Convergent Sequence Analysis












0












$begingroup$


Suppose that $(a_n)to a$ with $a in mathbb R$



If $A leq a_n leq B$ then $A leq a leq B$



Proof:



Consider the sequences $(b_n)=A$ and $(c_n) = B$



Thus $(b_n)to A$ & $(c_n)to B$



Noting $(b_n) leq(a_n)leq(c_n) $ $forall n in mathbb N$



Thus $A leq a leq B$



$blacksquare$
is this a valid proof? thanks.










share|cite|improve this question











$endgroup$












  • $begingroup$
    And your question?
    $endgroup$
    – Martín Vacas Vignolo
    Dec 19 '18 at 22:42










  • $begingroup$
    The proof is ok if you really can use the fact that if $a_nto a$, $b_nto b$ and $a_nleq b_n$ for all $n$ then $aleq b$.
    $endgroup$
    – Mark
    Dec 19 '18 at 23:01


















0












$begingroup$


Suppose that $(a_n)to a$ with $a in mathbb R$



If $A leq a_n leq B$ then $A leq a leq B$



Proof:



Consider the sequences $(b_n)=A$ and $(c_n) = B$



Thus $(b_n)to A$ & $(c_n)to B$



Noting $(b_n) leq(a_n)leq(c_n) $ $forall n in mathbb N$



Thus $A leq a leq B$



$blacksquare$
is this a valid proof? thanks.










share|cite|improve this question











$endgroup$












  • $begingroup$
    And your question?
    $endgroup$
    – Martín Vacas Vignolo
    Dec 19 '18 at 22:42










  • $begingroup$
    The proof is ok if you really can use the fact that if $a_nto a$, $b_nto b$ and $a_nleq b_n$ for all $n$ then $aleq b$.
    $endgroup$
    – Mark
    Dec 19 '18 at 23:01
















0












0








0





$begingroup$


Suppose that $(a_n)to a$ with $a in mathbb R$



If $A leq a_n leq B$ then $A leq a leq B$



Proof:



Consider the sequences $(b_n)=A$ and $(c_n) = B$



Thus $(b_n)to A$ & $(c_n)to B$



Noting $(b_n) leq(a_n)leq(c_n) $ $forall n in mathbb N$



Thus $A leq a leq B$



$blacksquare$
is this a valid proof? thanks.










share|cite|improve this question











$endgroup$




Suppose that $(a_n)to a$ with $a in mathbb R$



If $A leq a_n leq B$ then $A leq a leq B$



Proof:



Consider the sequences $(b_n)=A$ and $(c_n) = B$



Thus $(b_n)to A$ & $(c_n)to B$



Noting $(b_n) leq(a_n)leq(c_n) $ $forall n in mathbb N$



Thus $A leq a leq B$



$blacksquare$
is this a valid proof? thanks.







sequences-and-series convergence






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 19 '18 at 22:43







PolynomialC

















asked Dec 19 '18 at 22:39









PolynomialCPolynomialC

826




826












  • $begingroup$
    And your question?
    $endgroup$
    – Martín Vacas Vignolo
    Dec 19 '18 at 22:42










  • $begingroup$
    The proof is ok if you really can use the fact that if $a_nto a$, $b_nto b$ and $a_nleq b_n$ for all $n$ then $aleq b$.
    $endgroup$
    – Mark
    Dec 19 '18 at 23:01




















  • $begingroup$
    And your question?
    $endgroup$
    – Martín Vacas Vignolo
    Dec 19 '18 at 22:42










  • $begingroup$
    The proof is ok if you really can use the fact that if $a_nto a$, $b_nto b$ and $a_nleq b_n$ for all $n$ then $aleq b$.
    $endgroup$
    – Mark
    Dec 19 '18 at 23:01


















$begingroup$
And your question?
$endgroup$
– Martín Vacas Vignolo
Dec 19 '18 at 22:42




$begingroup$
And your question?
$endgroup$
– Martín Vacas Vignolo
Dec 19 '18 at 22:42












$begingroup$
The proof is ok if you really can use the fact that if $a_nto a$, $b_nto b$ and $a_nleq b_n$ for all $n$ then $aleq b$.
$endgroup$
– Mark
Dec 19 '18 at 23:01






$begingroup$
The proof is ok if you really can use the fact that if $a_nto a$, $b_nto b$ and $a_nleq b_n$ for all $n$ then $aleq b$.
$endgroup$
– Mark
Dec 19 '18 at 23:01












1 Answer
1






active

oldest

votes


















0












$begingroup$

This is not a valid proof. You proved your statement only for two specific sequences, not in the general case.



Suppose that $a<A$. Take $varepsilon=A-a$. There is a natural $N$ such that$$ngeqslant Nimplieslvert a_n-arvert<varepsilon=A-a.$$But then$$a_N-aleqslantlvert a_N-arvert<A-A$$and therefore $a_N<A$, which is a contradiction.



By a similar argument, you can't have $a>B$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thanks very much.
    $endgroup$
    – PolynomialC
    Dec 19 '18 at 23:57










  • $begingroup$
    I'm failing to see your contradiction, you're saying that $a_N <A$ is a contradiction yet it agrees with your supposition that $a < A$
    $endgroup$
    – PolynomialC
    Dec 20 '18 at 0:05












  • $begingroup$
    It contradicts the hypothesis that$$(forall ninmathbb{N}):Aleqslant a_nleqslant B.$$
    $endgroup$
    – José Carlos Santos
    Dec 20 '18 at 0:08










  • $begingroup$
    Ah that makes sense, great!
    $endgroup$
    – PolynomialC
    Dec 20 '18 at 0:09











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046953%2fconvergent-sequence-analysis%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









0












$begingroup$

This is not a valid proof. You proved your statement only for two specific sequences, not in the general case.



Suppose that $a<A$. Take $varepsilon=A-a$. There is a natural $N$ such that$$ngeqslant Nimplieslvert a_n-arvert<varepsilon=A-a.$$But then$$a_N-aleqslantlvert a_N-arvert<A-A$$and therefore $a_N<A$, which is a contradiction.



By a similar argument, you can't have $a>B$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thanks very much.
    $endgroup$
    – PolynomialC
    Dec 19 '18 at 23:57










  • $begingroup$
    I'm failing to see your contradiction, you're saying that $a_N <A$ is a contradiction yet it agrees with your supposition that $a < A$
    $endgroup$
    – PolynomialC
    Dec 20 '18 at 0:05












  • $begingroup$
    It contradicts the hypothesis that$$(forall ninmathbb{N}):Aleqslant a_nleqslant B.$$
    $endgroup$
    – José Carlos Santos
    Dec 20 '18 at 0:08










  • $begingroup$
    Ah that makes sense, great!
    $endgroup$
    – PolynomialC
    Dec 20 '18 at 0:09
















0












$begingroup$

This is not a valid proof. You proved your statement only for two specific sequences, not in the general case.



Suppose that $a<A$. Take $varepsilon=A-a$. There is a natural $N$ such that$$ngeqslant Nimplieslvert a_n-arvert<varepsilon=A-a.$$But then$$a_N-aleqslantlvert a_N-arvert<A-A$$and therefore $a_N<A$, which is a contradiction.



By a similar argument, you can't have $a>B$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thanks very much.
    $endgroup$
    – PolynomialC
    Dec 19 '18 at 23:57










  • $begingroup$
    I'm failing to see your contradiction, you're saying that $a_N <A$ is a contradiction yet it agrees with your supposition that $a < A$
    $endgroup$
    – PolynomialC
    Dec 20 '18 at 0:05












  • $begingroup$
    It contradicts the hypothesis that$$(forall ninmathbb{N}):Aleqslant a_nleqslant B.$$
    $endgroup$
    – José Carlos Santos
    Dec 20 '18 at 0:08










  • $begingroup$
    Ah that makes sense, great!
    $endgroup$
    – PolynomialC
    Dec 20 '18 at 0:09














0












0








0





$begingroup$

This is not a valid proof. You proved your statement only for two specific sequences, not in the general case.



Suppose that $a<A$. Take $varepsilon=A-a$. There is a natural $N$ such that$$ngeqslant Nimplieslvert a_n-arvert<varepsilon=A-a.$$But then$$a_N-aleqslantlvert a_N-arvert<A-A$$and therefore $a_N<A$, which is a contradiction.



By a similar argument, you can't have $a>B$.






share|cite|improve this answer









$endgroup$



This is not a valid proof. You proved your statement only for two specific sequences, not in the general case.



Suppose that $a<A$. Take $varepsilon=A-a$. There is a natural $N$ such that$$ngeqslant Nimplieslvert a_n-arvert<varepsilon=A-a.$$But then$$a_N-aleqslantlvert a_N-arvert<A-A$$and therefore $a_N<A$, which is a contradiction.



By a similar argument, you can't have $a>B$.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 19 '18 at 23:56









José Carlos SantosJosé Carlos Santos

164k22131234




164k22131234












  • $begingroup$
    Thanks very much.
    $endgroup$
    – PolynomialC
    Dec 19 '18 at 23:57










  • $begingroup$
    I'm failing to see your contradiction, you're saying that $a_N <A$ is a contradiction yet it agrees with your supposition that $a < A$
    $endgroup$
    – PolynomialC
    Dec 20 '18 at 0:05












  • $begingroup$
    It contradicts the hypothesis that$$(forall ninmathbb{N}):Aleqslant a_nleqslant B.$$
    $endgroup$
    – José Carlos Santos
    Dec 20 '18 at 0:08










  • $begingroup$
    Ah that makes sense, great!
    $endgroup$
    – PolynomialC
    Dec 20 '18 at 0:09


















  • $begingroup$
    Thanks very much.
    $endgroup$
    – PolynomialC
    Dec 19 '18 at 23:57










  • $begingroup$
    I'm failing to see your contradiction, you're saying that $a_N <A$ is a contradiction yet it agrees with your supposition that $a < A$
    $endgroup$
    – PolynomialC
    Dec 20 '18 at 0:05












  • $begingroup$
    It contradicts the hypothesis that$$(forall ninmathbb{N}):Aleqslant a_nleqslant B.$$
    $endgroup$
    – José Carlos Santos
    Dec 20 '18 at 0:08










  • $begingroup$
    Ah that makes sense, great!
    $endgroup$
    – PolynomialC
    Dec 20 '18 at 0:09
















$begingroup$
Thanks very much.
$endgroup$
– PolynomialC
Dec 19 '18 at 23:57




$begingroup$
Thanks very much.
$endgroup$
– PolynomialC
Dec 19 '18 at 23:57












$begingroup$
I'm failing to see your contradiction, you're saying that $a_N <A$ is a contradiction yet it agrees with your supposition that $a < A$
$endgroup$
– PolynomialC
Dec 20 '18 at 0:05






$begingroup$
I'm failing to see your contradiction, you're saying that $a_N <A$ is a contradiction yet it agrees with your supposition that $a < A$
$endgroup$
– PolynomialC
Dec 20 '18 at 0:05














$begingroup$
It contradicts the hypothesis that$$(forall ninmathbb{N}):Aleqslant a_nleqslant B.$$
$endgroup$
– José Carlos Santos
Dec 20 '18 at 0:08




$begingroup$
It contradicts the hypothesis that$$(forall ninmathbb{N}):Aleqslant a_nleqslant B.$$
$endgroup$
– José Carlos Santos
Dec 20 '18 at 0:08












$begingroup$
Ah that makes sense, great!
$endgroup$
– PolynomialC
Dec 20 '18 at 0:09




$begingroup$
Ah that makes sense, great!
$endgroup$
– PolynomialC
Dec 20 '18 at 0:09


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046953%2fconvergent-sequence-analysis%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Wiesbaden

Marschland

Dieringhausen