Show that $|x-y|-|x|=-y[I(x>0)-I(x<0)]+2int_0^y[I(xle s)-I(xle0)]ds$.
$begingroup$
Is the equation below true? How to prove it?
$$|x-y|-|x|=-y[I(x>0)-I(x<0)]+2int_0^y[I(xle s)-I(xle0)]ds.$$
real-analysis calculus integration algebra-precalculus absolute-value
$endgroup$
add a comment |
$begingroup$
Is the equation below true? How to prove it?
$$|x-y|-|x|=-y[I(x>0)-I(x<0)]+2int_0^y[I(xle s)-I(xle0)]ds.$$
real-analysis calculus integration algebra-precalculus absolute-value
$endgroup$
add a comment |
$begingroup$
Is the equation below true? How to prove it?
$$|x-y|-|x|=-y[I(x>0)-I(x<0)]+2int_0^y[I(xle s)-I(xle0)]ds.$$
real-analysis calculus integration algebra-precalculus absolute-value
$endgroup$
Is the equation below true? How to prove it?
$$|x-y|-|x|=-y[I(x>0)-I(x<0)]+2int_0^y[I(xle s)-I(xle0)]ds.$$
real-analysis calculus integration algebra-precalculus absolute-value
real-analysis calculus integration algebra-precalculus absolute-value
asked Dec 19 '18 at 23:09
J.MikeJ.Mike
336110
336110
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let
$$
f(x,y)=|x-y|-|x|
$$
and
$$
g(x,y)=-y[I(x>0)-I(x<0)]+2int_0^y[I(xle s)-I(xle0)]ds
$$
Then $f(0,-5)=5$ and $g(0,-5)=10$.
$endgroup$
$begingroup$
Thank you for your answer. In this example, for function $g(x,y)$, the first term equals to $-1times(-5)times(0-1)=-5$. The second term equals to $2int_0^{-5}(I(-1le s)-1)ds=2(-int_{-5}^0I(-1le s)ds+5)=2times(-1+5)=8$. So $g(x,y)=-5+8=3=f(x,y)$.
$endgroup$
– J.Mike
Dec 20 '18 at 0:04
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046967%2fshow-that-x-y-x-yix0-ix02-int-0yix-le-s-ix-le0ds%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let
$$
f(x,y)=|x-y|-|x|
$$
and
$$
g(x,y)=-y[I(x>0)-I(x<0)]+2int_0^y[I(xle s)-I(xle0)]ds
$$
Then $f(0,-5)=5$ and $g(0,-5)=10$.
$endgroup$
$begingroup$
Thank you for your answer. In this example, for function $g(x,y)$, the first term equals to $-1times(-5)times(0-1)=-5$. The second term equals to $2int_0^{-5}(I(-1le s)-1)ds=2(-int_{-5}^0I(-1le s)ds+5)=2times(-1+5)=8$. So $g(x,y)=-5+8=3=f(x,y)$.
$endgroup$
– J.Mike
Dec 20 '18 at 0:04
add a comment |
$begingroup$
Let
$$
f(x,y)=|x-y|-|x|
$$
and
$$
g(x,y)=-y[I(x>0)-I(x<0)]+2int_0^y[I(xle s)-I(xle0)]ds
$$
Then $f(0,-5)=5$ and $g(0,-5)=10$.
$endgroup$
$begingroup$
Thank you for your answer. In this example, for function $g(x,y)$, the first term equals to $-1times(-5)times(0-1)=-5$. The second term equals to $2int_0^{-5}(I(-1le s)-1)ds=2(-int_{-5}^0I(-1le s)ds+5)=2times(-1+5)=8$. So $g(x,y)=-5+8=3=f(x,y)$.
$endgroup$
– J.Mike
Dec 20 '18 at 0:04
add a comment |
$begingroup$
Let
$$
f(x,y)=|x-y|-|x|
$$
and
$$
g(x,y)=-y[I(x>0)-I(x<0)]+2int_0^y[I(xle s)-I(xle0)]ds
$$
Then $f(0,-5)=5$ and $g(0,-5)=10$.
$endgroup$
Let
$$
f(x,y)=|x-y|-|x|
$$
and
$$
g(x,y)=-y[I(x>0)-I(x<0)]+2int_0^y[I(xle s)-I(xle0)]ds
$$
Then $f(0,-5)=5$ and $g(0,-5)=10$.
edited Dec 20 '18 at 0:32
answered Dec 19 '18 at 23:52
ablmfablmf
2,54842452
2,54842452
$begingroup$
Thank you for your answer. In this example, for function $g(x,y)$, the first term equals to $-1times(-5)times(0-1)=-5$. The second term equals to $2int_0^{-5}(I(-1le s)-1)ds=2(-int_{-5}^0I(-1le s)ds+5)=2times(-1+5)=8$. So $g(x,y)=-5+8=3=f(x,y)$.
$endgroup$
– J.Mike
Dec 20 '18 at 0:04
add a comment |
$begingroup$
Thank you for your answer. In this example, for function $g(x,y)$, the first term equals to $-1times(-5)times(0-1)=-5$. The second term equals to $2int_0^{-5}(I(-1le s)-1)ds=2(-int_{-5}^0I(-1le s)ds+5)=2times(-1+5)=8$. So $g(x,y)=-5+8=3=f(x,y)$.
$endgroup$
– J.Mike
Dec 20 '18 at 0:04
$begingroup$
Thank you for your answer. In this example, for function $g(x,y)$, the first term equals to $-1times(-5)times(0-1)=-5$. The second term equals to $2int_0^{-5}(I(-1le s)-1)ds=2(-int_{-5}^0I(-1le s)ds+5)=2times(-1+5)=8$. So $g(x,y)=-5+8=3=f(x,y)$.
$endgroup$
– J.Mike
Dec 20 '18 at 0:04
$begingroup$
Thank you for your answer. In this example, for function $g(x,y)$, the first term equals to $-1times(-5)times(0-1)=-5$. The second term equals to $2int_0^{-5}(I(-1le s)-1)ds=2(-int_{-5}^0I(-1le s)ds+5)=2times(-1+5)=8$. So $g(x,y)=-5+8=3=f(x,y)$.
$endgroup$
– J.Mike
Dec 20 '18 at 0:04
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046967%2fshow-that-x-y-x-yix0-ix02-int-0yix-le-s-ix-le0ds%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown