Limit of terms of Harmonic series












1












$begingroup$


Let $s(n)$ be the smallest positive integer such that $1+frac{1}{2}+frac{1}{3}+...+1/s(n)geq{n}$



Find $displaystylelim_{ntoinfty} frac{s(n+1)}{s(n)}$



The values of $s(n)$ are



$s(1)=1, s(2)=4, s(3)=11, s(4)=31, s(5)=83, s(6)=227, s(7)=616 $ and so on



$frac{s(2)}{s(1)}=4, frac{s(3)}{s(2)}=2.75, frac{s(4)}{s(3)}=2.8181..., frac{s(5)}{s(4)}=2.677..., frac{s(6)}{s(5)}=2.73493..., frac{s(7)}{s(6)}=2.713...,$



I currently can't find a formula for $s(n)$ but from the calculations I can see that the ratio converges to $e$.



Any tips on how to prove this?










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    Let $s(n)$ be the smallest positive integer such that $1+frac{1}{2}+frac{1}{3}+...+1/s(n)geq{n}$



    Find $displaystylelim_{ntoinfty} frac{s(n+1)}{s(n)}$



    The values of $s(n)$ are



    $s(1)=1, s(2)=4, s(3)=11, s(4)=31, s(5)=83, s(6)=227, s(7)=616 $ and so on



    $frac{s(2)}{s(1)}=4, frac{s(3)}{s(2)}=2.75, frac{s(4)}{s(3)}=2.8181..., frac{s(5)}{s(4)}=2.677..., frac{s(6)}{s(5)}=2.73493..., frac{s(7)}{s(6)}=2.713...,$



    I currently can't find a formula for $s(n)$ but from the calculations I can see that the ratio converges to $e$.



    Any tips on how to prove this?










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      Let $s(n)$ be the smallest positive integer such that $1+frac{1}{2}+frac{1}{3}+...+1/s(n)geq{n}$



      Find $displaystylelim_{ntoinfty} frac{s(n+1)}{s(n)}$



      The values of $s(n)$ are



      $s(1)=1, s(2)=4, s(3)=11, s(4)=31, s(5)=83, s(6)=227, s(7)=616 $ and so on



      $frac{s(2)}{s(1)}=4, frac{s(3)}{s(2)}=2.75, frac{s(4)}{s(3)}=2.8181..., frac{s(5)}{s(4)}=2.677..., frac{s(6)}{s(5)}=2.73493..., frac{s(7)}{s(6)}=2.713...,$



      I currently can't find a formula for $s(n)$ but from the calculations I can see that the ratio converges to $e$.



      Any tips on how to prove this?










      share|cite|improve this question









      $endgroup$




      Let $s(n)$ be the smallest positive integer such that $1+frac{1}{2}+frac{1}{3}+...+1/s(n)geq{n}$



      Find $displaystylelim_{ntoinfty} frac{s(n+1)}{s(n)}$



      The values of $s(n)$ are



      $s(1)=1, s(2)=4, s(3)=11, s(4)=31, s(5)=83, s(6)=227, s(7)=616 $ and so on



      $frac{s(2)}{s(1)}=4, frac{s(3)}{s(2)}=2.75, frac{s(4)}{s(3)}=2.8181..., frac{s(5)}{s(4)}=2.677..., frac{s(6)}{s(5)}=2.73493..., frac{s(7)}{s(6)}=2.713...,$



      I currently can't find a formula for $s(n)$ but from the calculations I can see that the ratio converges to $e$.



      Any tips on how to prove this?







      sequences-and-series






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 6 '18 at 14:16









      A. BrunoA. Bruno

      1035




      1035






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          The point is that the partial sums of the harmonic series are slowly increasing:
          $$ H_n = sum_{k=1}^{n}frac{1}{k} = log n + underbrace{sum_{kgeq 1}left[frac{1}{n}-logleft(1+frac{1}{n}right)right]}_{gamma,approxfrac{1}{sqrt{3}}}+Oleft(frac{1}{n}right) $$
          hence for any $varepsilon>0$ and for any $N$ large enough, the smallest $n$ such that $H_ngeq N$ is bounded between $expleft(N-gamma-varepsilonright)$ and $exp(N-gamma+varepsilon)$. In particular the wanted limit equals $exp(1)=e$.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028540%2flimit-of-terms-of-harmonic-series%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            The point is that the partial sums of the harmonic series are slowly increasing:
            $$ H_n = sum_{k=1}^{n}frac{1}{k} = log n + underbrace{sum_{kgeq 1}left[frac{1}{n}-logleft(1+frac{1}{n}right)right]}_{gamma,approxfrac{1}{sqrt{3}}}+Oleft(frac{1}{n}right) $$
            hence for any $varepsilon>0$ and for any $N$ large enough, the smallest $n$ such that $H_ngeq N$ is bounded between $expleft(N-gamma-varepsilonright)$ and $exp(N-gamma+varepsilon)$. In particular the wanted limit equals $exp(1)=e$.






            share|cite|improve this answer









            $endgroup$


















              0












              $begingroup$

              The point is that the partial sums of the harmonic series are slowly increasing:
              $$ H_n = sum_{k=1}^{n}frac{1}{k} = log n + underbrace{sum_{kgeq 1}left[frac{1}{n}-logleft(1+frac{1}{n}right)right]}_{gamma,approxfrac{1}{sqrt{3}}}+Oleft(frac{1}{n}right) $$
              hence for any $varepsilon>0$ and for any $N$ large enough, the smallest $n$ such that $H_ngeq N$ is bounded between $expleft(N-gamma-varepsilonright)$ and $exp(N-gamma+varepsilon)$. In particular the wanted limit equals $exp(1)=e$.






              share|cite|improve this answer









              $endgroup$
















                0












                0








                0





                $begingroup$

                The point is that the partial sums of the harmonic series are slowly increasing:
                $$ H_n = sum_{k=1}^{n}frac{1}{k} = log n + underbrace{sum_{kgeq 1}left[frac{1}{n}-logleft(1+frac{1}{n}right)right]}_{gamma,approxfrac{1}{sqrt{3}}}+Oleft(frac{1}{n}right) $$
                hence for any $varepsilon>0$ and for any $N$ large enough, the smallest $n$ such that $H_ngeq N$ is bounded between $expleft(N-gamma-varepsilonright)$ and $exp(N-gamma+varepsilon)$. In particular the wanted limit equals $exp(1)=e$.






                share|cite|improve this answer









                $endgroup$



                The point is that the partial sums of the harmonic series are slowly increasing:
                $$ H_n = sum_{k=1}^{n}frac{1}{k} = log n + underbrace{sum_{kgeq 1}left[frac{1}{n}-logleft(1+frac{1}{n}right)right]}_{gamma,approxfrac{1}{sqrt{3}}}+Oleft(frac{1}{n}right) $$
                hence for any $varepsilon>0$ and for any $N$ large enough, the smallest $n$ such that $H_ngeq N$ is bounded between $expleft(N-gamma-varepsilonright)$ and $exp(N-gamma+varepsilon)$. In particular the wanted limit equals $exp(1)=e$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 6 '18 at 14:31









                Jack D'AurizioJack D'Aurizio

                288k33280659




                288k33280659






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028540%2flimit-of-terms-of-harmonic-series%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Wiesbaden

                    Marschland

                    Dieringhausen