Solve the integral $ int{y^2dl}$ where L:$x^2+y^2+z^2=a^2;$ $x+y+z=0$












0












$begingroup$


Solve the integral $ int{y^2dl}$ where L:$x^2+y^2+z^2=a^2;$ $x+y+z=0$.



I tried to apply a 2 parametrizations:



1)
$x= sqrt{frac{2t^2}{-3t-frac{a^2}{2}}}$
$y= sqrt{-frac{3}{2}t-frac{a^2}{4}}$
$z= sqrt{-6t-a^2}$



From this (using $int{f sqrt{(frac{dx}{dt})^2+(frac{dy}{dt})^2+(frac{dz}{dt})^2}}$ i got something like $int f(t^2) sqrt{frac{p(t^2)}{g^3(t)}}dt$
which I don't know how to solve.



2)
Moving to spherical coordinates (r, fi, theta):



$r=a$
and there is an equation with fi and theta (from $x+y+z=0)$ which seems too complex do deal with.



Now I hope to find the parametrization that will be more fitting.










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    Solve the integral $ int{y^2dl}$ where L:$x^2+y^2+z^2=a^2;$ $x+y+z=0$.



    I tried to apply a 2 parametrizations:



    1)
    $x= sqrt{frac{2t^2}{-3t-frac{a^2}{2}}}$
    $y= sqrt{-frac{3}{2}t-frac{a^2}{4}}$
    $z= sqrt{-6t-a^2}$



    From this (using $int{f sqrt{(frac{dx}{dt})^2+(frac{dy}{dt})^2+(frac{dz}{dt})^2}}$ i got something like $int f(t^2) sqrt{frac{p(t^2)}{g^3(t)}}dt$
    which I don't know how to solve.



    2)
    Moving to spherical coordinates (r, fi, theta):



    $r=a$
    and there is an equation with fi and theta (from $x+y+z=0)$ which seems too complex do deal with.



    Now I hope to find the parametrization that will be more fitting.










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      Solve the integral $ int{y^2dl}$ where L:$x^2+y^2+z^2=a^2;$ $x+y+z=0$.



      I tried to apply a 2 parametrizations:



      1)
      $x= sqrt{frac{2t^2}{-3t-frac{a^2}{2}}}$
      $y= sqrt{-frac{3}{2}t-frac{a^2}{4}}$
      $z= sqrt{-6t-a^2}$



      From this (using $int{f sqrt{(frac{dx}{dt})^2+(frac{dy}{dt})^2+(frac{dz}{dt})^2}}$ i got something like $int f(t^2) sqrt{frac{p(t^2)}{g^3(t)}}dt$
      which I don't know how to solve.



      2)
      Moving to spherical coordinates (r, fi, theta):



      $r=a$
      and there is an equation with fi and theta (from $x+y+z=0)$ which seems too complex do deal with.



      Now I hope to find the parametrization that will be more fitting.










      share|cite|improve this question











      $endgroup$




      Solve the integral $ int{y^2dl}$ where L:$x^2+y^2+z^2=a^2;$ $x+y+z=0$.



      I tried to apply a 2 parametrizations:



      1)
      $x= sqrt{frac{2t^2}{-3t-frac{a^2}{2}}}$
      $y= sqrt{-frac{3}{2}t-frac{a^2}{4}}$
      $z= sqrt{-6t-a^2}$



      From this (using $int{f sqrt{(frac{dx}{dt})^2+(frac{dy}{dt})^2+(frac{dz}{dt})^2}}$ i got something like $int f(t^2) sqrt{frac{p(t^2)}{g^3(t)}}dt$
      which I don't know how to solve.



      2)
      Moving to spherical coordinates (r, fi, theta):



      $r=a$
      and there is an equation with fi and theta (from $x+y+z=0)$ which seems too complex do deal with.



      Now I hope to find the parametrization that will be more fitting.







      integration parametrization






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 6 '18 at 12:09







      user9393410

















      asked Dec 6 '18 at 12:00









      user9393410user9393410

      32




      32






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          I think $int{x^2}d l$=$int{y^2}d l$=$int{z^2}d l$ by the symmetry of $L$,so
          $$int{y^2}d l=frac{1}{3}int{(x^2+y^2+z^2)}d l=frac{1}{3}int{a^2}d l$$
          And
          $$x=frac{sqrt{2}}{2}acos{t}-frac{sqrt{6}}{6}asin{t},,,y=frac{sqrt{6}}{3}asin{t},,,z=-frac{sqrt{2}}{2}acos{t}-frac{sqrt{6}}{6}asin{t}$$
          where $tin[0,2pi]$ will be a good parametrization.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Damn, that's a badass solution! How did you come up with this parametrization?
            $endgroup$
            – user9393410
            Dec 6 '18 at 13:12










          • $begingroup$
            Consider the projection of $L$ on $xOy$: $x^2+xy+y^2=frac{a^2}{2}$, which is also $(x+frac{y}{2})^2+frac{3}{4}y^2=frac{a^2}{2}$.
            $endgroup$
            – Lau
            Dec 6 '18 at 13:28










          • $begingroup$
            Oh, I see. Thank you!
            $endgroup$
            – user9393410
            Dec 6 '18 at 14:03











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028404%2fsolve-the-integral-inty2dl-where-lx2y2z2-a2-xyz-0%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          I think $int{x^2}d l$=$int{y^2}d l$=$int{z^2}d l$ by the symmetry of $L$,so
          $$int{y^2}d l=frac{1}{3}int{(x^2+y^2+z^2)}d l=frac{1}{3}int{a^2}d l$$
          And
          $$x=frac{sqrt{2}}{2}acos{t}-frac{sqrt{6}}{6}asin{t},,,y=frac{sqrt{6}}{3}asin{t},,,z=-frac{sqrt{2}}{2}acos{t}-frac{sqrt{6}}{6}asin{t}$$
          where $tin[0,2pi]$ will be a good parametrization.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Damn, that's a badass solution! How did you come up with this parametrization?
            $endgroup$
            – user9393410
            Dec 6 '18 at 13:12










          • $begingroup$
            Consider the projection of $L$ on $xOy$: $x^2+xy+y^2=frac{a^2}{2}$, which is also $(x+frac{y}{2})^2+frac{3}{4}y^2=frac{a^2}{2}$.
            $endgroup$
            – Lau
            Dec 6 '18 at 13:28










          • $begingroup$
            Oh, I see. Thank you!
            $endgroup$
            – user9393410
            Dec 6 '18 at 14:03
















          2












          $begingroup$

          I think $int{x^2}d l$=$int{y^2}d l$=$int{z^2}d l$ by the symmetry of $L$,so
          $$int{y^2}d l=frac{1}{3}int{(x^2+y^2+z^2)}d l=frac{1}{3}int{a^2}d l$$
          And
          $$x=frac{sqrt{2}}{2}acos{t}-frac{sqrt{6}}{6}asin{t},,,y=frac{sqrt{6}}{3}asin{t},,,z=-frac{sqrt{2}}{2}acos{t}-frac{sqrt{6}}{6}asin{t}$$
          where $tin[0,2pi]$ will be a good parametrization.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Damn, that's a badass solution! How did you come up with this parametrization?
            $endgroup$
            – user9393410
            Dec 6 '18 at 13:12










          • $begingroup$
            Consider the projection of $L$ on $xOy$: $x^2+xy+y^2=frac{a^2}{2}$, which is also $(x+frac{y}{2})^2+frac{3}{4}y^2=frac{a^2}{2}$.
            $endgroup$
            – Lau
            Dec 6 '18 at 13:28










          • $begingroup$
            Oh, I see. Thank you!
            $endgroup$
            – user9393410
            Dec 6 '18 at 14:03














          2












          2








          2





          $begingroup$

          I think $int{x^2}d l$=$int{y^2}d l$=$int{z^2}d l$ by the symmetry of $L$,so
          $$int{y^2}d l=frac{1}{3}int{(x^2+y^2+z^2)}d l=frac{1}{3}int{a^2}d l$$
          And
          $$x=frac{sqrt{2}}{2}acos{t}-frac{sqrt{6}}{6}asin{t},,,y=frac{sqrt{6}}{3}asin{t},,,z=-frac{sqrt{2}}{2}acos{t}-frac{sqrt{6}}{6}asin{t}$$
          where $tin[0,2pi]$ will be a good parametrization.






          share|cite|improve this answer











          $endgroup$



          I think $int{x^2}d l$=$int{y^2}d l$=$int{z^2}d l$ by the symmetry of $L$,so
          $$int{y^2}d l=frac{1}{3}int{(x^2+y^2+z^2)}d l=frac{1}{3}int{a^2}d l$$
          And
          $$x=frac{sqrt{2}}{2}acos{t}-frac{sqrt{6}}{6}asin{t},,,y=frac{sqrt{6}}{3}asin{t},,,z=-frac{sqrt{2}}{2}acos{t}-frac{sqrt{6}}{6}asin{t}$$
          where $tin[0,2pi]$ will be a good parametrization.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 29 '18 at 4:46

























          answered Dec 6 '18 at 12:17









          LauLau

          541315




          541315












          • $begingroup$
            Damn, that's a badass solution! How did you come up with this parametrization?
            $endgroup$
            – user9393410
            Dec 6 '18 at 13:12










          • $begingroup$
            Consider the projection of $L$ on $xOy$: $x^2+xy+y^2=frac{a^2}{2}$, which is also $(x+frac{y}{2})^2+frac{3}{4}y^2=frac{a^2}{2}$.
            $endgroup$
            – Lau
            Dec 6 '18 at 13:28










          • $begingroup$
            Oh, I see. Thank you!
            $endgroup$
            – user9393410
            Dec 6 '18 at 14:03


















          • $begingroup$
            Damn, that's a badass solution! How did you come up with this parametrization?
            $endgroup$
            – user9393410
            Dec 6 '18 at 13:12










          • $begingroup$
            Consider the projection of $L$ on $xOy$: $x^2+xy+y^2=frac{a^2}{2}$, which is also $(x+frac{y}{2})^2+frac{3}{4}y^2=frac{a^2}{2}$.
            $endgroup$
            – Lau
            Dec 6 '18 at 13:28










          • $begingroup$
            Oh, I see. Thank you!
            $endgroup$
            – user9393410
            Dec 6 '18 at 14:03
















          $begingroup$
          Damn, that's a badass solution! How did you come up with this parametrization?
          $endgroup$
          – user9393410
          Dec 6 '18 at 13:12




          $begingroup$
          Damn, that's a badass solution! How did you come up with this parametrization?
          $endgroup$
          – user9393410
          Dec 6 '18 at 13:12












          $begingroup$
          Consider the projection of $L$ on $xOy$: $x^2+xy+y^2=frac{a^2}{2}$, which is also $(x+frac{y}{2})^2+frac{3}{4}y^2=frac{a^2}{2}$.
          $endgroup$
          – Lau
          Dec 6 '18 at 13:28




          $begingroup$
          Consider the projection of $L$ on $xOy$: $x^2+xy+y^2=frac{a^2}{2}$, which is also $(x+frac{y}{2})^2+frac{3}{4}y^2=frac{a^2}{2}$.
          $endgroup$
          – Lau
          Dec 6 '18 at 13:28












          $begingroup$
          Oh, I see. Thank you!
          $endgroup$
          – user9393410
          Dec 6 '18 at 14:03




          $begingroup$
          Oh, I see. Thank you!
          $endgroup$
          – user9393410
          Dec 6 '18 at 14:03


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028404%2fsolve-the-integral-inty2dl-where-lx2y2z2-a2-xyz-0%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Wiesbaden

          Marschland

          Dieringhausen