A Closed form for the $sum_{n=1}^{infty}sum_{k=1}^{n}frac{1}{(25k^2+25k+4)(n-k+1)^3}$












0












$begingroup$


I'm looking for a closed form for this sequence,




$$sum_{n=1}^{infty}left(sum_{k=1}^{n}frac{1}{(25k^2+25k+4)(n-k+1)^3} right)$$




I applied convergence test. The series converges.I want to know if the series is expressed with any mathematical constant. How can we do that?










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    I'm looking for a closed form for this sequence,




    $$sum_{n=1}^{infty}left(sum_{k=1}^{n}frac{1}{(25k^2+25k+4)(n-k+1)^3} right)$$




    I applied convergence test. The series converges.I want to know if the series is expressed with any mathematical constant. How can we do that?










    share|cite|improve this question











    $endgroup$















      0












      0








      0


      2



      $begingroup$


      I'm looking for a closed form for this sequence,




      $$sum_{n=1}^{infty}left(sum_{k=1}^{n}frac{1}{(25k^2+25k+4)(n-k+1)^3} right)$$




      I applied convergence test. The series converges.I want to know if the series is expressed with any mathematical constant. How can we do that?










      share|cite|improve this question











      $endgroup$




      I'm looking for a closed form for this sequence,




      $$sum_{n=1}^{infty}left(sum_{k=1}^{n}frac{1}{(25k^2+25k+4)(n-k+1)^3} right)$$




      I applied convergence test. The series converges.I want to know if the series is expressed with any mathematical constant. How can we do that?







      calculus sequences-and-series convergence summation closed-form






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 27 '18 at 20:23









      Henning Makholm

      242k17308550




      242k17308550










      asked Dec 27 '18 at 20:17









      ElementaryElementary

      360111




      360111






















          2 Answers
          2






          active

          oldest

          votes


















          7












          $begingroup$

          Proceeding in
          my usual naive way,



          $begin{array}\
          S
          &=sum_{n=1}^{infty}sum_{k=1}^{n}frac{1}{(25k^2+25k+4)(n-k+1)^3}\
          &=sum_{n=1}^{infty}sum_{k=1}^{n}frac{1}{(25k^2+25k+4)(n-k+1)^3} \
          &=sum_{k=1}^{infty}sum_{n=k}^{infty}frac{1}{(25k^2+25k+4)(n-k+1)^3} \
          &=sum_{k=1}^{infty}frac1{(25k^2+25k+4)}sum_{n=k}^{infty}frac{1}{(n-k+1)^3} \
          &=sum_{k=1}^{infty}frac1{(25k^2+25k+4)}sum_{n=1}^{infty}frac{1}{n^3} \
          &=zeta(3)sum_{k=1}^{infty}frac1{(25k^2+25k+4)}\
          &=zeta(3)sum_{k=1}^{infty}frac1{(5k+1)(5k+4)}\
          &=zeta(3)sum_{k=1}^{infty}frac13left(frac1{5k+1}-frac1{5k+4}right)\
          &=frac{zeta(3)}{3}lim_{m to infty} sum_{k=1}^{m}left(frac1{5k+1}-frac1{5k+4}right)\
          &=frac{zeta(3)}{15}lim_{m to infty} left(sum_{k=1}^{m}frac1{k+1/5}-sum_{k=1}^{m}frac1{k+4/5}right)\
          &=-frac{zeta(3)}{15}lim_{m to infty} left(sum_{k=1}^{m}(frac1{k}-frac1{k+1/5})-sum_{k=1}^{m}(frac1{k}-frac1{k+4/5})right)\
          &=-frac{zeta(3)}{15}(psi(6/5)-psi(9/5))\
          &=frac{zeta(3)}{15}(psi(9/5)-psi(6/5))\
          end{array}
          $



          where
          $psi(x)$
          is the digamma function
          (https://en.wikipedia.org/wiki/Digamma_function).



          Note:
          Wolfy says that
          $sum_{k=1}^{infty}frac1{(5k+1)(5k+4)}
          = frac{pi}{15}sqrt{1 + frac{2}{sqrt{5}}} - frac1{4}
          $
          .






          share|cite|improve this answer











          $endgroup$









          • 1




            $begingroup$
            (+1) Thank you for answer..
            $endgroup$
            – Elementary
            Dec 27 '18 at 21:01






          • 2




            $begingroup$
            First, there is a typo $frac{1}{(5k+1)(5k+4)} = color{red}{frac13} left(frac{1}{5k+1} - frac{1}{5k+4}right)$. Second, you can use identities $$psi(z+1) = psi(z) + frac1zquadtext{ and }quadpsi(1-z) - psi(z) = picotpi z$$ to get rid of $psi$.
            $endgroup$
            – achille hui
            Dec 27 '18 at 21:04






          • 1




            $begingroup$
            Can we do what Wolfy did?
            $endgroup$
            – Elementary
            Dec 27 '18 at 21:04






          • 1




            $begingroup$
            @achille hui: Thanks for the catch and the reference to the digamma identity.
            $endgroup$
            – marty cohen
            Dec 27 '18 at 22:50



















          4












          $begingroup$

          Change the order of summation, so it's $sum_{k=1}^infty sum_{n=k}^infty$.
          Then I get
          $$ {frac {zeta left( 3 right) left( 4,pi,cot left( pi/5
          right) -15 right) }{60}}
          $$

          You could also write $$cot(pi/5) = frac{sqrt{2}}{20} (5 + sqrt{5})^{3/2}$$






          share|cite|improve this answer









          $endgroup$









          • 1




            $begingroup$
            I just stopped at the digamma function. Didn't realize it could be turned into a trig function.
            $endgroup$
            – marty cohen
            Dec 27 '18 at 20:47










          • $begingroup$
            $cot(pi/5)=sqrt{1+2/sqrt{5}}$ is a little bit simpler.
            $endgroup$
            – metamorphy
            Dec 27 '18 at 20:56










          • $begingroup$
            That's what Wolfy says too.
            $endgroup$
            – marty cohen
            Dec 27 '18 at 20:56










          • $begingroup$
            Dear teacher, is it possible to write which method you used? How do you get the Closed Form..? Thank You.
            $endgroup$
            – Elementary
            Dec 27 '18 at 21:00













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054321%2fa-closed-form-for-the-sum-n-1-infty-sum-k-1n-frac125k225k4n%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          7












          $begingroup$

          Proceeding in
          my usual naive way,



          $begin{array}\
          S
          &=sum_{n=1}^{infty}sum_{k=1}^{n}frac{1}{(25k^2+25k+4)(n-k+1)^3}\
          &=sum_{n=1}^{infty}sum_{k=1}^{n}frac{1}{(25k^2+25k+4)(n-k+1)^3} \
          &=sum_{k=1}^{infty}sum_{n=k}^{infty}frac{1}{(25k^2+25k+4)(n-k+1)^3} \
          &=sum_{k=1}^{infty}frac1{(25k^2+25k+4)}sum_{n=k}^{infty}frac{1}{(n-k+1)^3} \
          &=sum_{k=1}^{infty}frac1{(25k^2+25k+4)}sum_{n=1}^{infty}frac{1}{n^3} \
          &=zeta(3)sum_{k=1}^{infty}frac1{(25k^2+25k+4)}\
          &=zeta(3)sum_{k=1}^{infty}frac1{(5k+1)(5k+4)}\
          &=zeta(3)sum_{k=1}^{infty}frac13left(frac1{5k+1}-frac1{5k+4}right)\
          &=frac{zeta(3)}{3}lim_{m to infty} sum_{k=1}^{m}left(frac1{5k+1}-frac1{5k+4}right)\
          &=frac{zeta(3)}{15}lim_{m to infty} left(sum_{k=1}^{m}frac1{k+1/5}-sum_{k=1}^{m}frac1{k+4/5}right)\
          &=-frac{zeta(3)}{15}lim_{m to infty} left(sum_{k=1}^{m}(frac1{k}-frac1{k+1/5})-sum_{k=1}^{m}(frac1{k}-frac1{k+4/5})right)\
          &=-frac{zeta(3)}{15}(psi(6/5)-psi(9/5))\
          &=frac{zeta(3)}{15}(psi(9/5)-psi(6/5))\
          end{array}
          $



          where
          $psi(x)$
          is the digamma function
          (https://en.wikipedia.org/wiki/Digamma_function).



          Note:
          Wolfy says that
          $sum_{k=1}^{infty}frac1{(5k+1)(5k+4)}
          = frac{pi}{15}sqrt{1 + frac{2}{sqrt{5}}} - frac1{4}
          $
          .






          share|cite|improve this answer











          $endgroup$









          • 1




            $begingroup$
            (+1) Thank you for answer..
            $endgroup$
            – Elementary
            Dec 27 '18 at 21:01






          • 2




            $begingroup$
            First, there is a typo $frac{1}{(5k+1)(5k+4)} = color{red}{frac13} left(frac{1}{5k+1} - frac{1}{5k+4}right)$. Second, you can use identities $$psi(z+1) = psi(z) + frac1zquadtext{ and }quadpsi(1-z) - psi(z) = picotpi z$$ to get rid of $psi$.
            $endgroup$
            – achille hui
            Dec 27 '18 at 21:04






          • 1




            $begingroup$
            Can we do what Wolfy did?
            $endgroup$
            – Elementary
            Dec 27 '18 at 21:04






          • 1




            $begingroup$
            @achille hui: Thanks for the catch and the reference to the digamma identity.
            $endgroup$
            – marty cohen
            Dec 27 '18 at 22:50
















          7












          $begingroup$

          Proceeding in
          my usual naive way,



          $begin{array}\
          S
          &=sum_{n=1}^{infty}sum_{k=1}^{n}frac{1}{(25k^2+25k+4)(n-k+1)^3}\
          &=sum_{n=1}^{infty}sum_{k=1}^{n}frac{1}{(25k^2+25k+4)(n-k+1)^3} \
          &=sum_{k=1}^{infty}sum_{n=k}^{infty}frac{1}{(25k^2+25k+4)(n-k+1)^3} \
          &=sum_{k=1}^{infty}frac1{(25k^2+25k+4)}sum_{n=k}^{infty}frac{1}{(n-k+1)^3} \
          &=sum_{k=1}^{infty}frac1{(25k^2+25k+4)}sum_{n=1}^{infty}frac{1}{n^3} \
          &=zeta(3)sum_{k=1}^{infty}frac1{(25k^2+25k+4)}\
          &=zeta(3)sum_{k=1}^{infty}frac1{(5k+1)(5k+4)}\
          &=zeta(3)sum_{k=1}^{infty}frac13left(frac1{5k+1}-frac1{5k+4}right)\
          &=frac{zeta(3)}{3}lim_{m to infty} sum_{k=1}^{m}left(frac1{5k+1}-frac1{5k+4}right)\
          &=frac{zeta(3)}{15}lim_{m to infty} left(sum_{k=1}^{m}frac1{k+1/5}-sum_{k=1}^{m}frac1{k+4/5}right)\
          &=-frac{zeta(3)}{15}lim_{m to infty} left(sum_{k=1}^{m}(frac1{k}-frac1{k+1/5})-sum_{k=1}^{m}(frac1{k}-frac1{k+4/5})right)\
          &=-frac{zeta(3)}{15}(psi(6/5)-psi(9/5))\
          &=frac{zeta(3)}{15}(psi(9/5)-psi(6/5))\
          end{array}
          $



          where
          $psi(x)$
          is the digamma function
          (https://en.wikipedia.org/wiki/Digamma_function).



          Note:
          Wolfy says that
          $sum_{k=1}^{infty}frac1{(5k+1)(5k+4)}
          = frac{pi}{15}sqrt{1 + frac{2}{sqrt{5}}} - frac1{4}
          $
          .






          share|cite|improve this answer











          $endgroup$









          • 1




            $begingroup$
            (+1) Thank you for answer..
            $endgroup$
            – Elementary
            Dec 27 '18 at 21:01






          • 2




            $begingroup$
            First, there is a typo $frac{1}{(5k+1)(5k+4)} = color{red}{frac13} left(frac{1}{5k+1} - frac{1}{5k+4}right)$. Second, you can use identities $$psi(z+1) = psi(z) + frac1zquadtext{ and }quadpsi(1-z) - psi(z) = picotpi z$$ to get rid of $psi$.
            $endgroup$
            – achille hui
            Dec 27 '18 at 21:04






          • 1




            $begingroup$
            Can we do what Wolfy did?
            $endgroup$
            – Elementary
            Dec 27 '18 at 21:04






          • 1




            $begingroup$
            @achille hui: Thanks for the catch and the reference to the digamma identity.
            $endgroup$
            – marty cohen
            Dec 27 '18 at 22:50














          7












          7








          7





          $begingroup$

          Proceeding in
          my usual naive way,



          $begin{array}\
          S
          &=sum_{n=1}^{infty}sum_{k=1}^{n}frac{1}{(25k^2+25k+4)(n-k+1)^3}\
          &=sum_{n=1}^{infty}sum_{k=1}^{n}frac{1}{(25k^2+25k+4)(n-k+1)^3} \
          &=sum_{k=1}^{infty}sum_{n=k}^{infty}frac{1}{(25k^2+25k+4)(n-k+1)^3} \
          &=sum_{k=1}^{infty}frac1{(25k^2+25k+4)}sum_{n=k}^{infty}frac{1}{(n-k+1)^3} \
          &=sum_{k=1}^{infty}frac1{(25k^2+25k+4)}sum_{n=1}^{infty}frac{1}{n^3} \
          &=zeta(3)sum_{k=1}^{infty}frac1{(25k^2+25k+4)}\
          &=zeta(3)sum_{k=1}^{infty}frac1{(5k+1)(5k+4)}\
          &=zeta(3)sum_{k=1}^{infty}frac13left(frac1{5k+1}-frac1{5k+4}right)\
          &=frac{zeta(3)}{3}lim_{m to infty} sum_{k=1}^{m}left(frac1{5k+1}-frac1{5k+4}right)\
          &=frac{zeta(3)}{15}lim_{m to infty} left(sum_{k=1}^{m}frac1{k+1/5}-sum_{k=1}^{m}frac1{k+4/5}right)\
          &=-frac{zeta(3)}{15}lim_{m to infty} left(sum_{k=1}^{m}(frac1{k}-frac1{k+1/5})-sum_{k=1}^{m}(frac1{k}-frac1{k+4/5})right)\
          &=-frac{zeta(3)}{15}(psi(6/5)-psi(9/5))\
          &=frac{zeta(3)}{15}(psi(9/5)-psi(6/5))\
          end{array}
          $



          where
          $psi(x)$
          is the digamma function
          (https://en.wikipedia.org/wiki/Digamma_function).



          Note:
          Wolfy says that
          $sum_{k=1}^{infty}frac1{(5k+1)(5k+4)}
          = frac{pi}{15}sqrt{1 + frac{2}{sqrt{5}}} - frac1{4}
          $
          .






          share|cite|improve this answer











          $endgroup$



          Proceeding in
          my usual naive way,



          $begin{array}\
          S
          &=sum_{n=1}^{infty}sum_{k=1}^{n}frac{1}{(25k^2+25k+4)(n-k+1)^3}\
          &=sum_{n=1}^{infty}sum_{k=1}^{n}frac{1}{(25k^2+25k+4)(n-k+1)^3} \
          &=sum_{k=1}^{infty}sum_{n=k}^{infty}frac{1}{(25k^2+25k+4)(n-k+1)^3} \
          &=sum_{k=1}^{infty}frac1{(25k^2+25k+4)}sum_{n=k}^{infty}frac{1}{(n-k+1)^3} \
          &=sum_{k=1}^{infty}frac1{(25k^2+25k+4)}sum_{n=1}^{infty}frac{1}{n^3} \
          &=zeta(3)sum_{k=1}^{infty}frac1{(25k^2+25k+4)}\
          &=zeta(3)sum_{k=1}^{infty}frac1{(5k+1)(5k+4)}\
          &=zeta(3)sum_{k=1}^{infty}frac13left(frac1{5k+1}-frac1{5k+4}right)\
          &=frac{zeta(3)}{3}lim_{m to infty} sum_{k=1}^{m}left(frac1{5k+1}-frac1{5k+4}right)\
          &=frac{zeta(3)}{15}lim_{m to infty} left(sum_{k=1}^{m}frac1{k+1/5}-sum_{k=1}^{m}frac1{k+4/5}right)\
          &=-frac{zeta(3)}{15}lim_{m to infty} left(sum_{k=1}^{m}(frac1{k}-frac1{k+1/5})-sum_{k=1}^{m}(frac1{k}-frac1{k+4/5})right)\
          &=-frac{zeta(3)}{15}(psi(6/5)-psi(9/5))\
          &=frac{zeta(3)}{15}(psi(9/5)-psi(6/5))\
          end{array}
          $



          where
          $psi(x)$
          is the digamma function
          (https://en.wikipedia.org/wiki/Digamma_function).



          Note:
          Wolfy says that
          $sum_{k=1}^{infty}frac1{(5k+1)(5k+4)}
          = frac{pi}{15}sqrt{1 + frac{2}{sqrt{5}}} - frac1{4}
          $
          .







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 27 '18 at 22:49

























          answered Dec 27 '18 at 20:46









          marty cohenmarty cohen

          74.4k549129




          74.4k549129








          • 1




            $begingroup$
            (+1) Thank you for answer..
            $endgroup$
            – Elementary
            Dec 27 '18 at 21:01






          • 2




            $begingroup$
            First, there is a typo $frac{1}{(5k+1)(5k+4)} = color{red}{frac13} left(frac{1}{5k+1} - frac{1}{5k+4}right)$. Second, you can use identities $$psi(z+1) = psi(z) + frac1zquadtext{ and }quadpsi(1-z) - psi(z) = picotpi z$$ to get rid of $psi$.
            $endgroup$
            – achille hui
            Dec 27 '18 at 21:04






          • 1




            $begingroup$
            Can we do what Wolfy did?
            $endgroup$
            – Elementary
            Dec 27 '18 at 21:04






          • 1




            $begingroup$
            @achille hui: Thanks for the catch and the reference to the digamma identity.
            $endgroup$
            – marty cohen
            Dec 27 '18 at 22:50














          • 1




            $begingroup$
            (+1) Thank you for answer..
            $endgroup$
            – Elementary
            Dec 27 '18 at 21:01






          • 2




            $begingroup$
            First, there is a typo $frac{1}{(5k+1)(5k+4)} = color{red}{frac13} left(frac{1}{5k+1} - frac{1}{5k+4}right)$. Second, you can use identities $$psi(z+1) = psi(z) + frac1zquadtext{ and }quadpsi(1-z) - psi(z) = picotpi z$$ to get rid of $psi$.
            $endgroup$
            – achille hui
            Dec 27 '18 at 21:04






          • 1




            $begingroup$
            Can we do what Wolfy did?
            $endgroup$
            – Elementary
            Dec 27 '18 at 21:04






          • 1




            $begingroup$
            @achille hui: Thanks for the catch and the reference to the digamma identity.
            $endgroup$
            – marty cohen
            Dec 27 '18 at 22:50








          1




          1




          $begingroup$
          (+1) Thank you for answer..
          $endgroup$
          – Elementary
          Dec 27 '18 at 21:01




          $begingroup$
          (+1) Thank you for answer..
          $endgroup$
          – Elementary
          Dec 27 '18 at 21:01




          2




          2




          $begingroup$
          First, there is a typo $frac{1}{(5k+1)(5k+4)} = color{red}{frac13} left(frac{1}{5k+1} - frac{1}{5k+4}right)$. Second, you can use identities $$psi(z+1) = psi(z) + frac1zquadtext{ and }quadpsi(1-z) - psi(z) = picotpi z$$ to get rid of $psi$.
          $endgroup$
          – achille hui
          Dec 27 '18 at 21:04




          $begingroup$
          First, there is a typo $frac{1}{(5k+1)(5k+4)} = color{red}{frac13} left(frac{1}{5k+1} - frac{1}{5k+4}right)$. Second, you can use identities $$psi(z+1) = psi(z) + frac1zquadtext{ and }quadpsi(1-z) - psi(z) = picotpi z$$ to get rid of $psi$.
          $endgroup$
          – achille hui
          Dec 27 '18 at 21:04




          1




          1




          $begingroup$
          Can we do what Wolfy did?
          $endgroup$
          – Elementary
          Dec 27 '18 at 21:04




          $begingroup$
          Can we do what Wolfy did?
          $endgroup$
          – Elementary
          Dec 27 '18 at 21:04




          1




          1




          $begingroup$
          @achille hui: Thanks for the catch and the reference to the digamma identity.
          $endgroup$
          – marty cohen
          Dec 27 '18 at 22:50




          $begingroup$
          @achille hui: Thanks for the catch and the reference to the digamma identity.
          $endgroup$
          – marty cohen
          Dec 27 '18 at 22:50











          4












          $begingroup$

          Change the order of summation, so it's $sum_{k=1}^infty sum_{n=k}^infty$.
          Then I get
          $$ {frac {zeta left( 3 right) left( 4,pi,cot left( pi/5
          right) -15 right) }{60}}
          $$

          You could also write $$cot(pi/5) = frac{sqrt{2}}{20} (5 + sqrt{5})^{3/2}$$






          share|cite|improve this answer









          $endgroup$









          • 1




            $begingroup$
            I just stopped at the digamma function. Didn't realize it could be turned into a trig function.
            $endgroup$
            – marty cohen
            Dec 27 '18 at 20:47










          • $begingroup$
            $cot(pi/5)=sqrt{1+2/sqrt{5}}$ is a little bit simpler.
            $endgroup$
            – metamorphy
            Dec 27 '18 at 20:56










          • $begingroup$
            That's what Wolfy says too.
            $endgroup$
            – marty cohen
            Dec 27 '18 at 20:56










          • $begingroup$
            Dear teacher, is it possible to write which method you used? How do you get the Closed Form..? Thank You.
            $endgroup$
            – Elementary
            Dec 27 '18 at 21:00


















          4












          $begingroup$

          Change the order of summation, so it's $sum_{k=1}^infty sum_{n=k}^infty$.
          Then I get
          $$ {frac {zeta left( 3 right) left( 4,pi,cot left( pi/5
          right) -15 right) }{60}}
          $$

          You could also write $$cot(pi/5) = frac{sqrt{2}}{20} (5 + sqrt{5})^{3/2}$$






          share|cite|improve this answer









          $endgroup$









          • 1




            $begingroup$
            I just stopped at the digamma function. Didn't realize it could be turned into a trig function.
            $endgroup$
            – marty cohen
            Dec 27 '18 at 20:47










          • $begingroup$
            $cot(pi/5)=sqrt{1+2/sqrt{5}}$ is a little bit simpler.
            $endgroup$
            – metamorphy
            Dec 27 '18 at 20:56










          • $begingroup$
            That's what Wolfy says too.
            $endgroup$
            – marty cohen
            Dec 27 '18 at 20:56










          • $begingroup$
            Dear teacher, is it possible to write which method you used? How do you get the Closed Form..? Thank You.
            $endgroup$
            – Elementary
            Dec 27 '18 at 21:00
















          4












          4








          4





          $begingroup$

          Change the order of summation, so it's $sum_{k=1}^infty sum_{n=k}^infty$.
          Then I get
          $$ {frac {zeta left( 3 right) left( 4,pi,cot left( pi/5
          right) -15 right) }{60}}
          $$

          You could also write $$cot(pi/5) = frac{sqrt{2}}{20} (5 + sqrt{5})^{3/2}$$






          share|cite|improve this answer









          $endgroup$



          Change the order of summation, so it's $sum_{k=1}^infty sum_{n=k}^infty$.
          Then I get
          $$ {frac {zeta left( 3 right) left( 4,pi,cot left( pi/5
          right) -15 right) }{60}}
          $$

          You could also write $$cot(pi/5) = frac{sqrt{2}}{20} (5 + sqrt{5})^{3/2}$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 27 '18 at 20:43









          Robert IsraelRobert Israel

          327k23216470




          327k23216470








          • 1




            $begingroup$
            I just stopped at the digamma function. Didn't realize it could be turned into a trig function.
            $endgroup$
            – marty cohen
            Dec 27 '18 at 20:47










          • $begingroup$
            $cot(pi/5)=sqrt{1+2/sqrt{5}}$ is a little bit simpler.
            $endgroup$
            – metamorphy
            Dec 27 '18 at 20:56










          • $begingroup$
            That's what Wolfy says too.
            $endgroup$
            – marty cohen
            Dec 27 '18 at 20:56










          • $begingroup$
            Dear teacher, is it possible to write which method you used? How do you get the Closed Form..? Thank You.
            $endgroup$
            – Elementary
            Dec 27 '18 at 21:00
















          • 1




            $begingroup$
            I just stopped at the digamma function. Didn't realize it could be turned into a trig function.
            $endgroup$
            – marty cohen
            Dec 27 '18 at 20:47










          • $begingroup$
            $cot(pi/5)=sqrt{1+2/sqrt{5}}$ is a little bit simpler.
            $endgroup$
            – metamorphy
            Dec 27 '18 at 20:56










          • $begingroup$
            That's what Wolfy says too.
            $endgroup$
            – marty cohen
            Dec 27 '18 at 20:56










          • $begingroup$
            Dear teacher, is it possible to write which method you used? How do you get the Closed Form..? Thank You.
            $endgroup$
            – Elementary
            Dec 27 '18 at 21:00










          1




          1




          $begingroup$
          I just stopped at the digamma function. Didn't realize it could be turned into a trig function.
          $endgroup$
          – marty cohen
          Dec 27 '18 at 20:47




          $begingroup$
          I just stopped at the digamma function. Didn't realize it could be turned into a trig function.
          $endgroup$
          – marty cohen
          Dec 27 '18 at 20:47












          $begingroup$
          $cot(pi/5)=sqrt{1+2/sqrt{5}}$ is a little bit simpler.
          $endgroup$
          – metamorphy
          Dec 27 '18 at 20:56




          $begingroup$
          $cot(pi/5)=sqrt{1+2/sqrt{5}}$ is a little bit simpler.
          $endgroup$
          – metamorphy
          Dec 27 '18 at 20:56












          $begingroup$
          That's what Wolfy says too.
          $endgroup$
          – marty cohen
          Dec 27 '18 at 20:56




          $begingroup$
          That's what Wolfy says too.
          $endgroup$
          – marty cohen
          Dec 27 '18 at 20:56












          $begingroup$
          Dear teacher, is it possible to write which method you used? How do you get the Closed Form..? Thank You.
          $endgroup$
          – Elementary
          Dec 27 '18 at 21:00






          $begingroup$
          Dear teacher, is it possible to write which method you used? How do you get the Closed Form..? Thank You.
          $endgroup$
          – Elementary
          Dec 27 '18 at 21:00




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054321%2fa-closed-form-for-the-sum-n-1-infty-sum-k-1n-frac125k225k4n%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          To store a contact into the json file from server.js file using a class in NodeJS

          Redirect URL with Chrome Remote Debugging Android Devices

          Dieringhausen