ $x+y+z=0$.
I tried to apply a 2 parametrizations:
1)
$x= sqrt{frac{2t^2}{-3t-frac{a^2}{2}}}$
$y= sqrt{-frac{3}{2}t-frac{a^2}{4}}$
$z= sqrt{-6t-a^2}$
From this (using $int{f sqrt{(frac{dx}{dt})^2+(frac{dy}{dt})^2+(frac{dz}{dt})^2}}$ i got something like $int f(t^2) sqrt{frac{p(t^2)}{g^3(t)}}dt$
which I don't know how to solve.
2)
Moving to spherical coordinates (r, fi, theta):
$r=a$
and there is an equation with fi and theta (from $x+y+z=0)$ which seems too complex do deal with.
Now I hope to find the parametrization that will be more fitting.
integration parametrization
integration parametrization
edited Dec 6 '18 at 12:09
user9393410
asked Dec 6 '18 at 12:00
user9393410user9393410
32
32
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
I think $int{x^2}d l$=$int{y^2}d l$=$int{z^2}d l$ by the symmetry of $L$,so
$$int{y^2}d l=frac{1}{3}int{(x^2+y^2+z^2)}d l=frac{1}{3}int{a^2}d l$$
And
$$x=frac{sqrt{2}}{2}acos{t}-frac{sqrt{6}}{6}asin{t},,,y=frac{sqrt{6}}{3}asin{t},,,z=-frac{sqrt{2}}{2}acos{t}-frac{sqrt{6}}{6}asin{t}$$
where $tin[0,2pi]$ will be a good parametrization.
$endgroup$
$begingroup$
Damn, that's a badass solution! How did you come up with this parametrization?
$endgroup$
– user9393410
Dec 6 '18 at 13:12
$begingroup$
Consider the projection of $L$ on $xOy$: $x^2+xy+y^2=frac{a^2}{2}$, which is also $(x+frac{y}{2})^2+frac{3}{4}y^2=frac{a^2}{2}$.
$endgroup$
– Lau
Dec 6 '18 at 13:28
$begingroup$
Oh, I see. Thank you!
$endgroup$
– user9393410
Dec 6 '18 at 14:03
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028404%2fsolve-the-integral-inty2dl-where-lx2y2z2-a2-xyz-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I think $int{x^2}d l$=$int{y^2}d l$=$int{z^2}d l$ by the symmetry of $L$,so
$$int{y^2}d l=frac{1}{3}int{(x^2+y^2+z^2)}d l=frac{1}{3}int{a^2}d l$$
And
$$x=frac{sqrt{2}}{2}acos{t}-frac{sqrt{6}}{6}asin{t},,,y=frac{sqrt{6}}{3}asin{t},,,z=-frac{sqrt{2}}{2}acos{t}-frac{sqrt{6}}{6}asin{t}$$
where $tin[0,2pi]$ will be a good parametrization.
$endgroup$
$begingroup$
Damn, that's a badass solution! How did you come up with this parametrization?
$endgroup$
– user9393410
Dec 6 '18 at 13:12
$begingroup$
Consider the projection of $L$ on $xOy$: $x^2+xy+y^2=frac{a^2}{2}$, which is also $(x+frac{y}{2})^2+frac{3}{4}y^2=frac{a^2}{2}$.
$endgroup$
– Lau
Dec 6 '18 at 13:28
$begingroup$
Oh, I see. Thank you!
$endgroup$
– user9393410
Dec 6 '18 at 14:03
add a comment |
$begingroup$
I think $int{x^2}d l$=$int{y^2}d l$=$int{z^2}d l$ by the symmetry of $L$,so
$$int{y^2}d l=frac{1}{3}int{(x^2+y^2+z^2)}d l=frac{1}{3}int{a^2}d l$$
And
$$x=frac{sqrt{2}}{2}acos{t}-frac{sqrt{6}}{6}asin{t},,,y=frac{sqrt{6}}{3}asin{t},,,z=-frac{sqrt{2}}{2}acos{t}-frac{sqrt{6}}{6}asin{t}$$
where $tin[0,2pi]$ will be a good parametrization.
$endgroup$
$begingroup$
Damn, that's a badass solution! How did you come up with this parametrization?
$endgroup$
– user9393410
Dec 6 '18 at 13:12
$begingroup$
Consider the projection of $L$ on $xOy$: $x^2+xy+y^2=frac{a^2}{2}$, which is also $(x+frac{y}{2})^2+frac{3}{4}y^2=frac{a^2}{2}$.
$endgroup$
– Lau
Dec 6 '18 at 13:28
$begingroup$
Oh, I see. Thank you!
$endgroup$
– user9393410
Dec 6 '18 at 14:03
add a comment |
$begingroup$
I think $int{x^2}d l$=$int{y^2}d l$=$int{z^2}d l$ by the symmetry of $L$,so
$$int{y^2}d l=frac{1}{3}int{(x^2+y^2+z^2)}d l=frac{1}{3}int{a^2}d l$$
And
$$x=frac{sqrt{2}}{2}acos{t}-frac{sqrt{6}}{6}asin{t},,,y=frac{sqrt{6}}{3}asin{t},,,z=-frac{sqrt{2}}{2}acos{t}-frac{sqrt{6}}{6}asin{t}$$
where $tin[0,2pi]$ will be a good parametrization.
$endgroup$
I think $int{x^2}d l$=$int{y^2}d l$=$int{z^2}d l$ by the symmetry of $L$,so
$$int{y^2}d l=frac{1}{3}int{(x^2+y^2+z^2)}d l=frac{1}{3}int{a^2}d l$$
And
$$x=frac{sqrt{2}}{2}acos{t}-frac{sqrt{6}}{6}asin{t},,,y=frac{sqrt{6}}{3}asin{t},,,z=-frac{sqrt{2}}{2}acos{t}-frac{sqrt{6}}{6}asin{t}$$
where $tin[0,2pi]$ will be a good parametrization.
edited Dec 29 '18 at 4:46
answered Dec 6 '18 at 12:17
LauLau
541315
541315
$begingroup$
Damn, that's a badass solution! How did you come up with this parametrization?
$endgroup$
– user9393410
Dec 6 '18 at 13:12
$begingroup$
Consider the projection of $L$ on $xOy$: $x^2+xy+y^2=frac{a^2}{2}$, which is also $(x+frac{y}{2})^2+frac{3}{4}y^2=frac{a^2}{2}$.
$endgroup$
– Lau
Dec 6 '18 at 13:28
$begingroup$
Oh, I see. Thank you!
$endgroup$
– user9393410
Dec 6 '18 at 14:03
add a comment |
$begingroup$
Damn, that's a badass solution! How did you come up with this parametrization?
$endgroup$
– user9393410
Dec 6 '18 at 13:12
$begingroup$
Consider the projection of $L$ on $xOy$: $x^2+xy+y^2=frac{a^2}{2}$, which is also $(x+frac{y}{2})^2+frac{3}{4}y^2=frac{a^2}{2}$.
$endgroup$
– Lau
Dec 6 '18 at 13:28
$begingroup$
Oh, I see. Thank you!
$endgroup$
– user9393410
Dec 6 '18 at 14:03
$begingroup$
Damn, that's a badass solution! How did you come up with this parametrization?
$endgroup$
– user9393410
Dec 6 '18 at 13:12
$begingroup$
Damn, that's a badass solution! How did you come up with this parametrization?
$endgroup$
– user9393410
Dec 6 '18 at 13:12
$begingroup$
Consider the projection of $L$ on $xOy$: $x^2+xy+y^2=frac{a^2}{2}$, which is also $(x+frac{y}{2})^2+frac{3}{4}y^2=frac{a^2}{2}$.
$endgroup$
– Lau
Dec 6 '18 at 13:28
$begingroup$
Consider the projection of $L$ on $xOy$: $x^2+xy+y^2=frac{a^2}{2}$, which is also $(x+frac{y}{2})^2+frac{3}{4}y^2=frac{a^2}{2}$.
$endgroup$
– Lau
Dec 6 '18 at 13:28
$begingroup$
Oh, I see. Thank you!
$endgroup$
– user9393410
Dec 6 '18 at 14:03
$begingroup$
Oh, I see. Thank you!
$endgroup$
– user9393410
Dec 6 '18 at 14:03
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028404%2fsolve-the-integral-inty2dl-where-lx2y2z2-a2-xyz-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown