A Closed form for the $sum_{n=1}^{infty}sum_{k=1}^{n}frac{1}{(25k^2+25k+4)(n-k+1)^3}$
$begingroup$
I'm looking for a closed form for this sequence,
$$sum_{n=1}^{infty}left(sum_{k=1}^{n}frac{1}{(25k^2+25k+4)(n-k+1)^3} right)$$
I applied convergence test. The series converges.I want to know if the series is expressed with any mathematical constant. How can we do that?
calculus sequences-and-series convergence summation closed-form
$endgroup$
add a comment |
$begingroup$
I'm looking for a closed form for this sequence,
$$sum_{n=1}^{infty}left(sum_{k=1}^{n}frac{1}{(25k^2+25k+4)(n-k+1)^3} right)$$
I applied convergence test. The series converges.I want to know if the series is expressed with any mathematical constant. How can we do that?
calculus sequences-and-series convergence summation closed-form
$endgroup$
add a comment |
$begingroup$
I'm looking for a closed form for this sequence,
$$sum_{n=1}^{infty}left(sum_{k=1}^{n}frac{1}{(25k^2+25k+4)(n-k+1)^3} right)$$
I applied convergence test. The series converges.I want to know if the series is expressed with any mathematical constant. How can we do that?
calculus sequences-and-series convergence summation closed-form
$endgroup$
I'm looking for a closed form for this sequence,
$$sum_{n=1}^{infty}left(sum_{k=1}^{n}frac{1}{(25k^2+25k+4)(n-k+1)^3} right)$$
I applied convergence test. The series converges.I want to know if the series is expressed with any mathematical constant. How can we do that?
calculus sequences-and-series convergence summation closed-form
calculus sequences-and-series convergence summation closed-form
edited Dec 27 '18 at 20:23
Henning Makholm
242k17308550
242k17308550
asked Dec 27 '18 at 20:17
ElementaryElementary
360111
360111
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Proceeding in
my usual naive way,
$begin{array}\
S
&=sum_{n=1}^{infty}sum_{k=1}^{n}frac{1}{(25k^2+25k+4)(n-k+1)^3}\
&=sum_{n=1}^{infty}sum_{k=1}^{n}frac{1}{(25k^2+25k+4)(n-k+1)^3} \
&=sum_{k=1}^{infty}sum_{n=k}^{infty}frac{1}{(25k^2+25k+4)(n-k+1)^3} \
&=sum_{k=1}^{infty}frac1{(25k^2+25k+4)}sum_{n=k}^{infty}frac{1}{(n-k+1)^3} \
&=sum_{k=1}^{infty}frac1{(25k^2+25k+4)}sum_{n=1}^{infty}frac{1}{n^3} \
&=zeta(3)sum_{k=1}^{infty}frac1{(25k^2+25k+4)}\
&=zeta(3)sum_{k=1}^{infty}frac1{(5k+1)(5k+4)}\
&=zeta(3)sum_{k=1}^{infty}frac13left(frac1{5k+1}-frac1{5k+4}right)\
&=frac{zeta(3)}{3}lim_{m to infty} sum_{k=1}^{m}left(frac1{5k+1}-frac1{5k+4}right)\
&=frac{zeta(3)}{15}lim_{m to infty} left(sum_{k=1}^{m}frac1{k+1/5}-sum_{k=1}^{m}frac1{k+4/5}right)\
&=-frac{zeta(3)}{15}lim_{m to infty} left(sum_{k=1}^{m}(frac1{k}-frac1{k+1/5})-sum_{k=1}^{m}(frac1{k}-frac1{k+4/5})right)\
&=-frac{zeta(3)}{15}(psi(6/5)-psi(9/5))\
&=frac{zeta(3)}{15}(psi(9/5)-psi(6/5))\
end{array}
$
where
$psi(x)$
is the digamma function
(https://en.wikipedia.org/wiki/Digamma_function).
Note:
Wolfy says that
$sum_{k=1}^{infty}frac1{(5k+1)(5k+4)}
= frac{pi}{15}sqrt{1 + frac{2}{sqrt{5}}} - frac1{4}
$.
$endgroup$
1
$begingroup$
(+1) Thank you for answer..
$endgroup$
– Elementary
Dec 27 '18 at 21:01
2
$begingroup$
First, there is a typo $frac{1}{(5k+1)(5k+4)} = color{red}{frac13} left(frac{1}{5k+1} - frac{1}{5k+4}right)$. Second, you can use identities $$psi(z+1) = psi(z) + frac1zquadtext{ and }quadpsi(1-z) - psi(z) = picotpi z$$ to get rid of $psi$.
$endgroup$
– achille hui
Dec 27 '18 at 21:04
1
$begingroup$
Can we do what Wolfy did?
$endgroup$
– Elementary
Dec 27 '18 at 21:04
1
$begingroup$
@achille hui: Thanks for the catch and the reference to the digamma identity.
$endgroup$
– marty cohen
Dec 27 '18 at 22:50
add a comment |
$begingroup$
Change the order of summation, so it's $sum_{k=1}^infty sum_{n=k}^infty$.
Then I get
$$ {frac {zeta left( 3 right) left( 4,pi,cot left( pi/5
right) -15 right) }{60}}
$$
You could also write $$cot(pi/5) = frac{sqrt{2}}{20} (5 + sqrt{5})^{3/2}$$
$endgroup$
1
$begingroup$
I just stopped at the digamma function. Didn't realize it could be turned into a trig function.
$endgroup$
– marty cohen
Dec 27 '18 at 20:47
$begingroup$
$cot(pi/5)=sqrt{1+2/sqrt{5}}$ is a little bit simpler.
$endgroup$
– metamorphy
Dec 27 '18 at 20:56
$begingroup$
That's what Wolfy says too.
$endgroup$
– marty cohen
Dec 27 '18 at 20:56
$begingroup$
Dear teacher, is it possible to write which method you used? How do you get the Closed Form..? Thank You.
$endgroup$
– Elementary
Dec 27 '18 at 21:00
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054321%2fa-closed-form-for-the-sum-n-1-infty-sum-k-1n-frac125k225k4n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Proceeding in
my usual naive way,
$begin{array}\
S
&=sum_{n=1}^{infty}sum_{k=1}^{n}frac{1}{(25k^2+25k+4)(n-k+1)^3}\
&=sum_{n=1}^{infty}sum_{k=1}^{n}frac{1}{(25k^2+25k+4)(n-k+1)^3} \
&=sum_{k=1}^{infty}sum_{n=k}^{infty}frac{1}{(25k^2+25k+4)(n-k+1)^3} \
&=sum_{k=1}^{infty}frac1{(25k^2+25k+4)}sum_{n=k}^{infty}frac{1}{(n-k+1)^3} \
&=sum_{k=1}^{infty}frac1{(25k^2+25k+4)}sum_{n=1}^{infty}frac{1}{n^3} \
&=zeta(3)sum_{k=1}^{infty}frac1{(25k^2+25k+4)}\
&=zeta(3)sum_{k=1}^{infty}frac1{(5k+1)(5k+4)}\
&=zeta(3)sum_{k=1}^{infty}frac13left(frac1{5k+1}-frac1{5k+4}right)\
&=frac{zeta(3)}{3}lim_{m to infty} sum_{k=1}^{m}left(frac1{5k+1}-frac1{5k+4}right)\
&=frac{zeta(3)}{15}lim_{m to infty} left(sum_{k=1}^{m}frac1{k+1/5}-sum_{k=1}^{m}frac1{k+4/5}right)\
&=-frac{zeta(3)}{15}lim_{m to infty} left(sum_{k=1}^{m}(frac1{k}-frac1{k+1/5})-sum_{k=1}^{m}(frac1{k}-frac1{k+4/5})right)\
&=-frac{zeta(3)}{15}(psi(6/5)-psi(9/5))\
&=frac{zeta(3)}{15}(psi(9/5)-psi(6/5))\
end{array}
$
where
$psi(x)$
is the digamma function
(https://en.wikipedia.org/wiki/Digamma_function).
Note:
Wolfy says that
$sum_{k=1}^{infty}frac1{(5k+1)(5k+4)}
= frac{pi}{15}sqrt{1 + frac{2}{sqrt{5}}} - frac1{4}
$.
$endgroup$
1
$begingroup$
(+1) Thank you for answer..
$endgroup$
– Elementary
Dec 27 '18 at 21:01
2
$begingroup$
First, there is a typo $frac{1}{(5k+1)(5k+4)} = color{red}{frac13} left(frac{1}{5k+1} - frac{1}{5k+4}right)$. Second, you can use identities $$psi(z+1) = psi(z) + frac1zquadtext{ and }quadpsi(1-z) - psi(z) = picotpi z$$ to get rid of $psi$.
$endgroup$
– achille hui
Dec 27 '18 at 21:04
1
$begingroup$
Can we do what Wolfy did?
$endgroup$
– Elementary
Dec 27 '18 at 21:04
1
$begingroup$
@achille hui: Thanks for the catch and the reference to the digamma identity.
$endgroup$
– marty cohen
Dec 27 '18 at 22:50
add a comment |
$begingroup$
Proceeding in
my usual naive way,
$begin{array}\
S
&=sum_{n=1}^{infty}sum_{k=1}^{n}frac{1}{(25k^2+25k+4)(n-k+1)^3}\
&=sum_{n=1}^{infty}sum_{k=1}^{n}frac{1}{(25k^2+25k+4)(n-k+1)^3} \
&=sum_{k=1}^{infty}sum_{n=k}^{infty}frac{1}{(25k^2+25k+4)(n-k+1)^3} \
&=sum_{k=1}^{infty}frac1{(25k^2+25k+4)}sum_{n=k}^{infty}frac{1}{(n-k+1)^3} \
&=sum_{k=1}^{infty}frac1{(25k^2+25k+4)}sum_{n=1}^{infty}frac{1}{n^3} \
&=zeta(3)sum_{k=1}^{infty}frac1{(25k^2+25k+4)}\
&=zeta(3)sum_{k=1}^{infty}frac1{(5k+1)(5k+4)}\
&=zeta(3)sum_{k=1}^{infty}frac13left(frac1{5k+1}-frac1{5k+4}right)\
&=frac{zeta(3)}{3}lim_{m to infty} sum_{k=1}^{m}left(frac1{5k+1}-frac1{5k+4}right)\
&=frac{zeta(3)}{15}lim_{m to infty} left(sum_{k=1}^{m}frac1{k+1/5}-sum_{k=1}^{m}frac1{k+4/5}right)\
&=-frac{zeta(3)}{15}lim_{m to infty} left(sum_{k=1}^{m}(frac1{k}-frac1{k+1/5})-sum_{k=1}^{m}(frac1{k}-frac1{k+4/5})right)\
&=-frac{zeta(3)}{15}(psi(6/5)-psi(9/5))\
&=frac{zeta(3)}{15}(psi(9/5)-psi(6/5))\
end{array}
$
where
$psi(x)$
is the digamma function
(https://en.wikipedia.org/wiki/Digamma_function).
Note:
Wolfy says that
$sum_{k=1}^{infty}frac1{(5k+1)(5k+4)}
= frac{pi}{15}sqrt{1 + frac{2}{sqrt{5}}} - frac1{4}
$.
$endgroup$
1
$begingroup$
(+1) Thank you for answer..
$endgroup$
– Elementary
Dec 27 '18 at 21:01
2
$begingroup$
First, there is a typo $frac{1}{(5k+1)(5k+4)} = color{red}{frac13} left(frac{1}{5k+1} - frac{1}{5k+4}right)$. Second, you can use identities $$psi(z+1) = psi(z) + frac1zquadtext{ and }quadpsi(1-z) - psi(z) = picotpi z$$ to get rid of $psi$.
$endgroup$
– achille hui
Dec 27 '18 at 21:04
1
$begingroup$
Can we do what Wolfy did?
$endgroup$
– Elementary
Dec 27 '18 at 21:04
1
$begingroup$
@achille hui: Thanks for the catch and the reference to the digamma identity.
$endgroup$
– marty cohen
Dec 27 '18 at 22:50
add a comment |
$begingroup$
Proceeding in
my usual naive way,
$begin{array}\
S
&=sum_{n=1}^{infty}sum_{k=1}^{n}frac{1}{(25k^2+25k+4)(n-k+1)^3}\
&=sum_{n=1}^{infty}sum_{k=1}^{n}frac{1}{(25k^2+25k+4)(n-k+1)^3} \
&=sum_{k=1}^{infty}sum_{n=k}^{infty}frac{1}{(25k^2+25k+4)(n-k+1)^3} \
&=sum_{k=1}^{infty}frac1{(25k^2+25k+4)}sum_{n=k}^{infty}frac{1}{(n-k+1)^3} \
&=sum_{k=1}^{infty}frac1{(25k^2+25k+4)}sum_{n=1}^{infty}frac{1}{n^3} \
&=zeta(3)sum_{k=1}^{infty}frac1{(25k^2+25k+4)}\
&=zeta(3)sum_{k=1}^{infty}frac1{(5k+1)(5k+4)}\
&=zeta(3)sum_{k=1}^{infty}frac13left(frac1{5k+1}-frac1{5k+4}right)\
&=frac{zeta(3)}{3}lim_{m to infty} sum_{k=1}^{m}left(frac1{5k+1}-frac1{5k+4}right)\
&=frac{zeta(3)}{15}lim_{m to infty} left(sum_{k=1}^{m}frac1{k+1/5}-sum_{k=1}^{m}frac1{k+4/5}right)\
&=-frac{zeta(3)}{15}lim_{m to infty} left(sum_{k=1}^{m}(frac1{k}-frac1{k+1/5})-sum_{k=1}^{m}(frac1{k}-frac1{k+4/5})right)\
&=-frac{zeta(3)}{15}(psi(6/5)-psi(9/5))\
&=frac{zeta(3)}{15}(psi(9/5)-psi(6/5))\
end{array}
$
where
$psi(x)$
is the digamma function
(https://en.wikipedia.org/wiki/Digamma_function).
Note:
Wolfy says that
$sum_{k=1}^{infty}frac1{(5k+1)(5k+4)}
= frac{pi}{15}sqrt{1 + frac{2}{sqrt{5}}} - frac1{4}
$.
$endgroup$
Proceeding in
my usual naive way,
$begin{array}\
S
&=sum_{n=1}^{infty}sum_{k=1}^{n}frac{1}{(25k^2+25k+4)(n-k+1)^3}\
&=sum_{n=1}^{infty}sum_{k=1}^{n}frac{1}{(25k^2+25k+4)(n-k+1)^3} \
&=sum_{k=1}^{infty}sum_{n=k}^{infty}frac{1}{(25k^2+25k+4)(n-k+1)^3} \
&=sum_{k=1}^{infty}frac1{(25k^2+25k+4)}sum_{n=k}^{infty}frac{1}{(n-k+1)^3} \
&=sum_{k=1}^{infty}frac1{(25k^2+25k+4)}sum_{n=1}^{infty}frac{1}{n^3} \
&=zeta(3)sum_{k=1}^{infty}frac1{(25k^2+25k+4)}\
&=zeta(3)sum_{k=1}^{infty}frac1{(5k+1)(5k+4)}\
&=zeta(3)sum_{k=1}^{infty}frac13left(frac1{5k+1}-frac1{5k+4}right)\
&=frac{zeta(3)}{3}lim_{m to infty} sum_{k=1}^{m}left(frac1{5k+1}-frac1{5k+4}right)\
&=frac{zeta(3)}{15}lim_{m to infty} left(sum_{k=1}^{m}frac1{k+1/5}-sum_{k=1}^{m}frac1{k+4/5}right)\
&=-frac{zeta(3)}{15}lim_{m to infty} left(sum_{k=1}^{m}(frac1{k}-frac1{k+1/5})-sum_{k=1}^{m}(frac1{k}-frac1{k+4/5})right)\
&=-frac{zeta(3)}{15}(psi(6/5)-psi(9/5))\
&=frac{zeta(3)}{15}(psi(9/5)-psi(6/5))\
end{array}
$
where
$psi(x)$
is the digamma function
(https://en.wikipedia.org/wiki/Digamma_function).
Note:
Wolfy says that
$sum_{k=1}^{infty}frac1{(5k+1)(5k+4)}
= frac{pi}{15}sqrt{1 + frac{2}{sqrt{5}}} - frac1{4}
$.
edited Dec 27 '18 at 22:49
answered Dec 27 '18 at 20:46
marty cohenmarty cohen
74.4k549129
74.4k549129
1
$begingroup$
(+1) Thank you for answer..
$endgroup$
– Elementary
Dec 27 '18 at 21:01
2
$begingroup$
First, there is a typo $frac{1}{(5k+1)(5k+4)} = color{red}{frac13} left(frac{1}{5k+1} - frac{1}{5k+4}right)$. Second, you can use identities $$psi(z+1) = psi(z) + frac1zquadtext{ and }quadpsi(1-z) - psi(z) = picotpi z$$ to get rid of $psi$.
$endgroup$
– achille hui
Dec 27 '18 at 21:04
1
$begingroup$
Can we do what Wolfy did?
$endgroup$
– Elementary
Dec 27 '18 at 21:04
1
$begingroup$
@achille hui: Thanks for the catch and the reference to the digamma identity.
$endgroup$
– marty cohen
Dec 27 '18 at 22:50
add a comment |
1
$begingroup$
(+1) Thank you for answer..
$endgroup$
– Elementary
Dec 27 '18 at 21:01
2
$begingroup$
First, there is a typo $frac{1}{(5k+1)(5k+4)} = color{red}{frac13} left(frac{1}{5k+1} - frac{1}{5k+4}right)$. Second, you can use identities $$psi(z+1) = psi(z) + frac1zquadtext{ and }quadpsi(1-z) - psi(z) = picotpi z$$ to get rid of $psi$.
$endgroup$
– achille hui
Dec 27 '18 at 21:04
1
$begingroup$
Can we do what Wolfy did?
$endgroup$
– Elementary
Dec 27 '18 at 21:04
1
$begingroup$
@achille hui: Thanks for the catch and the reference to the digamma identity.
$endgroup$
– marty cohen
Dec 27 '18 at 22:50
1
1
$begingroup$
(+1) Thank you for answer..
$endgroup$
– Elementary
Dec 27 '18 at 21:01
$begingroup$
(+1) Thank you for answer..
$endgroup$
– Elementary
Dec 27 '18 at 21:01
2
2
$begingroup$
First, there is a typo $frac{1}{(5k+1)(5k+4)} = color{red}{frac13} left(frac{1}{5k+1} - frac{1}{5k+4}right)$. Second, you can use identities $$psi(z+1) = psi(z) + frac1zquadtext{ and }quadpsi(1-z) - psi(z) = picotpi z$$ to get rid of $psi$.
$endgroup$
– achille hui
Dec 27 '18 at 21:04
$begingroup$
First, there is a typo $frac{1}{(5k+1)(5k+4)} = color{red}{frac13} left(frac{1}{5k+1} - frac{1}{5k+4}right)$. Second, you can use identities $$psi(z+1) = psi(z) + frac1zquadtext{ and }quadpsi(1-z) - psi(z) = picotpi z$$ to get rid of $psi$.
$endgroup$
– achille hui
Dec 27 '18 at 21:04
1
1
$begingroup$
Can we do what Wolfy did?
$endgroup$
– Elementary
Dec 27 '18 at 21:04
$begingroup$
Can we do what Wolfy did?
$endgroup$
– Elementary
Dec 27 '18 at 21:04
1
1
$begingroup$
@achille hui: Thanks for the catch and the reference to the digamma identity.
$endgroup$
– marty cohen
Dec 27 '18 at 22:50
$begingroup$
@achille hui: Thanks for the catch and the reference to the digamma identity.
$endgroup$
– marty cohen
Dec 27 '18 at 22:50
add a comment |
$begingroup$
Change the order of summation, so it's $sum_{k=1}^infty sum_{n=k}^infty$.
Then I get
$$ {frac {zeta left( 3 right) left( 4,pi,cot left( pi/5
right) -15 right) }{60}}
$$
You could also write $$cot(pi/5) = frac{sqrt{2}}{20} (5 + sqrt{5})^{3/2}$$
$endgroup$
1
$begingroup$
I just stopped at the digamma function. Didn't realize it could be turned into a trig function.
$endgroup$
– marty cohen
Dec 27 '18 at 20:47
$begingroup$
$cot(pi/5)=sqrt{1+2/sqrt{5}}$ is a little bit simpler.
$endgroup$
– metamorphy
Dec 27 '18 at 20:56
$begingroup$
That's what Wolfy says too.
$endgroup$
– marty cohen
Dec 27 '18 at 20:56
$begingroup$
Dear teacher, is it possible to write which method you used? How do you get the Closed Form..? Thank You.
$endgroup$
– Elementary
Dec 27 '18 at 21:00
add a comment |
$begingroup$
Change the order of summation, so it's $sum_{k=1}^infty sum_{n=k}^infty$.
Then I get
$$ {frac {zeta left( 3 right) left( 4,pi,cot left( pi/5
right) -15 right) }{60}}
$$
You could also write $$cot(pi/5) = frac{sqrt{2}}{20} (5 + sqrt{5})^{3/2}$$
$endgroup$
1
$begingroup$
I just stopped at the digamma function. Didn't realize it could be turned into a trig function.
$endgroup$
– marty cohen
Dec 27 '18 at 20:47
$begingroup$
$cot(pi/5)=sqrt{1+2/sqrt{5}}$ is a little bit simpler.
$endgroup$
– metamorphy
Dec 27 '18 at 20:56
$begingroup$
That's what Wolfy says too.
$endgroup$
– marty cohen
Dec 27 '18 at 20:56
$begingroup$
Dear teacher, is it possible to write which method you used? How do you get the Closed Form..? Thank You.
$endgroup$
– Elementary
Dec 27 '18 at 21:00
add a comment |
$begingroup$
Change the order of summation, so it's $sum_{k=1}^infty sum_{n=k}^infty$.
Then I get
$$ {frac {zeta left( 3 right) left( 4,pi,cot left( pi/5
right) -15 right) }{60}}
$$
You could also write $$cot(pi/5) = frac{sqrt{2}}{20} (5 + sqrt{5})^{3/2}$$
$endgroup$
Change the order of summation, so it's $sum_{k=1}^infty sum_{n=k}^infty$.
Then I get
$$ {frac {zeta left( 3 right) left( 4,pi,cot left( pi/5
right) -15 right) }{60}}
$$
You could also write $$cot(pi/5) = frac{sqrt{2}}{20} (5 + sqrt{5})^{3/2}$$
answered Dec 27 '18 at 20:43
Robert IsraelRobert Israel
327k23216470
327k23216470
1
$begingroup$
I just stopped at the digamma function. Didn't realize it could be turned into a trig function.
$endgroup$
– marty cohen
Dec 27 '18 at 20:47
$begingroup$
$cot(pi/5)=sqrt{1+2/sqrt{5}}$ is a little bit simpler.
$endgroup$
– metamorphy
Dec 27 '18 at 20:56
$begingroup$
That's what Wolfy says too.
$endgroup$
– marty cohen
Dec 27 '18 at 20:56
$begingroup$
Dear teacher, is it possible to write which method you used? How do you get the Closed Form..? Thank You.
$endgroup$
– Elementary
Dec 27 '18 at 21:00
add a comment |
1
$begingroup$
I just stopped at the digamma function. Didn't realize it could be turned into a trig function.
$endgroup$
– marty cohen
Dec 27 '18 at 20:47
$begingroup$
$cot(pi/5)=sqrt{1+2/sqrt{5}}$ is a little bit simpler.
$endgroup$
– metamorphy
Dec 27 '18 at 20:56
$begingroup$
That's what Wolfy says too.
$endgroup$
– marty cohen
Dec 27 '18 at 20:56
$begingroup$
Dear teacher, is it possible to write which method you used? How do you get the Closed Form..? Thank You.
$endgroup$
– Elementary
Dec 27 '18 at 21:00
1
1
$begingroup$
I just stopped at the digamma function. Didn't realize it could be turned into a trig function.
$endgroup$
– marty cohen
Dec 27 '18 at 20:47
$begingroup$
I just stopped at the digamma function. Didn't realize it could be turned into a trig function.
$endgroup$
– marty cohen
Dec 27 '18 at 20:47
$begingroup$
$cot(pi/5)=sqrt{1+2/sqrt{5}}$ is a little bit simpler.
$endgroup$
– metamorphy
Dec 27 '18 at 20:56
$begingroup$
$cot(pi/5)=sqrt{1+2/sqrt{5}}$ is a little bit simpler.
$endgroup$
– metamorphy
Dec 27 '18 at 20:56
$begingroup$
That's what Wolfy says too.
$endgroup$
– marty cohen
Dec 27 '18 at 20:56
$begingroup$
That's what Wolfy says too.
$endgroup$
– marty cohen
Dec 27 '18 at 20:56
$begingroup$
Dear teacher, is it possible to write which method you used? How do you get the Closed Form..? Thank You.
$endgroup$
– Elementary
Dec 27 '18 at 21:00
$begingroup$
Dear teacher, is it possible to write which method you used? How do you get the Closed Form..? Thank You.
$endgroup$
– Elementary
Dec 27 '18 at 21:00
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054321%2fa-closed-form-for-the-sum-n-1-infty-sum-k-1n-frac125k225k4n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown