For $x$, $y$, $z$ the sides of a triangle, show...












0












$begingroup$


in $triangle ABC$, let $AB=z,BC=x,AC=y$,show that
$$sum_{cyc}frac{yz((y+z)^2-x^2)}{(y^2+z^2)^2}gefrac{9(y+z-x)(x+z-y)(x+y-z)}{4xyz}$$



by well kown Iran 96 inequality
$$(xy+yz+xz)left(frac{1}{(x+y)^2}+frac{1}{(y+z)^2}+dfrac{1}{(x+z)^2}right)gedfrac{9}{4}$$










share|cite|improve this question











$endgroup$












  • $begingroup$
    I have a proof by C-S and uvw,
    $endgroup$
    – Michael Rozenberg
    Dec 19 '18 at 8:03










  • $begingroup$
    maybe have without uvw methods?
    $endgroup$
    – communnites
    Dec 19 '18 at 8:04










  • $begingroup$
    We can use SOS here, but it's very ugly.
    $endgroup$
    – Michael Rozenberg
    Dec 19 '18 at 8:05






  • 1




    $begingroup$
    I want to see a solution which use SOS
    $endgroup$
    – Word Shallow
    Dec 19 '18 at 8:11










  • $begingroup$
    From where does this inequality come?
    $endgroup$
    – Dr. Sonnhard Graubner
    Dec 19 '18 at 9:00
















0












$begingroup$


in $triangle ABC$, let $AB=z,BC=x,AC=y$,show that
$$sum_{cyc}frac{yz((y+z)^2-x^2)}{(y^2+z^2)^2}gefrac{9(y+z-x)(x+z-y)(x+y-z)}{4xyz}$$



by well kown Iran 96 inequality
$$(xy+yz+xz)left(frac{1}{(x+y)^2}+frac{1}{(y+z)^2}+dfrac{1}{(x+z)^2}right)gedfrac{9}{4}$$










share|cite|improve this question











$endgroup$












  • $begingroup$
    I have a proof by C-S and uvw,
    $endgroup$
    – Michael Rozenberg
    Dec 19 '18 at 8:03










  • $begingroup$
    maybe have without uvw methods?
    $endgroup$
    – communnites
    Dec 19 '18 at 8:04










  • $begingroup$
    We can use SOS here, but it's very ugly.
    $endgroup$
    – Michael Rozenberg
    Dec 19 '18 at 8:05






  • 1




    $begingroup$
    I want to see a solution which use SOS
    $endgroup$
    – Word Shallow
    Dec 19 '18 at 8:11










  • $begingroup$
    From where does this inequality come?
    $endgroup$
    – Dr. Sonnhard Graubner
    Dec 19 '18 at 9:00














0












0








0


2



$begingroup$


in $triangle ABC$, let $AB=z,BC=x,AC=y$,show that
$$sum_{cyc}frac{yz((y+z)^2-x^2)}{(y^2+z^2)^2}gefrac{9(y+z-x)(x+z-y)(x+y-z)}{4xyz}$$



by well kown Iran 96 inequality
$$(xy+yz+xz)left(frac{1}{(x+y)^2}+frac{1}{(y+z)^2}+dfrac{1}{(x+z)^2}right)gedfrac{9}{4}$$










share|cite|improve this question











$endgroup$




in $triangle ABC$, let $AB=z,BC=x,AC=y$,show that
$$sum_{cyc}frac{yz((y+z)^2-x^2)}{(y^2+z^2)^2}gefrac{9(y+z-x)(x+z-y)(x+y-z)}{4xyz}$$



by well kown Iran 96 inequality
$$(xy+yz+xz)left(frac{1}{(x+y)^2}+frac{1}{(y+z)^2}+dfrac{1}{(x+z)^2}right)gedfrac{9}{4}$$







inequality symmetric-polynomials sos






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 19 '18 at 16:45









Michael Rozenberg

105k1892197




105k1892197










asked Dec 19 '18 at 6:29









communnitescommunnites

1,1761535




1,1761535












  • $begingroup$
    I have a proof by C-S and uvw,
    $endgroup$
    – Michael Rozenberg
    Dec 19 '18 at 8:03










  • $begingroup$
    maybe have without uvw methods?
    $endgroup$
    – communnites
    Dec 19 '18 at 8:04










  • $begingroup$
    We can use SOS here, but it's very ugly.
    $endgroup$
    – Michael Rozenberg
    Dec 19 '18 at 8:05






  • 1




    $begingroup$
    I want to see a solution which use SOS
    $endgroup$
    – Word Shallow
    Dec 19 '18 at 8:11










  • $begingroup$
    From where does this inequality come?
    $endgroup$
    – Dr. Sonnhard Graubner
    Dec 19 '18 at 9:00


















  • $begingroup$
    I have a proof by C-S and uvw,
    $endgroup$
    – Michael Rozenberg
    Dec 19 '18 at 8:03










  • $begingroup$
    maybe have without uvw methods?
    $endgroup$
    – communnites
    Dec 19 '18 at 8:04










  • $begingroup$
    We can use SOS here, but it's very ugly.
    $endgroup$
    – Michael Rozenberg
    Dec 19 '18 at 8:05






  • 1




    $begingroup$
    I want to see a solution which use SOS
    $endgroup$
    – Word Shallow
    Dec 19 '18 at 8:11










  • $begingroup$
    From where does this inequality come?
    $endgroup$
    – Dr. Sonnhard Graubner
    Dec 19 '18 at 9:00
















$begingroup$
I have a proof by C-S and uvw,
$endgroup$
– Michael Rozenberg
Dec 19 '18 at 8:03




$begingroup$
I have a proof by C-S and uvw,
$endgroup$
– Michael Rozenberg
Dec 19 '18 at 8:03












$begingroup$
maybe have without uvw methods?
$endgroup$
– communnites
Dec 19 '18 at 8:04




$begingroup$
maybe have without uvw methods?
$endgroup$
– communnites
Dec 19 '18 at 8:04












$begingroup$
We can use SOS here, but it's very ugly.
$endgroup$
– Michael Rozenberg
Dec 19 '18 at 8:05




$begingroup$
We can use SOS here, but it's very ugly.
$endgroup$
– Michael Rozenberg
Dec 19 '18 at 8:05




1




1




$begingroup$
I want to see a solution which use SOS
$endgroup$
– Word Shallow
Dec 19 '18 at 8:11




$begingroup$
I want to see a solution which use SOS
$endgroup$
– Word Shallow
Dec 19 '18 at 8:11












$begingroup$
From where does this inequality come?
$endgroup$
– Dr. Sonnhard Graubner
Dec 19 '18 at 9:00




$begingroup$
From where does this inequality come?
$endgroup$
– Dr. Sonnhard Graubner
Dec 19 '18 at 9:00










1 Answer
1






active

oldest

votes


















4












$begingroup$

We need to prove that:
$$sum_{cyc}frac{yz}{(y^2+z^2)^2(x+y-z)(x+z-y)}geqfrac{9}{4xyz(x+y+z)}.$$
Now, by C-S
$$sum_{cyc}frac{yz}{(y^2+z^2)^2(x+y-z)(x+z-y)}geq$$
$$geqsum_{cyc}frac{y^2z^2}{yz(y^2+z^2)^2(x+y-z)(x+z-y)}geq$$
$$geqfrac{(xy+xz+yz)^2}{sumlimits_{cyc}yz(y^2+z^2)^2(x+y-z)(x+z-y)}.$$
Thus, it's enough to prove that
$$4xyz(x+y+z)(xy+xz+yz)^2geq9sumlimits_{cyc}yz(y^2+z^2)^2(x+y-z)(x+z-y)$$ or
$$sum_{sym}(9x^7y-18x^6y^2+27x^5y^3-18x^4y^4-9x^5y^2z+4x^4y^3z+4x^4y^2z^2+x^3y^3z^2)geq0$$ or
$$9sum_{cyc}xy(x^6-2x^5y+3x^4y^2-4x^3y^3+3x^2y^4-2xy^5+y^6)-$$
$$-9xyzsum_{cyc}xy(x^3-x^2y-xy^2+y^3)-xyzsum_{cyc}(5x^3y^2+5x^3z^2-8x^3yz-2x^2y^2z)geq0$$ or
$$sum_{cyc}(x-y)^2xy(9(x^2+y^2)^2-9xyz(x+y)-5z^4-xyz^2)geq0$$ or
$$7sum_{cyc}(x-y)^2xy(x^4+y^4-z^4)+$$
$$+sum_{cyc}(x-y)^2xy(2z^4-xyz^2-9xy(x+y)z+2(x^4+9x^2y^2+y^4))geq0.$$



We'll prove that $$sum_{cyc}(x-y)^2xy(x^4+y^4-z^4)geq0.$$
Indeed, let $xgeq ygeq z$.



Thus, $$sum_{cyc}(x-y)^2xy(x^4+y^4-z^4)geq$$
$$geq(x-z)^2xz(x^4+z^4-y^4)+(y-z)^2yz(y^4+z^4-x^4)geq$$
$$geq(y-z)^2xz(x^4-y^4)+(y-z)^2yz(y^4-x^4)=$$
$$=z(y-z)^2(x^4-y^4)(x-y)geq0.$$
Thus, it's enough to prove that:
$$2z^4-xyz^2-9xy(x+y)z+2(x^4+9x^2y^2+y^4)geq0.$$
We'll prove that:
$$sqrt[4]{frac{x^4+9x^2y^2+y^4}{11}}geqsqrt[3]{frac{xy(x+y)}{2}}.$$
Let $x^2+y^2=2uxy$.



Thus, $ugeq1$ and we need to prove that:
$$left(frac{x^4+9x^2y^2+y^4}{11}right)^3geqleft(frac{xy(x+y)}{2}right)^4$$ or
$$left(frac{4u^2-2+9}{11}right)^3geqfrac{(2u+2)^2}{16}$$ or $f(u)geq0,$ where
$$f(u)=3ln(4u^2+7)-2ln(u+1)+2ln2-3ln11.$$
But $$f'(u)=frac{24u}{4u^2+7}-frac{2}{u+1}>0,$$ which says $f(u)geq f(1)=0.$



Also, by AM-GM $$sqrt[3]{frac{xy(x+y)}{2}}geqsqrt{xy}.$$



Now, let $z=tsqrt[3]{frac{xy(x+y)}{2}}.$



Thus,
$$2z^4-xyz^2-9xy(x+y)z+2(x^4+9x^2y^2+y^4)geq$$
$$geq2z^4-left(sqrt[3]{frac{xy(x+y)}{2}}right)^2z^2-18left(sqrt[3]{frac{xy(x+y)}{2}}right)^3z+22left(sqrt[3]{frac{xy(x+y)}{2}}right)^4=$$
$$=left(sqrt[3]{frac{xy(x+y)}{2}}right)^4(2t^4-t^2-18t+22)geq0.$$
Can you end it now?






share|cite|improve this answer











$endgroup$













  • $begingroup$
    at last inequality how to get $2t^4-t^2-18t+22$,becase I found you maybe something is not right,
    $endgroup$
    – function sug
    Dec 20 '18 at 6:33










  • $begingroup$
    because it must to show this $2z^4-xyz^2-9xyz(x+y)z+2(x^4+9x^2y^2+y^4)ge 0$,and I think the following it equaliment something wrong
    $endgroup$
    – function sug
    Dec 20 '18 at 6:36












  • $begingroup$
    use you it must to show $2z^4-xyz^2-9xy(x+y)z+22(xy)^2ge 0$,then How to following step?
    $endgroup$
    – function sug
    Dec 20 '18 at 6:39






  • 1




    $begingroup$
    @function sug I added something. See now.
    $endgroup$
    – Michael Rozenberg
    Dec 20 '18 at 9:09










  • $begingroup$
    Thanks you,I have understand
    $endgroup$
    – function sug
    Dec 20 '18 at 12:05











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046073%2ffor-x-y-z-the-sides-of-a-triangle-show-sum-cyc-fracyzyz2-x2%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









4












$begingroup$

We need to prove that:
$$sum_{cyc}frac{yz}{(y^2+z^2)^2(x+y-z)(x+z-y)}geqfrac{9}{4xyz(x+y+z)}.$$
Now, by C-S
$$sum_{cyc}frac{yz}{(y^2+z^2)^2(x+y-z)(x+z-y)}geq$$
$$geqsum_{cyc}frac{y^2z^2}{yz(y^2+z^2)^2(x+y-z)(x+z-y)}geq$$
$$geqfrac{(xy+xz+yz)^2}{sumlimits_{cyc}yz(y^2+z^2)^2(x+y-z)(x+z-y)}.$$
Thus, it's enough to prove that
$$4xyz(x+y+z)(xy+xz+yz)^2geq9sumlimits_{cyc}yz(y^2+z^2)^2(x+y-z)(x+z-y)$$ or
$$sum_{sym}(9x^7y-18x^6y^2+27x^5y^3-18x^4y^4-9x^5y^2z+4x^4y^3z+4x^4y^2z^2+x^3y^3z^2)geq0$$ or
$$9sum_{cyc}xy(x^6-2x^5y+3x^4y^2-4x^3y^3+3x^2y^4-2xy^5+y^6)-$$
$$-9xyzsum_{cyc}xy(x^3-x^2y-xy^2+y^3)-xyzsum_{cyc}(5x^3y^2+5x^3z^2-8x^3yz-2x^2y^2z)geq0$$ or
$$sum_{cyc}(x-y)^2xy(9(x^2+y^2)^2-9xyz(x+y)-5z^4-xyz^2)geq0$$ or
$$7sum_{cyc}(x-y)^2xy(x^4+y^4-z^4)+$$
$$+sum_{cyc}(x-y)^2xy(2z^4-xyz^2-9xy(x+y)z+2(x^4+9x^2y^2+y^4))geq0.$$



We'll prove that $$sum_{cyc}(x-y)^2xy(x^4+y^4-z^4)geq0.$$
Indeed, let $xgeq ygeq z$.



Thus, $$sum_{cyc}(x-y)^2xy(x^4+y^4-z^4)geq$$
$$geq(x-z)^2xz(x^4+z^4-y^4)+(y-z)^2yz(y^4+z^4-x^4)geq$$
$$geq(y-z)^2xz(x^4-y^4)+(y-z)^2yz(y^4-x^4)=$$
$$=z(y-z)^2(x^4-y^4)(x-y)geq0.$$
Thus, it's enough to prove that:
$$2z^4-xyz^2-9xy(x+y)z+2(x^4+9x^2y^2+y^4)geq0.$$
We'll prove that:
$$sqrt[4]{frac{x^4+9x^2y^2+y^4}{11}}geqsqrt[3]{frac{xy(x+y)}{2}}.$$
Let $x^2+y^2=2uxy$.



Thus, $ugeq1$ and we need to prove that:
$$left(frac{x^4+9x^2y^2+y^4}{11}right)^3geqleft(frac{xy(x+y)}{2}right)^4$$ or
$$left(frac{4u^2-2+9}{11}right)^3geqfrac{(2u+2)^2}{16}$$ or $f(u)geq0,$ where
$$f(u)=3ln(4u^2+7)-2ln(u+1)+2ln2-3ln11.$$
But $$f'(u)=frac{24u}{4u^2+7}-frac{2}{u+1}>0,$$ which says $f(u)geq f(1)=0.$



Also, by AM-GM $$sqrt[3]{frac{xy(x+y)}{2}}geqsqrt{xy}.$$



Now, let $z=tsqrt[3]{frac{xy(x+y)}{2}}.$



Thus,
$$2z^4-xyz^2-9xy(x+y)z+2(x^4+9x^2y^2+y^4)geq$$
$$geq2z^4-left(sqrt[3]{frac{xy(x+y)}{2}}right)^2z^2-18left(sqrt[3]{frac{xy(x+y)}{2}}right)^3z+22left(sqrt[3]{frac{xy(x+y)}{2}}right)^4=$$
$$=left(sqrt[3]{frac{xy(x+y)}{2}}right)^4(2t^4-t^2-18t+22)geq0.$$
Can you end it now?






share|cite|improve this answer











$endgroup$













  • $begingroup$
    at last inequality how to get $2t^4-t^2-18t+22$,becase I found you maybe something is not right,
    $endgroup$
    – function sug
    Dec 20 '18 at 6:33










  • $begingroup$
    because it must to show this $2z^4-xyz^2-9xyz(x+y)z+2(x^4+9x^2y^2+y^4)ge 0$,and I think the following it equaliment something wrong
    $endgroup$
    – function sug
    Dec 20 '18 at 6:36












  • $begingroup$
    use you it must to show $2z^4-xyz^2-9xy(x+y)z+22(xy)^2ge 0$,then How to following step?
    $endgroup$
    – function sug
    Dec 20 '18 at 6:39






  • 1




    $begingroup$
    @function sug I added something. See now.
    $endgroup$
    – Michael Rozenberg
    Dec 20 '18 at 9:09










  • $begingroup$
    Thanks you,I have understand
    $endgroup$
    – function sug
    Dec 20 '18 at 12:05
















4












$begingroup$

We need to prove that:
$$sum_{cyc}frac{yz}{(y^2+z^2)^2(x+y-z)(x+z-y)}geqfrac{9}{4xyz(x+y+z)}.$$
Now, by C-S
$$sum_{cyc}frac{yz}{(y^2+z^2)^2(x+y-z)(x+z-y)}geq$$
$$geqsum_{cyc}frac{y^2z^2}{yz(y^2+z^2)^2(x+y-z)(x+z-y)}geq$$
$$geqfrac{(xy+xz+yz)^2}{sumlimits_{cyc}yz(y^2+z^2)^2(x+y-z)(x+z-y)}.$$
Thus, it's enough to prove that
$$4xyz(x+y+z)(xy+xz+yz)^2geq9sumlimits_{cyc}yz(y^2+z^2)^2(x+y-z)(x+z-y)$$ or
$$sum_{sym}(9x^7y-18x^6y^2+27x^5y^3-18x^4y^4-9x^5y^2z+4x^4y^3z+4x^4y^2z^2+x^3y^3z^2)geq0$$ or
$$9sum_{cyc}xy(x^6-2x^5y+3x^4y^2-4x^3y^3+3x^2y^4-2xy^5+y^6)-$$
$$-9xyzsum_{cyc}xy(x^3-x^2y-xy^2+y^3)-xyzsum_{cyc}(5x^3y^2+5x^3z^2-8x^3yz-2x^2y^2z)geq0$$ or
$$sum_{cyc}(x-y)^2xy(9(x^2+y^2)^2-9xyz(x+y)-5z^4-xyz^2)geq0$$ or
$$7sum_{cyc}(x-y)^2xy(x^4+y^4-z^4)+$$
$$+sum_{cyc}(x-y)^2xy(2z^4-xyz^2-9xy(x+y)z+2(x^4+9x^2y^2+y^4))geq0.$$



We'll prove that $$sum_{cyc}(x-y)^2xy(x^4+y^4-z^4)geq0.$$
Indeed, let $xgeq ygeq z$.



Thus, $$sum_{cyc}(x-y)^2xy(x^4+y^4-z^4)geq$$
$$geq(x-z)^2xz(x^4+z^4-y^4)+(y-z)^2yz(y^4+z^4-x^4)geq$$
$$geq(y-z)^2xz(x^4-y^4)+(y-z)^2yz(y^4-x^4)=$$
$$=z(y-z)^2(x^4-y^4)(x-y)geq0.$$
Thus, it's enough to prove that:
$$2z^4-xyz^2-9xy(x+y)z+2(x^4+9x^2y^2+y^4)geq0.$$
We'll prove that:
$$sqrt[4]{frac{x^4+9x^2y^2+y^4}{11}}geqsqrt[3]{frac{xy(x+y)}{2}}.$$
Let $x^2+y^2=2uxy$.



Thus, $ugeq1$ and we need to prove that:
$$left(frac{x^4+9x^2y^2+y^4}{11}right)^3geqleft(frac{xy(x+y)}{2}right)^4$$ or
$$left(frac{4u^2-2+9}{11}right)^3geqfrac{(2u+2)^2}{16}$$ or $f(u)geq0,$ where
$$f(u)=3ln(4u^2+7)-2ln(u+1)+2ln2-3ln11.$$
But $$f'(u)=frac{24u}{4u^2+7}-frac{2}{u+1}>0,$$ which says $f(u)geq f(1)=0.$



Also, by AM-GM $$sqrt[3]{frac{xy(x+y)}{2}}geqsqrt{xy}.$$



Now, let $z=tsqrt[3]{frac{xy(x+y)}{2}}.$



Thus,
$$2z^4-xyz^2-9xy(x+y)z+2(x^4+9x^2y^2+y^4)geq$$
$$geq2z^4-left(sqrt[3]{frac{xy(x+y)}{2}}right)^2z^2-18left(sqrt[3]{frac{xy(x+y)}{2}}right)^3z+22left(sqrt[3]{frac{xy(x+y)}{2}}right)^4=$$
$$=left(sqrt[3]{frac{xy(x+y)}{2}}right)^4(2t^4-t^2-18t+22)geq0.$$
Can you end it now?






share|cite|improve this answer











$endgroup$













  • $begingroup$
    at last inequality how to get $2t^4-t^2-18t+22$,becase I found you maybe something is not right,
    $endgroup$
    – function sug
    Dec 20 '18 at 6:33










  • $begingroup$
    because it must to show this $2z^4-xyz^2-9xyz(x+y)z+2(x^4+9x^2y^2+y^4)ge 0$,and I think the following it equaliment something wrong
    $endgroup$
    – function sug
    Dec 20 '18 at 6:36












  • $begingroup$
    use you it must to show $2z^4-xyz^2-9xy(x+y)z+22(xy)^2ge 0$,then How to following step?
    $endgroup$
    – function sug
    Dec 20 '18 at 6:39






  • 1




    $begingroup$
    @function sug I added something. See now.
    $endgroup$
    – Michael Rozenberg
    Dec 20 '18 at 9:09










  • $begingroup$
    Thanks you,I have understand
    $endgroup$
    – function sug
    Dec 20 '18 at 12:05














4












4








4





$begingroup$

We need to prove that:
$$sum_{cyc}frac{yz}{(y^2+z^2)^2(x+y-z)(x+z-y)}geqfrac{9}{4xyz(x+y+z)}.$$
Now, by C-S
$$sum_{cyc}frac{yz}{(y^2+z^2)^2(x+y-z)(x+z-y)}geq$$
$$geqsum_{cyc}frac{y^2z^2}{yz(y^2+z^2)^2(x+y-z)(x+z-y)}geq$$
$$geqfrac{(xy+xz+yz)^2}{sumlimits_{cyc}yz(y^2+z^2)^2(x+y-z)(x+z-y)}.$$
Thus, it's enough to prove that
$$4xyz(x+y+z)(xy+xz+yz)^2geq9sumlimits_{cyc}yz(y^2+z^2)^2(x+y-z)(x+z-y)$$ or
$$sum_{sym}(9x^7y-18x^6y^2+27x^5y^3-18x^4y^4-9x^5y^2z+4x^4y^3z+4x^4y^2z^2+x^3y^3z^2)geq0$$ or
$$9sum_{cyc}xy(x^6-2x^5y+3x^4y^2-4x^3y^3+3x^2y^4-2xy^5+y^6)-$$
$$-9xyzsum_{cyc}xy(x^3-x^2y-xy^2+y^3)-xyzsum_{cyc}(5x^3y^2+5x^3z^2-8x^3yz-2x^2y^2z)geq0$$ or
$$sum_{cyc}(x-y)^2xy(9(x^2+y^2)^2-9xyz(x+y)-5z^4-xyz^2)geq0$$ or
$$7sum_{cyc}(x-y)^2xy(x^4+y^4-z^4)+$$
$$+sum_{cyc}(x-y)^2xy(2z^4-xyz^2-9xy(x+y)z+2(x^4+9x^2y^2+y^4))geq0.$$



We'll prove that $$sum_{cyc}(x-y)^2xy(x^4+y^4-z^4)geq0.$$
Indeed, let $xgeq ygeq z$.



Thus, $$sum_{cyc}(x-y)^2xy(x^4+y^4-z^4)geq$$
$$geq(x-z)^2xz(x^4+z^4-y^4)+(y-z)^2yz(y^4+z^4-x^4)geq$$
$$geq(y-z)^2xz(x^4-y^4)+(y-z)^2yz(y^4-x^4)=$$
$$=z(y-z)^2(x^4-y^4)(x-y)geq0.$$
Thus, it's enough to prove that:
$$2z^4-xyz^2-9xy(x+y)z+2(x^4+9x^2y^2+y^4)geq0.$$
We'll prove that:
$$sqrt[4]{frac{x^4+9x^2y^2+y^4}{11}}geqsqrt[3]{frac{xy(x+y)}{2}}.$$
Let $x^2+y^2=2uxy$.



Thus, $ugeq1$ and we need to prove that:
$$left(frac{x^4+9x^2y^2+y^4}{11}right)^3geqleft(frac{xy(x+y)}{2}right)^4$$ or
$$left(frac{4u^2-2+9}{11}right)^3geqfrac{(2u+2)^2}{16}$$ or $f(u)geq0,$ where
$$f(u)=3ln(4u^2+7)-2ln(u+1)+2ln2-3ln11.$$
But $$f'(u)=frac{24u}{4u^2+7}-frac{2}{u+1}>0,$$ which says $f(u)geq f(1)=0.$



Also, by AM-GM $$sqrt[3]{frac{xy(x+y)}{2}}geqsqrt{xy}.$$



Now, let $z=tsqrt[3]{frac{xy(x+y)}{2}}.$



Thus,
$$2z^4-xyz^2-9xy(x+y)z+2(x^4+9x^2y^2+y^4)geq$$
$$geq2z^4-left(sqrt[3]{frac{xy(x+y)}{2}}right)^2z^2-18left(sqrt[3]{frac{xy(x+y)}{2}}right)^3z+22left(sqrt[3]{frac{xy(x+y)}{2}}right)^4=$$
$$=left(sqrt[3]{frac{xy(x+y)}{2}}right)^4(2t^4-t^2-18t+22)geq0.$$
Can you end it now?






share|cite|improve this answer











$endgroup$



We need to prove that:
$$sum_{cyc}frac{yz}{(y^2+z^2)^2(x+y-z)(x+z-y)}geqfrac{9}{4xyz(x+y+z)}.$$
Now, by C-S
$$sum_{cyc}frac{yz}{(y^2+z^2)^2(x+y-z)(x+z-y)}geq$$
$$geqsum_{cyc}frac{y^2z^2}{yz(y^2+z^2)^2(x+y-z)(x+z-y)}geq$$
$$geqfrac{(xy+xz+yz)^2}{sumlimits_{cyc}yz(y^2+z^2)^2(x+y-z)(x+z-y)}.$$
Thus, it's enough to prove that
$$4xyz(x+y+z)(xy+xz+yz)^2geq9sumlimits_{cyc}yz(y^2+z^2)^2(x+y-z)(x+z-y)$$ or
$$sum_{sym}(9x^7y-18x^6y^2+27x^5y^3-18x^4y^4-9x^5y^2z+4x^4y^3z+4x^4y^2z^2+x^3y^3z^2)geq0$$ or
$$9sum_{cyc}xy(x^6-2x^5y+3x^4y^2-4x^3y^3+3x^2y^4-2xy^5+y^6)-$$
$$-9xyzsum_{cyc}xy(x^3-x^2y-xy^2+y^3)-xyzsum_{cyc}(5x^3y^2+5x^3z^2-8x^3yz-2x^2y^2z)geq0$$ or
$$sum_{cyc}(x-y)^2xy(9(x^2+y^2)^2-9xyz(x+y)-5z^4-xyz^2)geq0$$ or
$$7sum_{cyc}(x-y)^2xy(x^4+y^4-z^4)+$$
$$+sum_{cyc}(x-y)^2xy(2z^4-xyz^2-9xy(x+y)z+2(x^4+9x^2y^2+y^4))geq0.$$



We'll prove that $$sum_{cyc}(x-y)^2xy(x^4+y^4-z^4)geq0.$$
Indeed, let $xgeq ygeq z$.



Thus, $$sum_{cyc}(x-y)^2xy(x^4+y^4-z^4)geq$$
$$geq(x-z)^2xz(x^4+z^4-y^4)+(y-z)^2yz(y^4+z^4-x^4)geq$$
$$geq(y-z)^2xz(x^4-y^4)+(y-z)^2yz(y^4-x^4)=$$
$$=z(y-z)^2(x^4-y^4)(x-y)geq0.$$
Thus, it's enough to prove that:
$$2z^4-xyz^2-9xy(x+y)z+2(x^4+9x^2y^2+y^4)geq0.$$
We'll prove that:
$$sqrt[4]{frac{x^4+9x^2y^2+y^4}{11}}geqsqrt[3]{frac{xy(x+y)}{2}}.$$
Let $x^2+y^2=2uxy$.



Thus, $ugeq1$ and we need to prove that:
$$left(frac{x^4+9x^2y^2+y^4}{11}right)^3geqleft(frac{xy(x+y)}{2}right)^4$$ or
$$left(frac{4u^2-2+9}{11}right)^3geqfrac{(2u+2)^2}{16}$$ or $f(u)geq0,$ where
$$f(u)=3ln(4u^2+7)-2ln(u+1)+2ln2-3ln11.$$
But $$f'(u)=frac{24u}{4u^2+7}-frac{2}{u+1}>0,$$ which says $f(u)geq f(1)=0.$



Also, by AM-GM $$sqrt[3]{frac{xy(x+y)}{2}}geqsqrt{xy}.$$



Now, let $z=tsqrt[3]{frac{xy(x+y)}{2}}.$



Thus,
$$2z^4-xyz^2-9xy(x+y)z+2(x^4+9x^2y^2+y^4)geq$$
$$geq2z^4-left(sqrt[3]{frac{xy(x+y)}{2}}right)^2z^2-18left(sqrt[3]{frac{xy(x+y)}{2}}right)^3z+22left(sqrt[3]{frac{xy(x+y)}{2}}right)^4=$$
$$=left(sqrt[3]{frac{xy(x+y)}{2}}right)^4(2t^4-t^2-18t+22)geq0.$$
Can you end it now?







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Dec 22 '18 at 6:21

























answered Dec 19 '18 at 15:31









Michael RozenbergMichael Rozenberg

105k1892197




105k1892197












  • $begingroup$
    at last inequality how to get $2t^4-t^2-18t+22$,becase I found you maybe something is not right,
    $endgroup$
    – function sug
    Dec 20 '18 at 6:33










  • $begingroup$
    because it must to show this $2z^4-xyz^2-9xyz(x+y)z+2(x^4+9x^2y^2+y^4)ge 0$,and I think the following it equaliment something wrong
    $endgroup$
    – function sug
    Dec 20 '18 at 6:36












  • $begingroup$
    use you it must to show $2z^4-xyz^2-9xy(x+y)z+22(xy)^2ge 0$,then How to following step?
    $endgroup$
    – function sug
    Dec 20 '18 at 6:39






  • 1




    $begingroup$
    @function sug I added something. See now.
    $endgroup$
    – Michael Rozenberg
    Dec 20 '18 at 9:09










  • $begingroup$
    Thanks you,I have understand
    $endgroup$
    – function sug
    Dec 20 '18 at 12:05


















  • $begingroup$
    at last inequality how to get $2t^4-t^2-18t+22$,becase I found you maybe something is not right,
    $endgroup$
    – function sug
    Dec 20 '18 at 6:33










  • $begingroup$
    because it must to show this $2z^4-xyz^2-9xyz(x+y)z+2(x^4+9x^2y^2+y^4)ge 0$,and I think the following it equaliment something wrong
    $endgroup$
    – function sug
    Dec 20 '18 at 6:36












  • $begingroup$
    use you it must to show $2z^4-xyz^2-9xy(x+y)z+22(xy)^2ge 0$,then How to following step?
    $endgroup$
    – function sug
    Dec 20 '18 at 6:39






  • 1




    $begingroup$
    @function sug I added something. See now.
    $endgroup$
    – Michael Rozenberg
    Dec 20 '18 at 9:09










  • $begingroup$
    Thanks you,I have understand
    $endgroup$
    – function sug
    Dec 20 '18 at 12:05
















$begingroup$
at last inequality how to get $2t^4-t^2-18t+22$,becase I found you maybe something is not right,
$endgroup$
– function sug
Dec 20 '18 at 6:33




$begingroup$
at last inequality how to get $2t^4-t^2-18t+22$,becase I found you maybe something is not right,
$endgroup$
– function sug
Dec 20 '18 at 6:33












$begingroup$
because it must to show this $2z^4-xyz^2-9xyz(x+y)z+2(x^4+9x^2y^2+y^4)ge 0$,and I think the following it equaliment something wrong
$endgroup$
– function sug
Dec 20 '18 at 6:36






$begingroup$
because it must to show this $2z^4-xyz^2-9xyz(x+y)z+2(x^4+9x^2y^2+y^4)ge 0$,and I think the following it equaliment something wrong
$endgroup$
– function sug
Dec 20 '18 at 6:36














$begingroup$
use you it must to show $2z^4-xyz^2-9xy(x+y)z+22(xy)^2ge 0$,then How to following step?
$endgroup$
– function sug
Dec 20 '18 at 6:39




$begingroup$
use you it must to show $2z^4-xyz^2-9xy(x+y)z+22(xy)^2ge 0$,then How to following step?
$endgroup$
– function sug
Dec 20 '18 at 6:39




1




1




$begingroup$
@function sug I added something. See now.
$endgroup$
– Michael Rozenberg
Dec 20 '18 at 9:09




$begingroup$
@function sug I added something. See now.
$endgroup$
– Michael Rozenberg
Dec 20 '18 at 9:09












$begingroup$
Thanks you,I have understand
$endgroup$
– function sug
Dec 20 '18 at 12:05




$begingroup$
Thanks you,I have understand
$endgroup$
– function sug
Dec 20 '18 at 12:05


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046073%2ffor-x-y-z-the-sides-of-a-triangle-show-sum-cyc-fracyzyz2-x2%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Wiesbaden

Marschland

Dieringhausen