how to show: Is $u$ harmonic, so are following identities true












1












$begingroup$


Let $V subset mathbb{R}^n , 2 leq n $
be a set, where you can apply Gauß's Theorem.



To show: Is $ u in C^{(2)}( bar{V} ) $ harmonic on $V$, then:



$$ int_{ partial V} frac{ partial u }{ partial nu } do =0 $$
and
$$ int_V | nabla u(x)|^2 dx = int_{ partial V} u frac{ partial u }{partial nu} do $$



where $ nu $ is the unit normal on $ partial V $



__



Probably it's a bit remodelling, but I still can not get around.



Okay, so the Gauß's Theorem says



$$ int_{ Omega} nabla v dx = int_{ partial Omega} v n ds $$



and If $u in C^{(2)} $ is harmonic then :
$$ Delta u = frac{ partial^2 u}{ partial x^2} + frac{ partial^2 u}{ partial y^2}=0 $$










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    Let $V subset mathbb{R}^n , 2 leq n $
    be a set, where you can apply Gauß's Theorem.



    To show: Is $ u in C^{(2)}( bar{V} ) $ harmonic on $V$, then:



    $$ int_{ partial V} frac{ partial u }{ partial nu } do =0 $$
    and
    $$ int_V | nabla u(x)|^2 dx = int_{ partial V} u frac{ partial u }{partial nu} do $$



    where $ nu $ is the unit normal on $ partial V $



    __



    Probably it's a bit remodelling, but I still can not get around.



    Okay, so the Gauß's Theorem says



    $$ int_{ Omega} nabla v dx = int_{ partial Omega} v n ds $$



    and If $u in C^{(2)} $ is harmonic then :
    $$ Delta u = frac{ partial^2 u}{ partial x^2} + frac{ partial^2 u}{ partial y^2}=0 $$










    share|cite|improve this question











    $endgroup$















      1












      1








      1


      1



      $begingroup$


      Let $V subset mathbb{R}^n , 2 leq n $
      be a set, where you can apply Gauß's Theorem.



      To show: Is $ u in C^{(2)}( bar{V} ) $ harmonic on $V$, then:



      $$ int_{ partial V} frac{ partial u }{ partial nu } do =0 $$
      and
      $$ int_V | nabla u(x)|^2 dx = int_{ partial V} u frac{ partial u }{partial nu} do $$



      where $ nu $ is the unit normal on $ partial V $



      __



      Probably it's a bit remodelling, but I still can not get around.



      Okay, so the Gauß's Theorem says



      $$ int_{ Omega} nabla v dx = int_{ partial Omega} v n ds $$



      and If $u in C^{(2)} $ is harmonic then :
      $$ Delta u = frac{ partial^2 u}{ partial x^2} + frac{ partial^2 u}{ partial y^2}=0 $$










      share|cite|improve this question











      $endgroup$




      Let $V subset mathbb{R}^n , 2 leq n $
      be a set, where you can apply Gauß's Theorem.



      To show: Is $ u in C^{(2)}( bar{V} ) $ harmonic on $V$, then:



      $$ int_{ partial V} frac{ partial u }{ partial nu } do =0 $$
      and
      $$ int_V | nabla u(x)|^2 dx = int_{ partial V} u frac{ partial u }{partial nu} do $$



      where $ nu $ is the unit normal on $ partial V $



      __



      Probably it's a bit remodelling, but I still can not get around.



      Okay, so the Gauß's Theorem says



      $$ int_{ Omega} nabla v dx = int_{ partial Omega} v n ds $$



      and If $u in C^{(2)} $ is harmonic then :
      $$ Delta u = frac{ partial^2 u}{ partial x^2} + frac{ partial^2 u}{ partial y^2}=0 $$







      real-analysis integration gaussian-integral






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 19 '18 at 21:35









      Robert Lewis

      47.2k23067




      47.2k23067










      asked Dec 19 '18 at 21:33









      constant94constant94

      6310




      6310






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          Recall that



          $Delta u = nabla^2 u = nabla cdot nabla u; tag 1$



          if $u$ is harmonic on $bar V$, then



          $Delta u = nabla^2 u(x) = 0, ; x in bar V; tag 2$



          we may apply the divergence theorem of Gauss to the integral



          $displaystyle int_{partial V} dfrac{partial u}{partial nu} ; do; tag 3$



          on $partial V$ we have



          $dfrac{partial u}{partial nu} = nabla u cdot mathbf n, tag 4$



          where $mathbf n$ is the outward-pointing unit normal vector field on $partial V$; then using the divergence theorem we find



          $displaystyle int_{partial V} dfrac{partial u}{partial nu} ; do = displaystyle int_{partial V} nabla u cdot mathbf n ; do = int_V nabla cdot nabla u ; dV = int_V nabla^2 u ; dV = 0, tag 5$



          since $u$ is harmonic on $V$, that is, from (2).



          As for the second identity, we use the well-known formula



          $nabla cdot (u nabla u) = nabla u cdot nabla u + u nabla cdot nabla u = vert nabla u vert^2 + unabla^2u = vert nabla u vert^2 tag 6$



          for harmonic $u$; if we now integrate over $V$ we find



          $displaystyle int_V vert nabla u vert^2 ; dV = int_V nabla cdot (u nabla u) ; dV; tag 7$



          another application of the divergence theorem similar to the above yields



          $displaystyle int_V nabla cdot (u nabla u) ; dV = int_{partial V} u nabla u cdot mathbf n ; do = int_{partial V} udfrac{partial u}{partial nu} ; do; tag 8$



          combining (7) and (8) yields



          $displaystyle int_V vert nabla u vert^2 ; dV = displaystyle int u dfrac{partial u}{partial nu} ; do, tag 9$



          the requisite result. $OEDelta$.






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046896%2fhow-to-show-is-u-harmonic-so-are-following-identities-true%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            Recall that



            $Delta u = nabla^2 u = nabla cdot nabla u; tag 1$



            if $u$ is harmonic on $bar V$, then



            $Delta u = nabla^2 u(x) = 0, ; x in bar V; tag 2$



            we may apply the divergence theorem of Gauss to the integral



            $displaystyle int_{partial V} dfrac{partial u}{partial nu} ; do; tag 3$



            on $partial V$ we have



            $dfrac{partial u}{partial nu} = nabla u cdot mathbf n, tag 4$



            where $mathbf n$ is the outward-pointing unit normal vector field on $partial V$; then using the divergence theorem we find



            $displaystyle int_{partial V} dfrac{partial u}{partial nu} ; do = displaystyle int_{partial V} nabla u cdot mathbf n ; do = int_V nabla cdot nabla u ; dV = int_V nabla^2 u ; dV = 0, tag 5$



            since $u$ is harmonic on $V$, that is, from (2).



            As for the second identity, we use the well-known formula



            $nabla cdot (u nabla u) = nabla u cdot nabla u + u nabla cdot nabla u = vert nabla u vert^2 + unabla^2u = vert nabla u vert^2 tag 6$



            for harmonic $u$; if we now integrate over $V$ we find



            $displaystyle int_V vert nabla u vert^2 ; dV = int_V nabla cdot (u nabla u) ; dV; tag 7$



            another application of the divergence theorem similar to the above yields



            $displaystyle int_V nabla cdot (u nabla u) ; dV = int_{partial V} u nabla u cdot mathbf n ; do = int_{partial V} udfrac{partial u}{partial nu} ; do; tag 8$



            combining (7) and (8) yields



            $displaystyle int_V vert nabla u vert^2 ; dV = displaystyle int u dfrac{partial u}{partial nu} ; do, tag 9$



            the requisite result. $OEDelta$.






            share|cite|improve this answer











            $endgroup$


















              0












              $begingroup$

              Recall that



              $Delta u = nabla^2 u = nabla cdot nabla u; tag 1$



              if $u$ is harmonic on $bar V$, then



              $Delta u = nabla^2 u(x) = 0, ; x in bar V; tag 2$



              we may apply the divergence theorem of Gauss to the integral



              $displaystyle int_{partial V} dfrac{partial u}{partial nu} ; do; tag 3$



              on $partial V$ we have



              $dfrac{partial u}{partial nu} = nabla u cdot mathbf n, tag 4$



              where $mathbf n$ is the outward-pointing unit normal vector field on $partial V$; then using the divergence theorem we find



              $displaystyle int_{partial V} dfrac{partial u}{partial nu} ; do = displaystyle int_{partial V} nabla u cdot mathbf n ; do = int_V nabla cdot nabla u ; dV = int_V nabla^2 u ; dV = 0, tag 5$



              since $u$ is harmonic on $V$, that is, from (2).



              As for the second identity, we use the well-known formula



              $nabla cdot (u nabla u) = nabla u cdot nabla u + u nabla cdot nabla u = vert nabla u vert^2 + unabla^2u = vert nabla u vert^2 tag 6$



              for harmonic $u$; if we now integrate over $V$ we find



              $displaystyle int_V vert nabla u vert^2 ; dV = int_V nabla cdot (u nabla u) ; dV; tag 7$



              another application of the divergence theorem similar to the above yields



              $displaystyle int_V nabla cdot (u nabla u) ; dV = int_{partial V} u nabla u cdot mathbf n ; do = int_{partial V} udfrac{partial u}{partial nu} ; do; tag 8$



              combining (7) and (8) yields



              $displaystyle int_V vert nabla u vert^2 ; dV = displaystyle int u dfrac{partial u}{partial nu} ; do, tag 9$



              the requisite result. $OEDelta$.






              share|cite|improve this answer











              $endgroup$
















                0












                0








                0





                $begingroup$

                Recall that



                $Delta u = nabla^2 u = nabla cdot nabla u; tag 1$



                if $u$ is harmonic on $bar V$, then



                $Delta u = nabla^2 u(x) = 0, ; x in bar V; tag 2$



                we may apply the divergence theorem of Gauss to the integral



                $displaystyle int_{partial V} dfrac{partial u}{partial nu} ; do; tag 3$



                on $partial V$ we have



                $dfrac{partial u}{partial nu} = nabla u cdot mathbf n, tag 4$



                where $mathbf n$ is the outward-pointing unit normal vector field on $partial V$; then using the divergence theorem we find



                $displaystyle int_{partial V} dfrac{partial u}{partial nu} ; do = displaystyle int_{partial V} nabla u cdot mathbf n ; do = int_V nabla cdot nabla u ; dV = int_V nabla^2 u ; dV = 0, tag 5$



                since $u$ is harmonic on $V$, that is, from (2).



                As for the second identity, we use the well-known formula



                $nabla cdot (u nabla u) = nabla u cdot nabla u + u nabla cdot nabla u = vert nabla u vert^2 + unabla^2u = vert nabla u vert^2 tag 6$



                for harmonic $u$; if we now integrate over $V$ we find



                $displaystyle int_V vert nabla u vert^2 ; dV = int_V nabla cdot (u nabla u) ; dV; tag 7$



                another application of the divergence theorem similar to the above yields



                $displaystyle int_V nabla cdot (u nabla u) ; dV = int_{partial V} u nabla u cdot mathbf n ; do = int_{partial V} udfrac{partial u}{partial nu} ; do; tag 8$



                combining (7) and (8) yields



                $displaystyle int_V vert nabla u vert^2 ; dV = displaystyle int u dfrac{partial u}{partial nu} ; do, tag 9$



                the requisite result. $OEDelta$.






                share|cite|improve this answer











                $endgroup$



                Recall that



                $Delta u = nabla^2 u = nabla cdot nabla u; tag 1$



                if $u$ is harmonic on $bar V$, then



                $Delta u = nabla^2 u(x) = 0, ; x in bar V; tag 2$



                we may apply the divergence theorem of Gauss to the integral



                $displaystyle int_{partial V} dfrac{partial u}{partial nu} ; do; tag 3$



                on $partial V$ we have



                $dfrac{partial u}{partial nu} = nabla u cdot mathbf n, tag 4$



                where $mathbf n$ is the outward-pointing unit normal vector field on $partial V$; then using the divergence theorem we find



                $displaystyle int_{partial V} dfrac{partial u}{partial nu} ; do = displaystyle int_{partial V} nabla u cdot mathbf n ; do = int_V nabla cdot nabla u ; dV = int_V nabla^2 u ; dV = 0, tag 5$



                since $u$ is harmonic on $V$, that is, from (2).



                As for the second identity, we use the well-known formula



                $nabla cdot (u nabla u) = nabla u cdot nabla u + u nabla cdot nabla u = vert nabla u vert^2 + unabla^2u = vert nabla u vert^2 tag 6$



                for harmonic $u$; if we now integrate over $V$ we find



                $displaystyle int_V vert nabla u vert^2 ; dV = int_V nabla cdot (u nabla u) ; dV; tag 7$



                another application of the divergence theorem similar to the above yields



                $displaystyle int_V nabla cdot (u nabla u) ; dV = int_{partial V} u nabla u cdot mathbf n ; do = int_{partial V} udfrac{partial u}{partial nu} ; do; tag 8$



                combining (7) and (8) yields



                $displaystyle int_V vert nabla u vert^2 ; dV = displaystyle int u dfrac{partial u}{partial nu} ; do, tag 9$



                the requisite result. $OEDelta$.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Dec 19 '18 at 23:05

























                answered Dec 19 '18 at 22:52









                Robert LewisRobert Lewis

                47.2k23067




                47.2k23067






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046896%2fhow-to-show-is-u-harmonic-so-are-following-identities-true%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Wiesbaden

                    Marschland

                    Dieringhausen