Let $a_n = intlimits_{0}^{n} e^{-x^4} dx$. Does ${ a_n }_{n rightarrow infty}$ converge?
$begingroup$
Let $a_n = intlimits_{0}^{n} e^{-x^4} dx$. Does ${ a_n }_{n rightarrow infty}$ converge?
${ a_n } ={ intlimits_{0}^{1} e^{-x^4} dx, intlimits_{0}^{2} e^{-x^4} dx, ..., intlimits_{0}^{infty} e^{-x^4} dx }$
So we need need only to check that the definite integral
$intlimits_{0}^{infty} e^{-x^4} dx$ converges
By using Wolfram Alpha,
$intlimits_{0}^{infty} e^{-x^4} dx } = Gamma left( frac54 right) approx 0.906402$
where $Gamma$ is the Gamma function
Therefore ${ a_n }$ converges, to $Gamma left( frac54 right)$.
But what if I can't use Wolfram Alpha? How can I solve for this integration by hand? Sorry if this makes me look stupid, I don't recall learning any techniques from Calculus that can help me solve this integration.
Thanks in advance!
calculus integration sequences-and-series gamma-function
$endgroup$
add a comment |
$begingroup$
Let $a_n = intlimits_{0}^{n} e^{-x^4} dx$. Does ${ a_n }_{n rightarrow infty}$ converge?
${ a_n } ={ intlimits_{0}^{1} e^{-x^4} dx, intlimits_{0}^{2} e^{-x^4} dx, ..., intlimits_{0}^{infty} e^{-x^4} dx }$
So we need need only to check that the definite integral
$intlimits_{0}^{infty} e^{-x^4} dx$ converges
By using Wolfram Alpha,
$intlimits_{0}^{infty} e^{-x^4} dx } = Gamma left( frac54 right) approx 0.906402$
where $Gamma$ is the Gamma function
Therefore ${ a_n }$ converges, to $Gamma left( frac54 right)$.
But what if I can't use Wolfram Alpha? How can I solve for this integration by hand? Sorry if this makes me look stupid, I don't recall learning any techniques from Calculus that can help me solve this integration.
Thanks in advance!
calculus integration sequences-and-series gamma-function
$endgroup$
1
$begingroup$
Exponential are 'always' quite strong.
$endgroup$
– Felix Marin
Oct 31 '13 at 7:47
1
$begingroup$
Generally speaking, $$n!=Gleft(frac1nright)qquad where qquad G(n)=int_0^infty e^{-x^n}dxqquadforall ngeqslant0$$
$endgroup$
– Lucian
Oct 31 '13 at 7:47
add a comment |
$begingroup$
Let $a_n = intlimits_{0}^{n} e^{-x^4} dx$. Does ${ a_n }_{n rightarrow infty}$ converge?
${ a_n } ={ intlimits_{0}^{1} e^{-x^4} dx, intlimits_{0}^{2} e^{-x^4} dx, ..., intlimits_{0}^{infty} e^{-x^4} dx }$
So we need need only to check that the definite integral
$intlimits_{0}^{infty} e^{-x^4} dx$ converges
By using Wolfram Alpha,
$intlimits_{0}^{infty} e^{-x^4} dx } = Gamma left( frac54 right) approx 0.906402$
where $Gamma$ is the Gamma function
Therefore ${ a_n }$ converges, to $Gamma left( frac54 right)$.
But what if I can't use Wolfram Alpha? How can I solve for this integration by hand? Sorry if this makes me look stupid, I don't recall learning any techniques from Calculus that can help me solve this integration.
Thanks in advance!
calculus integration sequences-and-series gamma-function
$endgroup$
Let $a_n = intlimits_{0}^{n} e^{-x^4} dx$. Does ${ a_n }_{n rightarrow infty}$ converge?
${ a_n } ={ intlimits_{0}^{1} e^{-x^4} dx, intlimits_{0}^{2} e^{-x^4} dx, ..., intlimits_{0}^{infty} e^{-x^4} dx }$
So we need need only to check that the definite integral
$intlimits_{0}^{infty} e^{-x^4} dx$ converges
By using Wolfram Alpha,
$intlimits_{0}^{infty} e^{-x^4} dx } = Gamma left( frac54 right) approx 0.906402$
where $Gamma$ is the Gamma function
Therefore ${ a_n }$ converges, to $Gamma left( frac54 right)$.
But what if I can't use Wolfram Alpha? How can I solve for this integration by hand? Sorry if this makes me look stupid, I don't recall learning any techniques from Calculus that can help me solve this integration.
Thanks in advance!
calculus integration sequences-and-series gamma-function
calculus integration sequences-and-series gamma-function
asked Oct 31 '13 at 7:33
PandaManPandaMan
1,17911333
1,17911333
1
$begingroup$
Exponential are 'always' quite strong.
$endgroup$
– Felix Marin
Oct 31 '13 at 7:47
1
$begingroup$
Generally speaking, $$n!=Gleft(frac1nright)qquad where qquad G(n)=int_0^infty e^{-x^n}dxqquadforall ngeqslant0$$
$endgroup$
– Lucian
Oct 31 '13 at 7:47
add a comment |
1
$begingroup$
Exponential are 'always' quite strong.
$endgroup$
– Felix Marin
Oct 31 '13 at 7:47
1
$begingroup$
Generally speaking, $$n!=Gleft(frac1nright)qquad where qquad G(n)=int_0^infty e^{-x^n}dxqquadforall ngeqslant0$$
$endgroup$
– Lucian
Oct 31 '13 at 7:47
1
1
$begingroup$
Exponential are 'always' quite strong.
$endgroup$
– Felix Marin
Oct 31 '13 at 7:47
$begingroup$
Exponential are 'always' quite strong.
$endgroup$
– Felix Marin
Oct 31 '13 at 7:47
1
1
$begingroup$
Generally speaking, $$n!=Gleft(frac1nright)qquad where qquad G(n)=int_0^infty e^{-x^n}dxqquadforall ngeqslant0$$
$endgroup$
– Lucian
Oct 31 '13 at 7:47
$begingroup$
Generally speaking, $$n!=Gleft(frac1nright)qquad where qquad G(n)=int_0^infty e^{-x^n}dxqquadforall ngeqslant0$$
$endgroup$
– Lucian
Oct 31 '13 at 7:47
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
We do not need an explicit expression to show that an improper integral converges.
The sequence $(a_n)$ is obviously increasing. It is bounded above by $int_0^1 e^{-x^4},dx+int_1^infty e^{-x},dx$. To be explicit, the first integral is less than $1$, and the second is $e^{-1}$, so the sequence $(a_n)$ is bounded above by $1+e^{-1}$.
Any increasing sequence which is bounded above converges.
$endgroup$
$begingroup$
You are welcome.
$endgroup$
– André Nicolas
Nov 19 '13 at 3:07
add a comment |
$begingroup$
Recall the Taylor series for $e^x$ at $x = 0$ is given by:
begin{equation}
e^{x} = sum_{n = 0}^{infty} frac{x^n}{n!}
end{equation}
Thus,
begin{equation}
e^{-x^4} = sum_{n = 0}^{infty} frac{(-1)^n x^{4n}}{n!}
end{equation}
Thus,
begin{align}
int_{0}^{t} e^{-x^4} :dx &= sum_{n = 0}^{infty} frac{(-1)^n }{n!}int_{0}^{t}x^{4n}:dx = sum_{n = 0}^{infty} frac{(-1)^n }{n!} left[frac{x^{4n + 1}}{4n + 1} right]_{0}^{t} \
&= sum_{n = 0}^{infty} frac{(-1)^n }{n!} frac{t^{4n + 1}}{4n + 1} = sum_{n = 0}^{infty} b_n(t)
end{align}
We now apply the Ratio Test:
begin{align}
R &= lim_{n rightarrow infty} left|frac{b_{n + 1}}{b_{n}}right| = lim_{n rightarrow infty} left|frac{frac{(-1)^{n+1} }{left(n + 1right)!} frac{t^{4left(n + 1right) + 1}}{4left(n + 1right) + 1}}{frac{(-1)^n }{n!} frac{t^{4n + 1}}{4n + 1}}right| \
&= lim_{n rightarrow infty} left| frac{1}{n + 1} cdot frac{4n + 1}{4n + 5}cdot t^4right|
end{align}
Which for any finite $t$ becomes $R = 0$ and thus, by the Ratio test the series (and by extension) integral converge for all finite real $t$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f546649%2flet-a-n-int-limits-0n-e-x4-dx-does-a-n-n-rightarrow-inf%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We do not need an explicit expression to show that an improper integral converges.
The sequence $(a_n)$ is obviously increasing. It is bounded above by $int_0^1 e^{-x^4},dx+int_1^infty e^{-x},dx$. To be explicit, the first integral is less than $1$, and the second is $e^{-1}$, so the sequence $(a_n)$ is bounded above by $1+e^{-1}$.
Any increasing sequence which is bounded above converges.
$endgroup$
$begingroup$
You are welcome.
$endgroup$
– André Nicolas
Nov 19 '13 at 3:07
add a comment |
$begingroup$
We do not need an explicit expression to show that an improper integral converges.
The sequence $(a_n)$ is obviously increasing. It is bounded above by $int_0^1 e^{-x^4},dx+int_1^infty e^{-x},dx$. To be explicit, the first integral is less than $1$, and the second is $e^{-1}$, so the sequence $(a_n)$ is bounded above by $1+e^{-1}$.
Any increasing sequence which is bounded above converges.
$endgroup$
$begingroup$
You are welcome.
$endgroup$
– André Nicolas
Nov 19 '13 at 3:07
add a comment |
$begingroup$
We do not need an explicit expression to show that an improper integral converges.
The sequence $(a_n)$ is obviously increasing. It is bounded above by $int_0^1 e^{-x^4},dx+int_1^infty e^{-x},dx$. To be explicit, the first integral is less than $1$, and the second is $e^{-1}$, so the sequence $(a_n)$ is bounded above by $1+e^{-1}$.
Any increasing sequence which is bounded above converges.
$endgroup$
We do not need an explicit expression to show that an improper integral converges.
The sequence $(a_n)$ is obviously increasing. It is bounded above by $int_0^1 e^{-x^4},dx+int_1^infty e^{-x},dx$. To be explicit, the first integral is less than $1$, and the second is $e^{-1}$, so the sequence $(a_n)$ is bounded above by $1+e^{-1}$.
Any increasing sequence which is bounded above converges.
edited Oct 31 '13 at 7:58
answered Oct 31 '13 at 7:40
André NicolasAndré Nicolas
453k36428815
453k36428815
$begingroup$
You are welcome.
$endgroup$
– André Nicolas
Nov 19 '13 at 3:07
add a comment |
$begingroup$
You are welcome.
$endgroup$
– André Nicolas
Nov 19 '13 at 3:07
$begingroup$
You are welcome.
$endgroup$
– André Nicolas
Nov 19 '13 at 3:07
$begingroup$
You are welcome.
$endgroup$
– André Nicolas
Nov 19 '13 at 3:07
add a comment |
$begingroup$
Recall the Taylor series for $e^x$ at $x = 0$ is given by:
begin{equation}
e^{x} = sum_{n = 0}^{infty} frac{x^n}{n!}
end{equation}
Thus,
begin{equation}
e^{-x^4} = sum_{n = 0}^{infty} frac{(-1)^n x^{4n}}{n!}
end{equation}
Thus,
begin{align}
int_{0}^{t} e^{-x^4} :dx &= sum_{n = 0}^{infty} frac{(-1)^n }{n!}int_{0}^{t}x^{4n}:dx = sum_{n = 0}^{infty} frac{(-1)^n }{n!} left[frac{x^{4n + 1}}{4n + 1} right]_{0}^{t} \
&= sum_{n = 0}^{infty} frac{(-1)^n }{n!} frac{t^{4n + 1}}{4n + 1} = sum_{n = 0}^{infty} b_n(t)
end{align}
We now apply the Ratio Test:
begin{align}
R &= lim_{n rightarrow infty} left|frac{b_{n + 1}}{b_{n}}right| = lim_{n rightarrow infty} left|frac{frac{(-1)^{n+1} }{left(n + 1right)!} frac{t^{4left(n + 1right) + 1}}{4left(n + 1right) + 1}}{frac{(-1)^n }{n!} frac{t^{4n + 1}}{4n + 1}}right| \
&= lim_{n rightarrow infty} left| frac{1}{n + 1} cdot frac{4n + 1}{4n + 5}cdot t^4right|
end{align}
Which for any finite $t$ becomes $R = 0$ and thus, by the Ratio test the series (and by extension) integral converge for all finite real $t$.
$endgroup$
add a comment |
$begingroup$
Recall the Taylor series for $e^x$ at $x = 0$ is given by:
begin{equation}
e^{x} = sum_{n = 0}^{infty} frac{x^n}{n!}
end{equation}
Thus,
begin{equation}
e^{-x^4} = sum_{n = 0}^{infty} frac{(-1)^n x^{4n}}{n!}
end{equation}
Thus,
begin{align}
int_{0}^{t} e^{-x^4} :dx &= sum_{n = 0}^{infty} frac{(-1)^n }{n!}int_{0}^{t}x^{4n}:dx = sum_{n = 0}^{infty} frac{(-1)^n }{n!} left[frac{x^{4n + 1}}{4n + 1} right]_{0}^{t} \
&= sum_{n = 0}^{infty} frac{(-1)^n }{n!} frac{t^{4n + 1}}{4n + 1} = sum_{n = 0}^{infty} b_n(t)
end{align}
We now apply the Ratio Test:
begin{align}
R &= lim_{n rightarrow infty} left|frac{b_{n + 1}}{b_{n}}right| = lim_{n rightarrow infty} left|frac{frac{(-1)^{n+1} }{left(n + 1right)!} frac{t^{4left(n + 1right) + 1}}{4left(n + 1right) + 1}}{frac{(-1)^n }{n!} frac{t^{4n + 1}}{4n + 1}}right| \
&= lim_{n rightarrow infty} left| frac{1}{n + 1} cdot frac{4n + 1}{4n + 5}cdot t^4right|
end{align}
Which for any finite $t$ becomes $R = 0$ and thus, by the Ratio test the series (and by extension) integral converge for all finite real $t$.
$endgroup$
add a comment |
$begingroup$
Recall the Taylor series for $e^x$ at $x = 0$ is given by:
begin{equation}
e^{x} = sum_{n = 0}^{infty} frac{x^n}{n!}
end{equation}
Thus,
begin{equation}
e^{-x^4} = sum_{n = 0}^{infty} frac{(-1)^n x^{4n}}{n!}
end{equation}
Thus,
begin{align}
int_{0}^{t} e^{-x^4} :dx &= sum_{n = 0}^{infty} frac{(-1)^n }{n!}int_{0}^{t}x^{4n}:dx = sum_{n = 0}^{infty} frac{(-1)^n }{n!} left[frac{x^{4n + 1}}{4n + 1} right]_{0}^{t} \
&= sum_{n = 0}^{infty} frac{(-1)^n }{n!} frac{t^{4n + 1}}{4n + 1} = sum_{n = 0}^{infty} b_n(t)
end{align}
We now apply the Ratio Test:
begin{align}
R &= lim_{n rightarrow infty} left|frac{b_{n + 1}}{b_{n}}right| = lim_{n rightarrow infty} left|frac{frac{(-1)^{n+1} }{left(n + 1right)!} frac{t^{4left(n + 1right) + 1}}{4left(n + 1right) + 1}}{frac{(-1)^n }{n!} frac{t^{4n + 1}}{4n + 1}}right| \
&= lim_{n rightarrow infty} left| frac{1}{n + 1} cdot frac{4n + 1}{4n + 5}cdot t^4right|
end{align}
Which for any finite $t$ becomes $R = 0$ and thus, by the Ratio test the series (and by extension) integral converge for all finite real $t$.
$endgroup$
Recall the Taylor series for $e^x$ at $x = 0$ is given by:
begin{equation}
e^{x} = sum_{n = 0}^{infty} frac{x^n}{n!}
end{equation}
Thus,
begin{equation}
e^{-x^4} = sum_{n = 0}^{infty} frac{(-1)^n x^{4n}}{n!}
end{equation}
Thus,
begin{align}
int_{0}^{t} e^{-x^4} :dx &= sum_{n = 0}^{infty} frac{(-1)^n }{n!}int_{0}^{t}x^{4n}:dx = sum_{n = 0}^{infty} frac{(-1)^n }{n!} left[frac{x^{4n + 1}}{4n + 1} right]_{0}^{t} \
&= sum_{n = 0}^{infty} frac{(-1)^n }{n!} frac{t^{4n + 1}}{4n + 1} = sum_{n = 0}^{infty} b_n(t)
end{align}
We now apply the Ratio Test:
begin{align}
R &= lim_{n rightarrow infty} left|frac{b_{n + 1}}{b_{n}}right| = lim_{n rightarrow infty} left|frac{frac{(-1)^{n+1} }{left(n + 1right)!} frac{t^{4left(n + 1right) + 1}}{4left(n + 1right) + 1}}{frac{(-1)^n }{n!} frac{t^{4n + 1}}{4n + 1}}right| \
&= lim_{n rightarrow infty} left| frac{1}{n + 1} cdot frac{4n + 1}{4n + 5}cdot t^4right|
end{align}
Which for any finite $t$ becomes $R = 0$ and thus, by the Ratio test the series (and by extension) integral converge for all finite real $t$.
answered Dec 19 '18 at 2:28
DavidGDavidG
2,2271724
2,2271724
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f546649%2flet-a-n-int-limits-0n-e-x4-dx-does-a-n-n-rightarrow-inf%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Exponential are 'always' quite strong.
$endgroup$
– Felix Marin
Oct 31 '13 at 7:47
1
$begingroup$
Generally speaking, $$n!=Gleft(frac1nright)qquad where qquad G(n)=int_0^infty e^{-x^n}dxqquadforall ngeqslant0$$
$endgroup$
– Lucian
Oct 31 '13 at 7:47