Find the sum of series: $sum_{k=0}^{n} (-1)^k binom{n}{k} binom{2n-k}{n}$
$begingroup$
To find the sum:
$$sum_{k=0}^{n} (-1)^k binom{n}{k} binom{2n-k}{n}$$
Try:
I do not have any clue about the question. I was thinking of finding coefficient of some required power in a binomial expansion, but wasn't able to proceed as the power of $x$ seems to be non-constant in each term ($x^{n+k}$).
Please give a small hint!
summation binomial-coefficients binomial-theorem
$endgroup$
add a comment |
$begingroup$
To find the sum:
$$sum_{k=0}^{n} (-1)^k binom{n}{k} binom{2n-k}{n}$$
Try:
I do not have any clue about the question. I was thinking of finding coefficient of some required power in a binomial expansion, but wasn't able to proceed as the power of $x$ seems to be non-constant in each term ($x^{n+k}$).
Please give a small hint!
summation binomial-coefficients binomial-theorem
$endgroup$
add a comment |
$begingroup$
To find the sum:
$$sum_{k=0}^{n} (-1)^k binom{n}{k} binom{2n-k}{n}$$
Try:
I do not have any clue about the question. I was thinking of finding coefficient of some required power in a binomial expansion, but wasn't able to proceed as the power of $x$ seems to be non-constant in each term ($x^{n+k}$).
Please give a small hint!
summation binomial-coefficients binomial-theorem
$endgroup$
To find the sum:
$$sum_{k=0}^{n} (-1)^k binom{n}{k} binom{2n-k}{n}$$
Try:
I do not have any clue about the question. I was thinking of finding coefficient of some required power in a binomial expansion, but wasn't able to proceed as the power of $x$ seems to be non-constant in each term ($x^{n+k}$).
Please give a small hint!
summation binomial-coefficients binomial-theorem
summation binomial-coefficients binomial-theorem
edited Jun 25 '17 at 14:51
uniquesolution
9,1711823
9,1711823
asked Jun 25 '17 at 14:49
samjoesamjoe
6,13311028
6,13311028
add a comment |
add a comment |
5 Answers
5
active
oldest
votes
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
sum_{k = 0}^{n}pars{-1}^{k}{n choose k}{2n - k choose n} & =
sum_{k = 0}^{n}pars{-1}^{k}{n choose k}bracks{z^{n}}pars{1 + z}^{2n - k}
\[5mm] & =
bracks{z^{n}}pars{1 + z}^{2n}
sum_{k = 0}^{n}{n choose k}pars{-,{1 over 1 + z}}^{k}
\[5mm] & =
bracks{z^{n}}pars{1 + z}^{2n}pars{1 - {1 over 1 + z}}^{n} =
bracks{z^{n}}pars{1 + z}^{n},z^{n} = bbx{large 1}
end{align}
$endgroup$
$begingroup$
Thanks for your answer! I think I need to practice more on algebraic manipulation.
$endgroup$
– samjoe
Jun 26 '17 at 3:31
$begingroup$
That's a good idea. Thanks. $left(angle quad angle atop {Huge smile}right)$
$endgroup$
– Felix Marin
Jun 26 '17 at 3:34
$begingroup$
Sorry for off-topic question - do you type out latex or use some software?
$endgroup$
– samjoe
Jun 26 '17 at 3:45
$begingroup$
I type $LaTeX$. The above icon is $LaTeX$ too. It's the code: $texttt{$left(anglequadangleatop{Hugesmile}right)$}$
$endgroup$
– Felix Marin
Jun 26 '17 at 3:59
add a comment |
$begingroup$
Note that
begin{align*}
sum_{k=0}^{n} (-1)^k binom{n}{k} binom{2n-k}{n}&=sum_{k=0}^{n} (-1)^k binom{n}{k} binom{2n-k}{n-k}\
&=sum_{k=0}^{n} (-1)^k binom{n}{k} (-1)^{n-k}binom{-(n+1)}{n-k}\
&=(-1)^{n}sum_{k=0}^{n} binom{n}{k} binom{-(n+1)}{n-k}\
&=(-1)^{n}binom{n-(n+1)}{n}=1.
end{align*}
where we used
$$binom{2n-k}{n-k}=frac{(2n-k)cdots(n+1)}{(n-k)!}=
(-1)^{n-k}frac{(-n-1)cdots(-2n+k)}{(n-k)!}=
(-1)^{n-k}binom{-n-1}{n-k}$$
and the Vandermonde's identity.
$endgroup$
$begingroup$
I am feeling so dumb right now! Thanks!
$endgroup$
– samjoe
Jun 25 '17 at 15:17
$begingroup$
@Robert, could you explain how you went from expression after first '=' to the one after the second '='? Thanks
$endgroup$
– sku
Jul 4 '17 at 23:20
$begingroup$
@sku Yes. See my edited answer.
$endgroup$
– Robert Z
Jul 5 '17 at 4:17
add a comment |
$begingroup$
Another way is to exploit the Melzak's identity: $$fleft(x+yright)=xdbinom{x+n}{n}sum_{k=0}^{n}left(-1right)^{k}dbinom{n}{k}frac{fleft(y-kright)}{x+k},, x,yinmathbb{R},, xneq-k $$ where $f $ is an algebraic polynomial up to degree $n $. So taking $fleft(zright)=dbinom{z+n}{n}z$ we get $$sum_{k=0}^{n}left(-1right)^{k}dbinom{n}{k}dbinom{y+n-k}{n}frac{y-k}{-x-k}=-frac{dbinom{n+y+x}{n}}{xdbinom{x+n}{n}}left(x+yright)$$ so taking $y=n$ and the limit $xrightarrow-n$ we get $$sum_{k=0}^{n}left(-1right)^{k}dbinom{n}{k}dbinom{2n-k}{n}=-lim_{xrightarrow-n}frac{dbinom{2n+x}{n}}{xdbinom{x+n}{n}}left(n+xright)=color{red}{1}$$ as wanted.
$endgroup$
add a comment |
$begingroup$
I think that the simpler and shorter way would be:
$$
eqalign{
& sumlimits_{0, le ,k, le ,n} {left( { - 1} right)^{,k} left( matrix{
n cr
k cr} right)left( matrix{
2n - k cr
n cr} right)} = cr
& = sumlimits_{0, le ,k, le ,n} {left( matrix{
k - n - 1 cr
k cr} right)left( matrix{
2n - k cr
n cr} right)} = cr
& = sumlimits_{0, le ,k, le ,n} {left( matrix{
k - n - 1 cr
k cr} right)left( matrix{
2n - k cr
n - k cr} right)} = cr
& = left( matrix{
n cr
n cr} right) = 1 cr}
$$
where
- 1st step : Upper Negation $ left({ - 1} right)^{,k} left( matrix{
n cr
k cr}right)=left( matrix{
{k-n-1} cr
k cr}right)$ - 2nd step: Symmetry $left( matrix{
n cr
k cr}right)=left( matrix{
n cr
{n-k} cr}right)quad |0 le text{integer} ,n$ - 3rd step: Double Convolution
$$
sumlimits_{a, le ,k, le ,b} {left( matrix{
k - c cr
k - a cr} right)left( matrix{
d - k cr
b - k cr} right)} = left( matrix{
d - c + 1 cr
b - a cr} right)
$$
$endgroup$
add a comment |
$begingroup$
There is also a combinatorial solution. Consider the following problem:
How many subsets of ${1,2,dots,2n}$ of size $n$ contain none of the numbers in ${1,2,dots,n}$?
On the one hand, the answer is obviously $1$; the only such subset is ${n+1,n+2,dots, 2n}$.
On the other hand, we can solve this with the principle of inclusion exclusion. Letting $E_i$ be the number of subsets of size $n$ which do contain $i$, we need to count $E_1^complementcap E_2^complementcap dots cap E_n^complement$. For any $k$ indices $i_1,dots,i_k$, the size of the intersection $E_{i_1}cap E_{i_2}cap dots cap E_{i_k}$ is $binom{2n-k}n$. Taking the alternating sum over all such subsets of indices, we get your sum.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2335811%2ffind-the-sum-of-series-sum-k-0n-1k-binomnk-binom2n-kn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
sum_{k = 0}^{n}pars{-1}^{k}{n choose k}{2n - k choose n} & =
sum_{k = 0}^{n}pars{-1}^{k}{n choose k}bracks{z^{n}}pars{1 + z}^{2n - k}
\[5mm] & =
bracks{z^{n}}pars{1 + z}^{2n}
sum_{k = 0}^{n}{n choose k}pars{-,{1 over 1 + z}}^{k}
\[5mm] & =
bracks{z^{n}}pars{1 + z}^{2n}pars{1 - {1 over 1 + z}}^{n} =
bracks{z^{n}}pars{1 + z}^{n},z^{n} = bbx{large 1}
end{align}
$endgroup$
$begingroup$
Thanks for your answer! I think I need to practice more on algebraic manipulation.
$endgroup$
– samjoe
Jun 26 '17 at 3:31
$begingroup$
That's a good idea. Thanks. $left(angle quad angle atop {Huge smile}right)$
$endgroup$
– Felix Marin
Jun 26 '17 at 3:34
$begingroup$
Sorry for off-topic question - do you type out latex or use some software?
$endgroup$
– samjoe
Jun 26 '17 at 3:45
$begingroup$
I type $LaTeX$. The above icon is $LaTeX$ too. It's the code: $texttt{$left(anglequadangleatop{Hugesmile}right)$}$
$endgroup$
– Felix Marin
Jun 26 '17 at 3:59
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
sum_{k = 0}^{n}pars{-1}^{k}{n choose k}{2n - k choose n} & =
sum_{k = 0}^{n}pars{-1}^{k}{n choose k}bracks{z^{n}}pars{1 + z}^{2n - k}
\[5mm] & =
bracks{z^{n}}pars{1 + z}^{2n}
sum_{k = 0}^{n}{n choose k}pars{-,{1 over 1 + z}}^{k}
\[5mm] & =
bracks{z^{n}}pars{1 + z}^{2n}pars{1 - {1 over 1 + z}}^{n} =
bracks{z^{n}}pars{1 + z}^{n},z^{n} = bbx{large 1}
end{align}
$endgroup$
$begingroup$
Thanks for your answer! I think I need to practice more on algebraic manipulation.
$endgroup$
– samjoe
Jun 26 '17 at 3:31
$begingroup$
That's a good idea. Thanks. $left(angle quad angle atop {Huge smile}right)$
$endgroup$
– Felix Marin
Jun 26 '17 at 3:34
$begingroup$
Sorry for off-topic question - do you type out latex or use some software?
$endgroup$
– samjoe
Jun 26 '17 at 3:45
$begingroup$
I type $LaTeX$. The above icon is $LaTeX$ too. It's the code: $texttt{$left(anglequadangleatop{Hugesmile}right)$}$
$endgroup$
– Felix Marin
Jun 26 '17 at 3:59
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
sum_{k = 0}^{n}pars{-1}^{k}{n choose k}{2n - k choose n} & =
sum_{k = 0}^{n}pars{-1}^{k}{n choose k}bracks{z^{n}}pars{1 + z}^{2n - k}
\[5mm] & =
bracks{z^{n}}pars{1 + z}^{2n}
sum_{k = 0}^{n}{n choose k}pars{-,{1 over 1 + z}}^{k}
\[5mm] & =
bracks{z^{n}}pars{1 + z}^{2n}pars{1 - {1 over 1 + z}}^{n} =
bracks{z^{n}}pars{1 + z}^{n},z^{n} = bbx{large 1}
end{align}
$endgroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
sum_{k = 0}^{n}pars{-1}^{k}{n choose k}{2n - k choose n} & =
sum_{k = 0}^{n}pars{-1}^{k}{n choose k}bracks{z^{n}}pars{1 + z}^{2n - k}
\[5mm] & =
bracks{z^{n}}pars{1 + z}^{2n}
sum_{k = 0}^{n}{n choose k}pars{-,{1 over 1 + z}}^{k}
\[5mm] & =
bracks{z^{n}}pars{1 + z}^{2n}pars{1 - {1 over 1 + z}}^{n} =
bracks{z^{n}}pars{1 + z}^{n},z^{n} = bbx{large 1}
end{align}
answered Jun 25 '17 at 19:14
Felix MarinFelix Marin
68.6k7109145
68.6k7109145
$begingroup$
Thanks for your answer! I think I need to practice more on algebraic manipulation.
$endgroup$
– samjoe
Jun 26 '17 at 3:31
$begingroup$
That's a good idea. Thanks. $left(angle quad angle atop {Huge smile}right)$
$endgroup$
– Felix Marin
Jun 26 '17 at 3:34
$begingroup$
Sorry for off-topic question - do you type out latex or use some software?
$endgroup$
– samjoe
Jun 26 '17 at 3:45
$begingroup$
I type $LaTeX$. The above icon is $LaTeX$ too. It's the code: $texttt{$left(anglequadangleatop{Hugesmile}right)$}$
$endgroup$
– Felix Marin
Jun 26 '17 at 3:59
add a comment |
$begingroup$
Thanks for your answer! I think I need to practice more on algebraic manipulation.
$endgroup$
– samjoe
Jun 26 '17 at 3:31
$begingroup$
That's a good idea. Thanks. $left(angle quad angle atop {Huge smile}right)$
$endgroup$
– Felix Marin
Jun 26 '17 at 3:34
$begingroup$
Sorry for off-topic question - do you type out latex or use some software?
$endgroup$
– samjoe
Jun 26 '17 at 3:45
$begingroup$
I type $LaTeX$. The above icon is $LaTeX$ too. It's the code: $texttt{$left(anglequadangleatop{Hugesmile}right)$}$
$endgroup$
– Felix Marin
Jun 26 '17 at 3:59
$begingroup$
Thanks for your answer! I think I need to practice more on algebraic manipulation.
$endgroup$
– samjoe
Jun 26 '17 at 3:31
$begingroup$
Thanks for your answer! I think I need to practice more on algebraic manipulation.
$endgroup$
– samjoe
Jun 26 '17 at 3:31
$begingroup$
That's a good idea. Thanks. $left(angle quad angle atop {Huge smile}right)$
$endgroup$
– Felix Marin
Jun 26 '17 at 3:34
$begingroup$
That's a good idea. Thanks. $left(angle quad angle atop {Huge smile}right)$
$endgroup$
– Felix Marin
Jun 26 '17 at 3:34
$begingroup$
Sorry for off-topic question - do you type out latex or use some software?
$endgroup$
– samjoe
Jun 26 '17 at 3:45
$begingroup$
Sorry for off-topic question - do you type out latex or use some software?
$endgroup$
– samjoe
Jun 26 '17 at 3:45
$begingroup$
I type $LaTeX$. The above icon is $LaTeX$ too. It's the code: $texttt{$left(anglequadangleatop{Hugesmile}right)$}$
$endgroup$
– Felix Marin
Jun 26 '17 at 3:59
$begingroup$
I type $LaTeX$. The above icon is $LaTeX$ too. It's the code: $texttt{$left(anglequadangleatop{Hugesmile}right)$}$
$endgroup$
– Felix Marin
Jun 26 '17 at 3:59
add a comment |
$begingroup$
Note that
begin{align*}
sum_{k=0}^{n} (-1)^k binom{n}{k} binom{2n-k}{n}&=sum_{k=0}^{n} (-1)^k binom{n}{k} binom{2n-k}{n-k}\
&=sum_{k=0}^{n} (-1)^k binom{n}{k} (-1)^{n-k}binom{-(n+1)}{n-k}\
&=(-1)^{n}sum_{k=0}^{n} binom{n}{k} binom{-(n+1)}{n-k}\
&=(-1)^{n}binom{n-(n+1)}{n}=1.
end{align*}
where we used
$$binom{2n-k}{n-k}=frac{(2n-k)cdots(n+1)}{(n-k)!}=
(-1)^{n-k}frac{(-n-1)cdots(-2n+k)}{(n-k)!}=
(-1)^{n-k}binom{-n-1}{n-k}$$
and the Vandermonde's identity.
$endgroup$
$begingroup$
I am feeling so dumb right now! Thanks!
$endgroup$
– samjoe
Jun 25 '17 at 15:17
$begingroup$
@Robert, could you explain how you went from expression after first '=' to the one after the second '='? Thanks
$endgroup$
– sku
Jul 4 '17 at 23:20
$begingroup$
@sku Yes. See my edited answer.
$endgroup$
– Robert Z
Jul 5 '17 at 4:17
add a comment |
$begingroup$
Note that
begin{align*}
sum_{k=0}^{n} (-1)^k binom{n}{k} binom{2n-k}{n}&=sum_{k=0}^{n} (-1)^k binom{n}{k} binom{2n-k}{n-k}\
&=sum_{k=0}^{n} (-1)^k binom{n}{k} (-1)^{n-k}binom{-(n+1)}{n-k}\
&=(-1)^{n}sum_{k=0}^{n} binom{n}{k} binom{-(n+1)}{n-k}\
&=(-1)^{n}binom{n-(n+1)}{n}=1.
end{align*}
where we used
$$binom{2n-k}{n-k}=frac{(2n-k)cdots(n+1)}{(n-k)!}=
(-1)^{n-k}frac{(-n-1)cdots(-2n+k)}{(n-k)!}=
(-1)^{n-k}binom{-n-1}{n-k}$$
and the Vandermonde's identity.
$endgroup$
$begingroup$
I am feeling so dumb right now! Thanks!
$endgroup$
– samjoe
Jun 25 '17 at 15:17
$begingroup$
@Robert, could you explain how you went from expression after first '=' to the one after the second '='? Thanks
$endgroup$
– sku
Jul 4 '17 at 23:20
$begingroup$
@sku Yes. See my edited answer.
$endgroup$
– Robert Z
Jul 5 '17 at 4:17
add a comment |
$begingroup$
Note that
begin{align*}
sum_{k=0}^{n} (-1)^k binom{n}{k} binom{2n-k}{n}&=sum_{k=0}^{n} (-1)^k binom{n}{k} binom{2n-k}{n-k}\
&=sum_{k=0}^{n} (-1)^k binom{n}{k} (-1)^{n-k}binom{-(n+1)}{n-k}\
&=(-1)^{n}sum_{k=0}^{n} binom{n}{k} binom{-(n+1)}{n-k}\
&=(-1)^{n}binom{n-(n+1)}{n}=1.
end{align*}
where we used
$$binom{2n-k}{n-k}=frac{(2n-k)cdots(n+1)}{(n-k)!}=
(-1)^{n-k}frac{(-n-1)cdots(-2n+k)}{(n-k)!}=
(-1)^{n-k}binom{-n-1}{n-k}$$
and the Vandermonde's identity.
$endgroup$
Note that
begin{align*}
sum_{k=0}^{n} (-1)^k binom{n}{k} binom{2n-k}{n}&=sum_{k=0}^{n} (-1)^k binom{n}{k} binom{2n-k}{n-k}\
&=sum_{k=0}^{n} (-1)^k binom{n}{k} (-1)^{n-k}binom{-(n+1)}{n-k}\
&=(-1)^{n}sum_{k=0}^{n} binom{n}{k} binom{-(n+1)}{n-k}\
&=(-1)^{n}binom{n-(n+1)}{n}=1.
end{align*}
where we used
$$binom{2n-k}{n-k}=frac{(2n-k)cdots(n+1)}{(n-k)!}=
(-1)^{n-k}frac{(-n-1)cdots(-2n+k)}{(n-k)!}=
(-1)^{n-k}binom{-n-1}{n-k}$$
and the Vandermonde's identity.
edited Jul 5 '17 at 4:16
answered Jun 25 '17 at 15:16
Robert ZRobert Z
101k1069142
101k1069142
$begingroup$
I am feeling so dumb right now! Thanks!
$endgroup$
– samjoe
Jun 25 '17 at 15:17
$begingroup$
@Robert, could you explain how you went from expression after first '=' to the one after the second '='? Thanks
$endgroup$
– sku
Jul 4 '17 at 23:20
$begingroup$
@sku Yes. See my edited answer.
$endgroup$
– Robert Z
Jul 5 '17 at 4:17
add a comment |
$begingroup$
I am feeling so dumb right now! Thanks!
$endgroup$
– samjoe
Jun 25 '17 at 15:17
$begingroup$
@Robert, could you explain how you went from expression after first '=' to the one after the second '='? Thanks
$endgroup$
– sku
Jul 4 '17 at 23:20
$begingroup$
@sku Yes. See my edited answer.
$endgroup$
– Robert Z
Jul 5 '17 at 4:17
$begingroup$
I am feeling so dumb right now! Thanks!
$endgroup$
– samjoe
Jun 25 '17 at 15:17
$begingroup$
I am feeling so dumb right now! Thanks!
$endgroup$
– samjoe
Jun 25 '17 at 15:17
$begingroup$
@Robert, could you explain how you went from expression after first '=' to the one after the second '='? Thanks
$endgroup$
– sku
Jul 4 '17 at 23:20
$begingroup$
@Robert, could you explain how you went from expression after first '=' to the one after the second '='? Thanks
$endgroup$
– sku
Jul 4 '17 at 23:20
$begingroup$
@sku Yes. See my edited answer.
$endgroup$
– Robert Z
Jul 5 '17 at 4:17
$begingroup$
@sku Yes. See my edited answer.
$endgroup$
– Robert Z
Jul 5 '17 at 4:17
add a comment |
$begingroup$
Another way is to exploit the Melzak's identity: $$fleft(x+yright)=xdbinom{x+n}{n}sum_{k=0}^{n}left(-1right)^{k}dbinom{n}{k}frac{fleft(y-kright)}{x+k},, x,yinmathbb{R},, xneq-k $$ where $f $ is an algebraic polynomial up to degree $n $. So taking $fleft(zright)=dbinom{z+n}{n}z$ we get $$sum_{k=0}^{n}left(-1right)^{k}dbinom{n}{k}dbinom{y+n-k}{n}frac{y-k}{-x-k}=-frac{dbinom{n+y+x}{n}}{xdbinom{x+n}{n}}left(x+yright)$$ so taking $y=n$ and the limit $xrightarrow-n$ we get $$sum_{k=0}^{n}left(-1right)^{k}dbinom{n}{k}dbinom{2n-k}{n}=-lim_{xrightarrow-n}frac{dbinom{2n+x}{n}}{xdbinom{x+n}{n}}left(n+xright)=color{red}{1}$$ as wanted.
$endgroup$
add a comment |
$begingroup$
Another way is to exploit the Melzak's identity: $$fleft(x+yright)=xdbinom{x+n}{n}sum_{k=0}^{n}left(-1right)^{k}dbinom{n}{k}frac{fleft(y-kright)}{x+k},, x,yinmathbb{R},, xneq-k $$ where $f $ is an algebraic polynomial up to degree $n $. So taking $fleft(zright)=dbinom{z+n}{n}z$ we get $$sum_{k=0}^{n}left(-1right)^{k}dbinom{n}{k}dbinom{y+n-k}{n}frac{y-k}{-x-k}=-frac{dbinom{n+y+x}{n}}{xdbinom{x+n}{n}}left(x+yright)$$ so taking $y=n$ and the limit $xrightarrow-n$ we get $$sum_{k=0}^{n}left(-1right)^{k}dbinom{n}{k}dbinom{2n-k}{n}=-lim_{xrightarrow-n}frac{dbinom{2n+x}{n}}{xdbinom{x+n}{n}}left(n+xright)=color{red}{1}$$ as wanted.
$endgroup$
add a comment |
$begingroup$
Another way is to exploit the Melzak's identity: $$fleft(x+yright)=xdbinom{x+n}{n}sum_{k=0}^{n}left(-1right)^{k}dbinom{n}{k}frac{fleft(y-kright)}{x+k},, x,yinmathbb{R},, xneq-k $$ where $f $ is an algebraic polynomial up to degree $n $. So taking $fleft(zright)=dbinom{z+n}{n}z$ we get $$sum_{k=0}^{n}left(-1right)^{k}dbinom{n}{k}dbinom{y+n-k}{n}frac{y-k}{-x-k}=-frac{dbinom{n+y+x}{n}}{xdbinom{x+n}{n}}left(x+yright)$$ so taking $y=n$ and the limit $xrightarrow-n$ we get $$sum_{k=0}^{n}left(-1right)^{k}dbinom{n}{k}dbinom{2n-k}{n}=-lim_{xrightarrow-n}frac{dbinom{2n+x}{n}}{xdbinom{x+n}{n}}left(n+xright)=color{red}{1}$$ as wanted.
$endgroup$
Another way is to exploit the Melzak's identity: $$fleft(x+yright)=xdbinom{x+n}{n}sum_{k=0}^{n}left(-1right)^{k}dbinom{n}{k}frac{fleft(y-kright)}{x+k},, x,yinmathbb{R},, xneq-k $$ where $f $ is an algebraic polynomial up to degree $n $. So taking $fleft(zright)=dbinom{z+n}{n}z$ we get $$sum_{k=0}^{n}left(-1right)^{k}dbinom{n}{k}dbinom{y+n-k}{n}frac{y-k}{-x-k}=-frac{dbinom{n+y+x}{n}}{xdbinom{x+n}{n}}left(x+yright)$$ so taking $y=n$ and the limit $xrightarrow-n$ we get $$sum_{k=0}^{n}left(-1right)^{k}dbinom{n}{k}dbinom{2n-k}{n}=-lim_{xrightarrow-n}frac{dbinom{2n+x}{n}}{xdbinom{x+n}{n}}left(n+xright)=color{red}{1}$$ as wanted.
answered Jul 6 '17 at 6:53
Marco CantariniMarco Cantarini
29.4k23373
29.4k23373
add a comment |
add a comment |
$begingroup$
I think that the simpler and shorter way would be:
$$
eqalign{
& sumlimits_{0, le ,k, le ,n} {left( { - 1} right)^{,k} left( matrix{
n cr
k cr} right)left( matrix{
2n - k cr
n cr} right)} = cr
& = sumlimits_{0, le ,k, le ,n} {left( matrix{
k - n - 1 cr
k cr} right)left( matrix{
2n - k cr
n cr} right)} = cr
& = sumlimits_{0, le ,k, le ,n} {left( matrix{
k - n - 1 cr
k cr} right)left( matrix{
2n - k cr
n - k cr} right)} = cr
& = left( matrix{
n cr
n cr} right) = 1 cr}
$$
where
- 1st step : Upper Negation $ left({ - 1} right)^{,k} left( matrix{
n cr
k cr}right)=left( matrix{
{k-n-1} cr
k cr}right)$ - 2nd step: Symmetry $left( matrix{
n cr
k cr}right)=left( matrix{
n cr
{n-k} cr}right)quad |0 le text{integer} ,n$ - 3rd step: Double Convolution
$$
sumlimits_{a, le ,k, le ,b} {left( matrix{
k - c cr
k - a cr} right)left( matrix{
d - k cr
b - k cr} right)} = left( matrix{
d - c + 1 cr
b - a cr} right)
$$
$endgroup$
add a comment |
$begingroup$
I think that the simpler and shorter way would be:
$$
eqalign{
& sumlimits_{0, le ,k, le ,n} {left( { - 1} right)^{,k} left( matrix{
n cr
k cr} right)left( matrix{
2n - k cr
n cr} right)} = cr
& = sumlimits_{0, le ,k, le ,n} {left( matrix{
k - n - 1 cr
k cr} right)left( matrix{
2n - k cr
n cr} right)} = cr
& = sumlimits_{0, le ,k, le ,n} {left( matrix{
k - n - 1 cr
k cr} right)left( matrix{
2n - k cr
n - k cr} right)} = cr
& = left( matrix{
n cr
n cr} right) = 1 cr}
$$
where
- 1st step : Upper Negation $ left({ - 1} right)^{,k} left( matrix{
n cr
k cr}right)=left( matrix{
{k-n-1} cr
k cr}right)$ - 2nd step: Symmetry $left( matrix{
n cr
k cr}right)=left( matrix{
n cr
{n-k} cr}right)quad |0 le text{integer} ,n$ - 3rd step: Double Convolution
$$
sumlimits_{a, le ,k, le ,b} {left( matrix{
k - c cr
k - a cr} right)left( matrix{
d - k cr
b - k cr} right)} = left( matrix{
d - c + 1 cr
b - a cr} right)
$$
$endgroup$
add a comment |
$begingroup$
I think that the simpler and shorter way would be:
$$
eqalign{
& sumlimits_{0, le ,k, le ,n} {left( { - 1} right)^{,k} left( matrix{
n cr
k cr} right)left( matrix{
2n - k cr
n cr} right)} = cr
& = sumlimits_{0, le ,k, le ,n} {left( matrix{
k - n - 1 cr
k cr} right)left( matrix{
2n - k cr
n cr} right)} = cr
& = sumlimits_{0, le ,k, le ,n} {left( matrix{
k - n - 1 cr
k cr} right)left( matrix{
2n - k cr
n - k cr} right)} = cr
& = left( matrix{
n cr
n cr} right) = 1 cr}
$$
where
- 1st step : Upper Negation $ left({ - 1} right)^{,k} left( matrix{
n cr
k cr}right)=left( matrix{
{k-n-1} cr
k cr}right)$ - 2nd step: Symmetry $left( matrix{
n cr
k cr}right)=left( matrix{
n cr
{n-k} cr}right)quad |0 le text{integer} ,n$ - 3rd step: Double Convolution
$$
sumlimits_{a, le ,k, le ,b} {left( matrix{
k - c cr
k - a cr} right)left( matrix{
d - k cr
b - k cr} right)} = left( matrix{
d - c + 1 cr
b - a cr} right)
$$
$endgroup$
I think that the simpler and shorter way would be:
$$
eqalign{
& sumlimits_{0, le ,k, le ,n} {left( { - 1} right)^{,k} left( matrix{
n cr
k cr} right)left( matrix{
2n - k cr
n cr} right)} = cr
& = sumlimits_{0, le ,k, le ,n} {left( matrix{
k - n - 1 cr
k cr} right)left( matrix{
2n - k cr
n cr} right)} = cr
& = sumlimits_{0, le ,k, le ,n} {left( matrix{
k - n - 1 cr
k cr} right)left( matrix{
2n - k cr
n - k cr} right)} = cr
& = left( matrix{
n cr
n cr} right) = 1 cr}
$$
where
- 1st step : Upper Negation $ left({ - 1} right)^{,k} left( matrix{
n cr
k cr}right)=left( matrix{
{k-n-1} cr
k cr}right)$ - 2nd step: Symmetry $left( matrix{
n cr
k cr}right)=left( matrix{
n cr
{n-k} cr}right)quad |0 le text{integer} ,n$ - 3rd step: Double Convolution
$$
sumlimits_{a, le ,k, le ,b} {left( matrix{
k - c cr
k - a cr} right)left( matrix{
d - k cr
b - k cr} right)} = left( matrix{
d - c + 1 cr
b - a cr} right)
$$
edited Jul 8 '17 at 15:14
answered Jul 6 '17 at 23:23
G CabG Cab
20.1k31340
20.1k31340
add a comment |
add a comment |
$begingroup$
There is also a combinatorial solution. Consider the following problem:
How many subsets of ${1,2,dots,2n}$ of size $n$ contain none of the numbers in ${1,2,dots,n}$?
On the one hand, the answer is obviously $1$; the only such subset is ${n+1,n+2,dots, 2n}$.
On the other hand, we can solve this with the principle of inclusion exclusion. Letting $E_i$ be the number of subsets of size $n$ which do contain $i$, we need to count $E_1^complementcap E_2^complementcap dots cap E_n^complement$. For any $k$ indices $i_1,dots,i_k$, the size of the intersection $E_{i_1}cap E_{i_2}cap dots cap E_{i_k}$ is $binom{2n-k}n$. Taking the alternating sum over all such subsets of indices, we get your sum.
$endgroup$
add a comment |
$begingroup$
There is also a combinatorial solution. Consider the following problem:
How many subsets of ${1,2,dots,2n}$ of size $n$ contain none of the numbers in ${1,2,dots,n}$?
On the one hand, the answer is obviously $1$; the only such subset is ${n+1,n+2,dots, 2n}$.
On the other hand, we can solve this with the principle of inclusion exclusion. Letting $E_i$ be the number of subsets of size $n$ which do contain $i$, we need to count $E_1^complementcap E_2^complementcap dots cap E_n^complement$. For any $k$ indices $i_1,dots,i_k$, the size of the intersection $E_{i_1}cap E_{i_2}cap dots cap E_{i_k}$ is $binom{2n-k}n$. Taking the alternating sum over all such subsets of indices, we get your sum.
$endgroup$
add a comment |
$begingroup$
There is also a combinatorial solution. Consider the following problem:
How many subsets of ${1,2,dots,2n}$ of size $n$ contain none of the numbers in ${1,2,dots,n}$?
On the one hand, the answer is obviously $1$; the only such subset is ${n+1,n+2,dots, 2n}$.
On the other hand, we can solve this with the principle of inclusion exclusion. Letting $E_i$ be the number of subsets of size $n$ which do contain $i$, we need to count $E_1^complementcap E_2^complementcap dots cap E_n^complement$. For any $k$ indices $i_1,dots,i_k$, the size of the intersection $E_{i_1}cap E_{i_2}cap dots cap E_{i_k}$ is $binom{2n-k}n$. Taking the alternating sum over all such subsets of indices, we get your sum.
$endgroup$
There is also a combinatorial solution. Consider the following problem:
How many subsets of ${1,2,dots,2n}$ of size $n$ contain none of the numbers in ${1,2,dots,n}$?
On the one hand, the answer is obviously $1$; the only such subset is ${n+1,n+2,dots, 2n}$.
On the other hand, we can solve this with the principle of inclusion exclusion. Letting $E_i$ be the number of subsets of size $n$ which do contain $i$, we need to count $E_1^complementcap E_2^complementcap dots cap E_n^complement$. For any $k$ indices $i_1,dots,i_k$, the size of the intersection $E_{i_1}cap E_{i_2}cap dots cap E_{i_k}$ is $binom{2n-k}n$. Taking the alternating sum over all such subsets of indices, we get your sum.
answered Dec 27 '18 at 18:47
Mike EarnestMike Earnest
24.9k22151
24.9k22151
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2335811%2ffind-the-sum-of-series-sum-k-0n-1k-binomnk-binom2n-kn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown