Proving that $int_0^1 x^{2n} sin (pi x) dx$ are polynomials of degree $2n$ in $pi$, divided by $pi^{2n+1}$.
$begingroup$
I think that the integrals $int_0^1 x^{2n} sin(pi x)dx$ are polynomials of degree at most $2n$, with all expoents being even numbers, divided by $pi^{2n+1}$
A few examples given by wolfram:
begin{align}
&int_0^1 x^2sin(pi x) dx = frac{pi^2-4}{pi^3}\
&int_0^1 x^4 sin(pi x) dx = frac{48-12pi^2+pi^4}{pi^5}\
&int_0^1 x^6sin(pi x) dx = frac{-1440+360pi^2-30pi^4+pi^6}{pi^7}
end{align}
How we prove this?
real-analysis integration
$endgroup$
add a comment |
$begingroup$
I think that the integrals $int_0^1 x^{2n} sin(pi x)dx$ are polynomials of degree at most $2n$, with all expoents being even numbers, divided by $pi^{2n+1}$
A few examples given by wolfram:
begin{align}
&int_0^1 x^2sin(pi x) dx = frac{pi^2-4}{pi^3}\
&int_0^1 x^4 sin(pi x) dx = frac{48-12pi^2+pi^4}{pi^5}\
&int_0^1 x^6sin(pi x) dx = frac{-1440+360pi^2-30pi^4+pi^6}{pi^7}
end{align}
How we prove this?
real-analysis integration
$endgroup$
add a comment |
$begingroup$
I think that the integrals $int_0^1 x^{2n} sin(pi x)dx$ are polynomials of degree at most $2n$, with all expoents being even numbers, divided by $pi^{2n+1}$
A few examples given by wolfram:
begin{align}
&int_0^1 x^2sin(pi x) dx = frac{pi^2-4}{pi^3}\
&int_0^1 x^4 sin(pi x) dx = frac{48-12pi^2+pi^4}{pi^5}\
&int_0^1 x^6sin(pi x) dx = frac{-1440+360pi^2-30pi^4+pi^6}{pi^7}
end{align}
How we prove this?
real-analysis integration
$endgroup$
I think that the integrals $int_0^1 x^{2n} sin(pi x)dx$ are polynomials of degree at most $2n$, with all expoents being even numbers, divided by $pi^{2n+1}$
A few examples given by wolfram:
begin{align}
&int_0^1 x^2sin(pi x) dx = frac{pi^2-4}{pi^3}\
&int_0^1 x^4 sin(pi x) dx = frac{48-12pi^2+pi^4}{pi^5}\
&int_0^1 x^6sin(pi x) dx = frac{-1440+360pi^2-30pi^4+pi^6}{pi^7}
end{align}
How we prove this?
real-analysis integration
real-analysis integration
asked Dec 19 '18 at 22:15
PintecoPinteco
731313
731313
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
HINT: By integration by parts,
$$int_0^1 x^{2n}sin(pi x)dx=frac{1}{pi}+frac{2n}{pi}int_0^1 x^{2n-1}cos(pi x)dx$$
and
$$int_0^1 x^{2n-1}cos(pi x)dx=-frac{2n-1}{pi}int_0^1 x^{2n-2}sin(pi x)dx$$
$endgroup$
$begingroup$
The last integral should have $x^{2n-2}$
$endgroup$
– Shubham Johri
Dec 19 '18 at 22:36
$begingroup$
@ShubhamJohri Right, thanks for catching that!
$endgroup$
– Frpzzd
Dec 19 '18 at 22:36
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046928%2fproving-that-int-01-x2n-sin-pi-x-dx-are-polynomials-of-degree-2n-in%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
HINT: By integration by parts,
$$int_0^1 x^{2n}sin(pi x)dx=frac{1}{pi}+frac{2n}{pi}int_0^1 x^{2n-1}cos(pi x)dx$$
and
$$int_0^1 x^{2n-1}cos(pi x)dx=-frac{2n-1}{pi}int_0^1 x^{2n-2}sin(pi x)dx$$
$endgroup$
$begingroup$
The last integral should have $x^{2n-2}$
$endgroup$
– Shubham Johri
Dec 19 '18 at 22:36
$begingroup$
@ShubhamJohri Right, thanks for catching that!
$endgroup$
– Frpzzd
Dec 19 '18 at 22:36
add a comment |
$begingroup$
HINT: By integration by parts,
$$int_0^1 x^{2n}sin(pi x)dx=frac{1}{pi}+frac{2n}{pi}int_0^1 x^{2n-1}cos(pi x)dx$$
and
$$int_0^1 x^{2n-1}cos(pi x)dx=-frac{2n-1}{pi}int_0^1 x^{2n-2}sin(pi x)dx$$
$endgroup$
$begingroup$
The last integral should have $x^{2n-2}$
$endgroup$
– Shubham Johri
Dec 19 '18 at 22:36
$begingroup$
@ShubhamJohri Right, thanks for catching that!
$endgroup$
– Frpzzd
Dec 19 '18 at 22:36
add a comment |
$begingroup$
HINT: By integration by parts,
$$int_0^1 x^{2n}sin(pi x)dx=frac{1}{pi}+frac{2n}{pi}int_0^1 x^{2n-1}cos(pi x)dx$$
and
$$int_0^1 x^{2n-1}cos(pi x)dx=-frac{2n-1}{pi}int_0^1 x^{2n-2}sin(pi x)dx$$
$endgroup$
HINT: By integration by parts,
$$int_0^1 x^{2n}sin(pi x)dx=frac{1}{pi}+frac{2n}{pi}int_0^1 x^{2n-1}cos(pi x)dx$$
and
$$int_0^1 x^{2n-1}cos(pi x)dx=-frac{2n-1}{pi}int_0^1 x^{2n-2}sin(pi x)dx$$
edited Dec 19 '18 at 22:36
answered Dec 19 '18 at 22:20
FrpzzdFrpzzd
23k841109
23k841109
$begingroup$
The last integral should have $x^{2n-2}$
$endgroup$
– Shubham Johri
Dec 19 '18 at 22:36
$begingroup$
@ShubhamJohri Right, thanks for catching that!
$endgroup$
– Frpzzd
Dec 19 '18 at 22:36
add a comment |
$begingroup$
The last integral should have $x^{2n-2}$
$endgroup$
– Shubham Johri
Dec 19 '18 at 22:36
$begingroup$
@ShubhamJohri Right, thanks for catching that!
$endgroup$
– Frpzzd
Dec 19 '18 at 22:36
$begingroup$
The last integral should have $x^{2n-2}$
$endgroup$
– Shubham Johri
Dec 19 '18 at 22:36
$begingroup$
The last integral should have $x^{2n-2}$
$endgroup$
– Shubham Johri
Dec 19 '18 at 22:36
$begingroup$
@ShubhamJohri Right, thanks for catching that!
$endgroup$
– Frpzzd
Dec 19 '18 at 22:36
$begingroup$
@ShubhamJohri Right, thanks for catching that!
$endgroup$
– Frpzzd
Dec 19 '18 at 22:36
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046928%2fproving-that-int-01-x2n-sin-pi-x-dx-are-polynomials-of-degree-2n-in%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown