Cohomology of $mathbb{S}^n$












2












$begingroup$


I have a corollary stating:



if X is contractible then $H_0(X) = mathbb{R}$ and $H_n(X) = {0}$ for $n>0$.



But $mathbb{S}^n$ is contractible and $H_n(mathbb{S}^n) = mathbb{R}$.



I must be missing something.



Thank you!










share|cite|improve this question









$endgroup$








  • 8




    $begingroup$
    It’s not contractible!
    $endgroup$
    – Ted Shifrin
    Dec 19 '18 at 22:52










  • $begingroup$
    If contractible means any loop on, say $mathbb{S}^2$, is homotopic to a point, that is true for $mathbb{S}^2$ , isn't it ?
    $endgroup$
    – PerelMan
    Dec 19 '18 at 22:55








  • 5




    $begingroup$
    I think you are confusing contractible with simply connected.
    $endgroup$
    – positrón0802
    Dec 19 '18 at 22:57










  • $begingroup$
    Right! Thank you all, I will double check.
    $endgroup$
    – PerelMan
    Dec 19 '18 at 22:58
















2












$begingroup$


I have a corollary stating:



if X is contractible then $H_0(X) = mathbb{R}$ and $H_n(X) = {0}$ for $n>0$.



But $mathbb{S}^n$ is contractible and $H_n(mathbb{S}^n) = mathbb{R}$.



I must be missing something.



Thank you!










share|cite|improve this question









$endgroup$








  • 8




    $begingroup$
    It’s not contractible!
    $endgroup$
    – Ted Shifrin
    Dec 19 '18 at 22:52










  • $begingroup$
    If contractible means any loop on, say $mathbb{S}^2$, is homotopic to a point, that is true for $mathbb{S}^2$ , isn't it ?
    $endgroup$
    – PerelMan
    Dec 19 '18 at 22:55








  • 5




    $begingroup$
    I think you are confusing contractible with simply connected.
    $endgroup$
    – positrón0802
    Dec 19 '18 at 22:57










  • $begingroup$
    Right! Thank you all, I will double check.
    $endgroup$
    – PerelMan
    Dec 19 '18 at 22:58














2












2








2





$begingroup$


I have a corollary stating:



if X is contractible then $H_0(X) = mathbb{R}$ and $H_n(X) = {0}$ for $n>0$.



But $mathbb{S}^n$ is contractible and $H_n(mathbb{S}^n) = mathbb{R}$.



I must be missing something.



Thank you!










share|cite|improve this question









$endgroup$




I have a corollary stating:



if X is contractible then $H_0(X) = mathbb{R}$ and $H_n(X) = {0}$ for $n>0$.



But $mathbb{S}^n$ is contractible and $H_n(mathbb{S}^n) = mathbb{R}$.



I must be missing something.



Thank you!







differential-geometry






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 19 '18 at 22:51









PerelManPerelMan

649313




649313








  • 8




    $begingroup$
    It’s not contractible!
    $endgroup$
    – Ted Shifrin
    Dec 19 '18 at 22:52










  • $begingroup$
    If contractible means any loop on, say $mathbb{S}^2$, is homotopic to a point, that is true for $mathbb{S}^2$ , isn't it ?
    $endgroup$
    – PerelMan
    Dec 19 '18 at 22:55








  • 5




    $begingroup$
    I think you are confusing contractible with simply connected.
    $endgroup$
    – positrón0802
    Dec 19 '18 at 22:57










  • $begingroup$
    Right! Thank you all, I will double check.
    $endgroup$
    – PerelMan
    Dec 19 '18 at 22:58














  • 8




    $begingroup$
    It’s not contractible!
    $endgroup$
    – Ted Shifrin
    Dec 19 '18 at 22:52










  • $begingroup$
    If contractible means any loop on, say $mathbb{S}^2$, is homotopic to a point, that is true for $mathbb{S}^2$ , isn't it ?
    $endgroup$
    – PerelMan
    Dec 19 '18 at 22:55








  • 5




    $begingroup$
    I think you are confusing contractible with simply connected.
    $endgroup$
    – positrón0802
    Dec 19 '18 at 22:57










  • $begingroup$
    Right! Thank you all, I will double check.
    $endgroup$
    – PerelMan
    Dec 19 '18 at 22:58








8




8




$begingroup$
It’s not contractible!
$endgroup$
– Ted Shifrin
Dec 19 '18 at 22:52




$begingroup$
It’s not contractible!
$endgroup$
– Ted Shifrin
Dec 19 '18 at 22:52












$begingroup$
If contractible means any loop on, say $mathbb{S}^2$, is homotopic to a point, that is true for $mathbb{S}^2$ , isn't it ?
$endgroup$
– PerelMan
Dec 19 '18 at 22:55






$begingroup$
If contractible means any loop on, say $mathbb{S}^2$, is homotopic to a point, that is true for $mathbb{S}^2$ , isn't it ?
$endgroup$
– PerelMan
Dec 19 '18 at 22:55






5




5




$begingroup$
I think you are confusing contractible with simply connected.
$endgroup$
– positrón0802
Dec 19 '18 at 22:57




$begingroup$
I think you are confusing contractible with simply connected.
$endgroup$
– positrón0802
Dec 19 '18 at 22:57












$begingroup$
Right! Thank you all, I will double check.
$endgroup$
– PerelMan
Dec 19 '18 at 22:58




$begingroup$
Right! Thank you all, I will double check.
$endgroup$
– PerelMan
Dec 19 '18 at 22:58










1 Answer
1






active

oldest

votes


















5












$begingroup$

$mathbb{S}^n$ is not contractible.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046955%2fcohomology-of-mathbbsn%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    5












    $begingroup$

    $mathbb{S}^n$ is not contractible.






    share|cite|improve this answer









    $endgroup$


















      5












      $begingroup$

      $mathbb{S}^n$ is not contractible.






      share|cite|improve this answer









      $endgroup$
















        5












        5








        5





        $begingroup$

        $mathbb{S}^n$ is not contractible.






        share|cite|improve this answer









        $endgroup$



        $mathbb{S}^n$ is not contractible.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 19 '18 at 22:52









        positrón0802positrón0802

        4,468520




        4,468520






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046955%2fcohomology-of-mathbbsn%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Wiesbaden

            Marschland

            Dieringhausen