how to show: Is $u$ harmonic, so are following identities true
$begingroup$
Let $V subset mathbb{R}^n , 2 leq n $
be a set, where you can apply Gauß's Theorem.
To show: Is $ u in C^{(2)}( bar{V} ) $ harmonic on $V$, then:
$$ int_{ partial V} frac{ partial u }{ partial nu } do =0 $$
and
$$ int_V | nabla u(x)|^2 dx = int_{ partial V} u frac{ partial u }{partial nu} do $$
where $ nu $ is the unit normal on $ partial V $
__
Probably it's a bit remodelling, but I still can not get around.
Okay, so the Gauß's Theorem says
$$ int_{ Omega} nabla v dx = int_{ partial Omega} v n ds $$
and If $u in C^{(2)} $ is harmonic then :
$$ Delta u = frac{ partial^2 u}{ partial x^2} + frac{ partial^2 u}{ partial y^2}=0 $$
real-analysis integration gaussian-integral
$endgroup$
add a comment |
$begingroup$
Let $V subset mathbb{R}^n , 2 leq n $
be a set, where you can apply Gauß's Theorem.
To show: Is $ u in C^{(2)}( bar{V} ) $ harmonic on $V$, then:
$$ int_{ partial V} frac{ partial u }{ partial nu } do =0 $$
and
$$ int_V | nabla u(x)|^2 dx = int_{ partial V} u frac{ partial u }{partial nu} do $$
where $ nu $ is the unit normal on $ partial V $
__
Probably it's a bit remodelling, but I still can not get around.
Okay, so the Gauß's Theorem says
$$ int_{ Omega} nabla v dx = int_{ partial Omega} v n ds $$
and If $u in C^{(2)} $ is harmonic then :
$$ Delta u = frac{ partial^2 u}{ partial x^2} + frac{ partial^2 u}{ partial y^2}=0 $$
real-analysis integration gaussian-integral
$endgroup$
add a comment |
$begingroup$
Let $V subset mathbb{R}^n , 2 leq n $
be a set, where you can apply Gauß's Theorem.
To show: Is $ u in C^{(2)}( bar{V} ) $ harmonic on $V$, then:
$$ int_{ partial V} frac{ partial u }{ partial nu } do =0 $$
and
$$ int_V | nabla u(x)|^2 dx = int_{ partial V} u frac{ partial u }{partial nu} do $$
where $ nu $ is the unit normal on $ partial V $
__
Probably it's a bit remodelling, but I still can not get around.
Okay, so the Gauß's Theorem says
$$ int_{ Omega} nabla v dx = int_{ partial Omega} v n ds $$
and If $u in C^{(2)} $ is harmonic then :
$$ Delta u = frac{ partial^2 u}{ partial x^2} + frac{ partial^2 u}{ partial y^2}=0 $$
real-analysis integration gaussian-integral
$endgroup$
Let $V subset mathbb{R}^n , 2 leq n $
be a set, where you can apply Gauß's Theorem.
To show: Is $ u in C^{(2)}( bar{V} ) $ harmonic on $V$, then:
$$ int_{ partial V} frac{ partial u }{ partial nu } do =0 $$
and
$$ int_V | nabla u(x)|^2 dx = int_{ partial V} u frac{ partial u }{partial nu} do $$
where $ nu $ is the unit normal on $ partial V $
__
Probably it's a bit remodelling, but I still can not get around.
Okay, so the Gauß's Theorem says
$$ int_{ Omega} nabla v dx = int_{ partial Omega} v n ds $$
and If $u in C^{(2)} $ is harmonic then :
$$ Delta u = frac{ partial^2 u}{ partial x^2} + frac{ partial^2 u}{ partial y^2}=0 $$
real-analysis integration gaussian-integral
real-analysis integration gaussian-integral
edited Dec 19 '18 at 21:35
Robert Lewis
47.2k23067
47.2k23067
asked Dec 19 '18 at 21:33
constant94constant94
6310
6310
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Recall that
$Delta u = nabla^2 u = nabla cdot nabla u; tag 1$
if $u$ is harmonic on $bar V$, then
$Delta u = nabla^2 u(x) = 0, ; x in bar V; tag 2$
we may apply the divergence theorem of Gauss to the integral
$displaystyle int_{partial V} dfrac{partial u}{partial nu} ; do; tag 3$
on $partial V$ we have
$dfrac{partial u}{partial nu} = nabla u cdot mathbf n, tag 4$
where $mathbf n$ is the outward-pointing unit normal vector field on $partial V$; then using the divergence theorem we find
$displaystyle int_{partial V} dfrac{partial u}{partial nu} ; do = displaystyle int_{partial V} nabla u cdot mathbf n ; do = int_V nabla cdot nabla u ; dV = int_V nabla^2 u ; dV = 0, tag 5$
since $u$ is harmonic on $V$, that is, from (2).
As for the second identity, we use the well-known formula
$nabla cdot (u nabla u) = nabla u cdot nabla u + u nabla cdot nabla u = vert nabla u vert^2 + unabla^2u = vert nabla u vert^2 tag 6$
for harmonic $u$; if we now integrate over $V$ we find
$displaystyle int_V vert nabla u vert^2 ; dV = int_V nabla cdot (u nabla u) ; dV; tag 7$
another application of the divergence theorem similar to the above yields
$displaystyle int_V nabla cdot (u nabla u) ; dV = int_{partial V} u nabla u cdot mathbf n ; do = int_{partial V} udfrac{partial u}{partial nu} ; do; tag 8$
combining (7) and (8) yields
$displaystyle int_V vert nabla u vert^2 ; dV = displaystyle int u dfrac{partial u}{partial nu} ; do, tag 9$
the requisite result. $OEDelta$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046896%2fhow-to-show-is-u-harmonic-so-are-following-identities-true%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Recall that
$Delta u = nabla^2 u = nabla cdot nabla u; tag 1$
if $u$ is harmonic on $bar V$, then
$Delta u = nabla^2 u(x) = 0, ; x in bar V; tag 2$
we may apply the divergence theorem of Gauss to the integral
$displaystyle int_{partial V} dfrac{partial u}{partial nu} ; do; tag 3$
on $partial V$ we have
$dfrac{partial u}{partial nu} = nabla u cdot mathbf n, tag 4$
where $mathbf n$ is the outward-pointing unit normal vector field on $partial V$; then using the divergence theorem we find
$displaystyle int_{partial V} dfrac{partial u}{partial nu} ; do = displaystyle int_{partial V} nabla u cdot mathbf n ; do = int_V nabla cdot nabla u ; dV = int_V nabla^2 u ; dV = 0, tag 5$
since $u$ is harmonic on $V$, that is, from (2).
As for the second identity, we use the well-known formula
$nabla cdot (u nabla u) = nabla u cdot nabla u + u nabla cdot nabla u = vert nabla u vert^2 + unabla^2u = vert nabla u vert^2 tag 6$
for harmonic $u$; if we now integrate over $V$ we find
$displaystyle int_V vert nabla u vert^2 ; dV = int_V nabla cdot (u nabla u) ; dV; tag 7$
another application of the divergence theorem similar to the above yields
$displaystyle int_V nabla cdot (u nabla u) ; dV = int_{partial V} u nabla u cdot mathbf n ; do = int_{partial V} udfrac{partial u}{partial nu} ; do; tag 8$
combining (7) and (8) yields
$displaystyle int_V vert nabla u vert^2 ; dV = displaystyle int u dfrac{partial u}{partial nu} ; do, tag 9$
the requisite result. $OEDelta$.
$endgroup$
add a comment |
$begingroup$
Recall that
$Delta u = nabla^2 u = nabla cdot nabla u; tag 1$
if $u$ is harmonic on $bar V$, then
$Delta u = nabla^2 u(x) = 0, ; x in bar V; tag 2$
we may apply the divergence theorem of Gauss to the integral
$displaystyle int_{partial V} dfrac{partial u}{partial nu} ; do; tag 3$
on $partial V$ we have
$dfrac{partial u}{partial nu} = nabla u cdot mathbf n, tag 4$
where $mathbf n$ is the outward-pointing unit normal vector field on $partial V$; then using the divergence theorem we find
$displaystyle int_{partial V} dfrac{partial u}{partial nu} ; do = displaystyle int_{partial V} nabla u cdot mathbf n ; do = int_V nabla cdot nabla u ; dV = int_V nabla^2 u ; dV = 0, tag 5$
since $u$ is harmonic on $V$, that is, from (2).
As for the second identity, we use the well-known formula
$nabla cdot (u nabla u) = nabla u cdot nabla u + u nabla cdot nabla u = vert nabla u vert^2 + unabla^2u = vert nabla u vert^2 tag 6$
for harmonic $u$; if we now integrate over $V$ we find
$displaystyle int_V vert nabla u vert^2 ; dV = int_V nabla cdot (u nabla u) ; dV; tag 7$
another application of the divergence theorem similar to the above yields
$displaystyle int_V nabla cdot (u nabla u) ; dV = int_{partial V} u nabla u cdot mathbf n ; do = int_{partial V} udfrac{partial u}{partial nu} ; do; tag 8$
combining (7) and (8) yields
$displaystyle int_V vert nabla u vert^2 ; dV = displaystyle int u dfrac{partial u}{partial nu} ; do, tag 9$
the requisite result. $OEDelta$.
$endgroup$
add a comment |
$begingroup$
Recall that
$Delta u = nabla^2 u = nabla cdot nabla u; tag 1$
if $u$ is harmonic on $bar V$, then
$Delta u = nabla^2 u(x) = 0, ; x in bar V; tag 2$
we may apply the divergence theorem of Gauss to the integral
$displaystyle int_{partial V} dfrac{partial u}{partial nu} ; do; tag 3$
on $partial V$ we have
$dfrac{partial u}{partial nu} = nabla u cdot mathbf n, tag 4$
where $mathbf n$ is the outward-pointing unit normal vector field on $partial V$; then using the divergence theorem we find
$displaystyle int_{partial V} dfrac{partial u}{partial nu} ; do = displaystyle int_{partial V} nabla u cdot mathbf n ; do = int_V nabla cdot nabla u ; dV = int_V nabla^2 u ; dV = 0, tag 5$
since $u$ is harmonic on $V$, that is, from (2).
As for the second identity, we use the well-known formula
$nabla cdot (u nabla u) = nabla u cdot nabla u + u nabla cdot nabla u = vert nabla u vert^2 + unabla^2u = vert nabla u vert^2 tag 6$
for harmonic $u$; if we now integrate over $V$ we find
$displaystyle int_V vert nabla u vert^2 ; dV = int_V nabla cdot (u nabla u) ; dV; tag 7$
another application of the divergence theorem similar to the above yields
$displaystyle int_V nabla cdot (u nabla u) ; dV = int_{partial V} u nabla u cdot mathbf n ; do = int_{partial V} udfrac{partial u}{partial nu} ; do; tag 8$
combining (7) and (8) yields
$displaystyle int_V vert nabla u vert^2 ; dV = displaystyle int u dfrac{partial u}{partial nu} ; do, tag 9$
the requisite result. $OEDelta$.
$endgroup$
Recall that
$Delta u = nabla^2 u = nabla cdot nabla u; tag 1$
if $u$ is harmonic on $bar V$, then
$Delta u = nabla^2 u(x) = 0, ; x in bar V; tag 2$
we may apply the divergence theorem of Gauss to the integral
$displaystyle int_{partial V} dfrac{partial u}{partial nu} ; do; tag 3$
on $partial V$ we have
$dfrac{partial u}{partial nu} = nabla u cdot mathbf n, tag 4$
where $mathbf n$ is the outward-pointing unit normal vector field on $partial V$; then using the divergence theorem we find
$displaystyle int_{partial V} dfrac{partial u}{partial nu} ; do = displaystyle int_{partial V} nabla u cdot mathbf n ; do = int_V nabla cdot nabla u ; dV = int_V nabla^2 u ; dV = 0, tag 5$
since $u$ is harmonic on $V$, that is, from (2).
As for the second identity, we use the well-known formula
$nabla cdot (u nabla u) = nabla u cdot nabla u + u nabla cdot nabla u = vert nabla u vert^2 + unabla^2u = vert nabla u vert^2 tag 6$
for harmonic $u$; if we now integrate over $V$ we find
$displaystyle int_V vert nabla u vert^2 ; dV = int_V nabla cdot (u nabla u) ; dV; tag 7$
another application of the divergence theorem similar to the above yields
$displaystyle int_V nabla cdot (u nabla u) ; dV = int_{partial V} u nabla u cdot mathbf n ; do = int_{partial V} udfrac{partial u}{partial nu} ; do; tag 8$
combining (7) and (8) yields
$displaystyle int_V vert nabla u vert^2 ; dV = displaystyle int u dfrac{partial u}{partial nu} ; do, tag 9$
the requisite result. $OEDelta$.
edited Dec 19 '18 at 23:05
answered Dec 19 '18 at 22:52
Robert LewisRobert Lewis
47.2k23067
47.2k23067
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046896%2fhow-to-show-is-u-harmonic-so-are-following-identities-true%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown