Second order taylor series expansion of $cos(x+2y)e^{2x}$ around $(2, -1)$












3












$begingroup$


I'm asked to find the second order taylor series expansion of $cos(x+2y)e^{2x}$ around $(2, -1)$. It's from an old exam of a professor who doesn't give solutions to them, so I don't know if my results are correct. So I woud like that you tell me if my results are correct, and if not, where I made a mistake. Thank you.





As first partial derivatives, I get $$f_x=-sin(x+2y)e^{2x}+2cos(x+2y)e^{2x}$$ $$f_y=-2sin(x+2y)e^{2x}$$ As second partial derivatives, I get
$$begin{align}
f_{xx}&=-cos(x+2y)e^{2x}-2sin(x+2y)e^{2x}-2sin(x+2y)e^{2x}+4cos(x+2y)e^{2x}\
&=3cos(x+2y)e^{2x}-4sin(x+2y)e^{2x}
end{align}$$

$$f_{yy}=-4cos(x+2y)e^{2x}$$ $$f_{xy}=f_{yx}=-2cos(x+2y)e^{2x}-4sin(x+2y)e^{2x}$$



So now, if I plug everything into the formula, I get
$$e^{4}+2e^{4}(x-2)+frac{1}{2!}(3e^{4}(x-2)^2-4e^{4}(x-2)(y+1)-4e^{4}(y+1)^2)=e^{4}(1+2(x-2)+frac{1}{2!}(3(x-2)^2-4(x-2)(y+1)-4(y+1)^2))$$



Are my results correct ? I just proceeded as usual, using the common two-variables taylor series expansion. Thanks for your help !










share|cite|improve this question











$endgroup$












  • $begingroup$
    Your results seem correct to me. Checking such calculations is usually best done with a tool like Wolfram Alpha
    $endgroup$
    – 0x539
    Dec 27 '18 at 20:02












  • $begingroup$
    @0x539 Yeah, I tried, but either I didn't give in the correct term (i.e. "two-variables taylor series expansion") or WolframAlpha doesn't accept multivariable taylor series expansions.
    $endgroup$
    – Poujh
    Dec 27 '18 at 20:05










  • $begingroup$
    Your probably right. At least the derivatives should be easy to check.
    $endgroup$
    – 0x539
    Dec 27 '18 at 20:10
















3












$begingroup$


I'm asked to find the second order taylor series expansion of $cos(x+2y)e^{2x}$ around $(2, -1)$. It's from an old exam of a professor who doesn't give solutions to them, so I don't know if my results are correct. So I woud like that you tell me if my results are correct, and if not, where I made a mistake. Thank you.





As first partial derivatives, I get $$f_x=-sin(x+2y)e^{2x}+2cos(x+2y)e^{2x}$$ $$f_y=-2sin(x+2y)e^{2x}$$ As second partial derivatives, I get
$$begin{align}
f_{xx}&=-cos(x+2y)e^{2x}-2sin(x+2y)e^{2x}-2sin(x+2y)e^{2x}+4cos(x+2y)e^{2x}\
&=3cos(x+2y)e^{2x}-4sin(x+2y)e^{2x}
end{align}$$

$$f_{yy}=-4cos(x+2y)e^{2x}$$ $$f_{xy}=f_{yx}=-2cos(x+2y)e^{2x}-4sin(x+2y)e^{2x}$$



So now, if I plug everything into the formula, I get
$$e^{4}+2e^{4}(x-2)+frac{1}{2!}(3e^{4}(x-2)^2-4e^{4}(x-2)(y+1)-4e^{4}(y+1)^2)=e^{4}(1+2(x-2)+frac{1}{2!}(3(x-2)^2-4(x-2)(y+1)-4(y+1)^2))$$



Are my results correct ? I just proceeded as usual, using the common two-variables taylor series expansion. Thanks for your help !










share|cite|improve this question











$endgroup$












  • $begingroup$
    Your results seem correct to me. Checking such calculations is usually best done with a tool like Wolfram Alpha
    $endgroup$
    – 0x539
    Dec 27 '18 at 20:02












  • $begingroup$
    @0x539 Yeah, I tried, but either I didn't give in the correct term (i.e. "two-variables taylor series expansion") or WolframAlpha doesn't accept multivariable taylor series expansions.
    $endgroup$
    – Poujh
    Dec 27 '18 at 20:05










  • $begingroup$
    Your probably right. At least the derivatives should be easy to check.
    $endgroup$
    – 0x539
    Dec 27 '18 at 20:10














3












3








3


2



$begingroup$


I'm asked to find the second order taylor series expansion of $cos(x+2y)e^{2x}$ around $(2, -1)$. It's from an old exam of a professor who doesn't give solutions to them, so I don't know if my results are correct. So I woud like that you tell me if my results are correct, and if not, where I made a mistake. Thank you.





As first partial derivatives, I get $$f_x=-sin(x+2y)e^{2x}+2cos(x+2y)e^{2x}$$ $$f_y=-2sin(x+2y)e^{2x}$$ As second partial derivatives, I get
$$begin{align}
f_{xx}&=-cos(x+2y)e^{2x}-2sin(x+2y)e^{2x}-2sin(x+2y)e^{2x}+4cos(x+2y)e^{2x}\
&=3cos(x+2y)e^{2x}-4sin(x+2y)e^{2x}
end{align}$$

$$f_{yy}=-4cos(x+2y)e^{2x}$$ $$f_{xy}=f_{yx}=-2cos(x+2y)e^{2x}-4sin(x+2y)e^{2x}$$



So now, if I plug everything into the formula, I get
$$e^{4}+2e^{4}(x-2)+frac{1}{2!}(3e^{4}(x-2)^2-4e^{4}(x-2)(y+1)-4e^{4}(y+1)^2)=e^{4}(1+2(x-2)+frac{1}{2!}(3(x-2)^2-4(x-2)(y+1)-4(y+1)^2))$$



Are my results correct ? I just proceeded as usual, using the common two-variables taylor series expansion. Thanks for your help !










share|cite|improve this question











$endgroup$




I'm asked to find the second order taylor series expansion of $cos(x+2y)e^{2x}$ around $(2, -1)$. It's from an old exam of a professor who doesn't give solutions to them, so I don't know if my results are correct. So I woud like that you tell me if my results are correct, and if not, where I made a mistake. Thank you.





As first partial derivatives, I get $$f_x=-sin(x+2y)e^{2x}+2cos(x+2y)e^{2x}$$ $$f_y=-2sin(x+2y)e^{2x}$$ As second partial derivatives, I get
$$begin{align}
f_{xx}&=-cos(x+2y)e^{2x}-2sin(x+2y)e^{2x}-2sin(x+2y)e^{2x}+4cos(x+2y)e^{2x}\
&=3cos(x+2y)e^{2x}-4sin(x+2y)e^{2x}
end{align}$$

$$f_{yy}=-4cos(x+2y)e^{2x}$$ $$f_{xy}=f_{yx}=-2cos(x+2y)e^{2x}-4sin(x+2y)e^{2x}$$



So now, if I plug everything into the formula, I get
$$e^{4}+2e^{4}(x-2)+frac{1}{2!}(3e^{4}(x-2)^2-4e^{4}(x-2)(y+1)-4e^{4}(y+1)^2)=e^{4}(1+2(x-2)+frac{1}{2!}(3(x-2)^2-4(x-2)(y+1)-4(y+1)^2))$$



Are my results correct ? I just proceeded as usual, using the common two-variables taylor series expansion. Thanks for your help !







real-analysis analysis multivariable-calculus taylor-expansion approximation






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 27 '18 at 21:16









mechanodroid

28.7k62548




28.7k62548










asked Dec 27 '18 at 19:31









PoujhPoujh

6161516




6161516












  • $begingroup$
    Your results seem correct to me. Checking such calculations is usually best done with a tool like Wolfram Alpha
    $endgroup$
    – 0x539
    Dec 27 '18 at 20:02












  • $begingroup$
    @0x539 Yeah, I tried, but either I didn't give in the correct term (i.e. "two-variables taylor series expansion") or WolframAlpha doesn't accept multivariable taylor series expansions.
    $endgroup$
    – Poujh
    Dec 27 '18 at 20:05










  • $begingroup$
    Your probably right. At least the derivatives should be easy to check.
    $endgroup$
    – 0x539
    Dec 27 '18 at 20:10


















  • $begingroup$
    Your results seem correct to me. Checking such calculations is usually best done with a tool like Wolfram Alpha
    $endgroup$
    – 0x539
    Dec 27 '18 at 20:02












  • $begingroup$
    @0x539 Yeah, I tried, but either I didn't give in the correct term (i.e. "two-variables taylor series expansion") or WolframAlpha doesn't accept multivariable taylor series expansions.
    $endgroup$
    – Poujh
    Dec 27 '18 at 20:05










  • $begingroup$
    Your probably right. At least the derivatives should be easy to check.
    $endgroup$
    – 0x539
    Dec 27 '18 at 20:10
















$begingroup$
Your results seem correct to me. Checking such calculations is usually best done with a tool like Wolfram Alpha
$endgroup$
– 0x539
Dec 27 '18 at 20:02






$begingroup$
Your results seem correct to me. Checking such calculations is usually best done with a tool like Wolfram Alpha
$endgroup$
– 0x539
Dec 27 '18 at 20:02














$begingroup$
@0x539 Yeah, I tried, but either I didn't give in the correct term (i.e. "two-variables taylor series expansion") or WolframAlpha doesn't accept multivariable taylor series expansions.
$endgroup$
– Poujh
Dec 27 '18 at 20:05




$begingroup$
@0x539 Yeah, I tried, but either I didn't give in the correct term (i.e. "two-variables taylor series expansion") or WolframAlpha doesn't accept multivariable taylor series expansions.
$endgroup$
– Poujh
Dec 27 '18 at 20:05












$begingroup$
Your probably right. At least the derivatives should be easy to check.
$endgroup$
– 0x539
Dec 27 '18 at 20:10




$begingroup$
Your probably right. At least the derivatives should be easy to check.
$endgroup$
– 0x539
Dec 27 '18 at 20:10










2 Answers
2






active

oldest

votes


















3












$begingroup$

Yes, it is correct. An easy way to make sure is just to plot things: blue is the original function, red is your expansion



enter image description here



And this is the code to draw it



from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import numpy as np

fig = plt.figure()
ax = fig.gca(projection = '3d')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')

def f(X, Y):
return np.cos(X + 2 * Y) * np.exp(2 * X)

def taylor(x, y):
return np.exp(4) * (1 + 2 * (x - 2) + 0.5 * (3 * (x - 2)**2 - 4 * (x - 2) * (y + 1) - 4 * (y + 1)**2))

# Make data.
X = np.arange(1, 3, 0.25)
Y = np.arange(-2, 0, 0.25)
X, Y = np.meshgrid(X, Y)
Z = f(X, Y)
W = taylor(X, Y)

# Plot the surface.
surf = ax.plot_surface(X, Y, Z, cmap = cm.autumn, linewidth = 0, antialiased = False, alpha = 0.5)
sur1 = ax.plot_surface(X, Y, W, cmap = cm.winter, linewidth = 0, antialiased = False, alpha = 0.7)

# Add a color bar which maps values to colors.
ax.xaxis.set_major_locator(LinearLocator(4))
ax.yaxis.set_major_locator(LinearLocator(4))
ax.zaxis.set_major_locator(LinearLocator(4))

plt.show()





share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    Can you post your code as well ?
    $endgroup$
    – Gabriel Romon
    Dec 27 '18 at 21:07






  • 1




    $begingroup$
    @GabrielRomon Done
    $endgroup$
    – caverac
    Dec 27 '18 at 21:15



















2












$begingroup$

It is correct. You can also obtain the expansion by using the Taylor series of $sin, cos,exp$:



begin{align}
cos(x+2y)e^{2x} &= cos((x-2) + 2(y+1))e^{4+2(x-2)}\
&= e^{4}big[cos(x-2)cos(2(y+1)) - sin(x-2)sin(2(y+1))big]e^{2(x+2)}\
&= e^{4}left[left(sum_{n=0}^infty frac{(-1)^n}{(2n)!}(x-2)^{2n}right)left(sum_{n=0}^infty frac{(-1)^n}{(2n)!}2^{2n}(y+1)^{2n}right)right.\
&- left.left(sum_{n=0}^infty frac{(-1)^n}{(2n+1)!}(x-2)^{2n+1}right)left(sum_{n=0}^infty frac{(-1)^n}{(2n+1)!}2^{2n+1}(y+1)^{2n+1}right)right]left(sum_{n=0}^infty frac{2^n}{n!}(x-2)^{n}right)\
&= e^{4}left[1+2(x-2) + left(frac{(-1)^1}{2!} - frac{(-1)^1}{1!}frac{2^1}{1!}right)(x-2)^2 - frac{(-1)^0}{0!}2^1cdot frac{2}{2!}(x-2)(y+1) + frac{(-1)^1}{2!}2^2(y+2)^2 + cdotsright]\
&= e^4left[1+2(x-2)+frac32 e^{4}(x-2)^2-2e^{4}(x-2)(y+1)-2e^{4}(y+1)^2 + cdotsright]
end{align}






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054291%2fsecond-order-taylor-series-expansion-of-cosx2ye2x-around-2-1%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    Yes, it is correct. An easy way to make sure is just to plot things: blue is the original function, red is your expansion



    enter image description here



    And this is the code to draw it



    from mpl_toolkits.mplot3d import Axes3D
    import matplotlib.pyplot as plt
    from matplotlib import cm
    from matplotlib.ticker import LinearLocator, FormatStrFormatter
    import numpy as np

    fig = plt.figure()
    ax = fig.gca(projection = '3d')
    ax.set_xlabel('x')
    ax.set_ylabel('y')
    ax.set_zlabel('z')

    def f(X, Y):
    return np.cos(X + 2 * Y) * np.exp(2 * X)

    def taylor(x, y):
    return np.exp(4) * (1 + 2 * (x - 2) + 0.5 * (3 * (x - 2)**2 - 4 * (x - 2) * (y + 1) - 4 * (y + 1)**2))

    # Make data.
    X = np.arange(1, 3, 0.25)
    Y = np.arange(-2, 0, 0.25)
    X, Y = np.meshgrid(X, Y)
    Z = f(X, Y)
    W = taylor(X, Y)

    # Plot the surface.
    surf = ax.plot_surface(X, Y, Z, cmap = cm.autumn, linewidth = 0, antialiased = False, alpha = 0.5)
    sur1 = ax.plot_surface(X, Y, W, cmap = cm.winter, linewidth = 0, antialiased = False, alpha = 0.7)

    # Add a color bar which maps values to colors.
    ax.xaxis.set_major_locator(LinearLocator(4))
    ax.yaxis.set_major_locator(LinearLocator(4))
    ax.zaxis.set_major_locator(LinearLocator(4))

    plt.show()





    share|cite|improve this answer











    $endgroup$









    • 1




      $begingroup$
      Can you post your code as well ?
      $endgroup$
      – Gabriel Romon
      Dec 27 '18 at 21:07






    • 1




      $begingroup$
      @GabrielRomon Done
      $endgroup$
      – caverac
      Dec 27 '18 at 21:15
















    3












    $begingroup$

    Yes, it is correct. An easy way to make sure is just to plot things: blue is the original function, red is your expansion



    enter image description here



    And this is the code to draw it



    from mpl_toolkits.mplot3d import Axes3D
    import matplotlib.pyplot as plt
    from matplotlib import cm
    from matplotlib.ticker import LinearLocator, FormatStrFormatter
    import numpy as np

    fig = plt.figure()
    ax = fig.gca(projection = '3d')
    ax.set_xlabel('x')
    ax.set_ylabel('y')
    ax.set_zlabel('z')

    def f(X, Y):
    return np.cos(X + 2 * Y) * np.exp(2 * X)

    def taylor(x, y):
    return np.exp(4) * (1 + 2 * (x - 2) + 0.5 * (3 * (x - 2)**2 - 4 * (x - 2) * (y + 1) - 4 * (y + 1)**2))

    # Make data.
    X = np.arange(1, 3, 0.25)
    Y = np.arange(-2, 0, 0.25)
    X, Y = np.meshgrid(X, Y)
    Z = f(X, Y)
    W = taylor(X, Y)

    # Plot the surface.
    surf = ax.plot_surface(X, Y, Z, cmap = cm.autumn, linewidth = 0, antialiased = False, alpha = 0.5)
    sur1 = ax.plot_surface(X, Y, W, cmap = cm.winter, linewidth = 0, antialiased = False, alpha = 0.7)

    # Add a color bar which maps values to colors.
    ax.xaxis.set_major_locator(LinearLocator(4))
    ax.yaxis.set_major_locator(LinearLocator(4))
    ax.zaxis.set_major_locator(LinearLocator(4))

    plt.show()





    share|cite|improve this answer











    $endgroup$









    • 1




      $begingroup$
      Can you post your code as well ?
      $endgroup$
      – Gabriel Romon
      Dec 27 '18 at 21:07






    • 1




      $begingroup$
      @GabrielRomon Done
      $endgroup$
      – caverac
      Dec 27 '18 at 21:15














    3












    3








    3





    $begingroup$

    Yes, it is correct. An easy way to make sure is just to plot things: blue is the original function, red is your expansion



    enter image description here



    And this is the code to draw it



    from mpl_toolkits.mplot3d import Axes3D
    import matplotlib.pyplot as plt
    from matplotlib import cm
    from matplotlib.ticker import LinearLocator, FormatStrFormatter
    import numpy as np

    fig = plt.figure()
    ax = fig.gca(projection = '3d')
    ax.set_xlabel('x')
    ax.set_ylabel('y')
    ax.set_zlabel('z')

    def f(X, Y):
    return np.cos(X + 2 * Y) * np.exp(2 * X)

    def taylor(x, y):
    return np.exp(4) * (1 + 2 * (x - 2) + 0.5 * (3 * (x - 2)**2 - 4 * (x - 2) * (y + 1) - 4 * (y + 1)**2))

    # Make data.
    X = np.arange(1, 3, 0.25)
    Y = np.arange(-2, 0, 0.25)
    X, Y = np.meshgrid(X, Y)
    Z = f(X, Y)
    W = taylor(X, Y)

    # Plot the surface.
    surf = ax.plot_surface(X, Y, Z, cmap = cm.autumn, linewidth = 0, antialiased = False, alpha = 0.5)
    sur1 = ax.plot_surface(X, Y, W, cmap = cm.winter, linewidth = 0, antialiased = False, alpha = 0.7)

    # Add a color bar which maps values to colors.
    ax.xaxis.set_major_locator(LinearLocator(4))
    ax.yaxis.set_major_locator(LinearLocator(4))
    ax.zaxis.set_major_locator(LinearLocator(4))

    plt.show()





    share|cite|improve this answer











    $endgroup$



    Yes, it is correct. An easy way to make sure is just to plot things: blue is the original function, red is your expansion



    enter image description here



    And this is the code to draw it



    from mpl_toolkits.mplot3d import Axes3D
    import matplotlib.pyplot as plt
    from matplotlib import cm
    from matplotlib.ticker import LinearLocator, FormatStrFormatter
    import numpy as np

    fig = plt.figure()
    ax = fig.gca(projection = '3d')
    ax.set_xlabel('x')
    ax.set_ylabel('y')
    ax.set_zlabel('z')

    def f(X, Y):
    return np.cos(X + 2 * Y) * np.exp(2 * X)

    def taylor(x, y):
    return np.exp(4) * (1 + 2 * (x - 2) + 0.5 * (3 * (x - 2)**2 - 4 * (x - 2) * (y + 1) - 4 * (y + 1)**2))

    # Make data.
    X = np.arange(1, 3, 0.25)
    Y = np.arange(-2, 0, 0.25)
    X, Y = np.meshgrid(X, Y)
    Z = f(X, Y)
    W = taylor(X, Y)

    # Plot the surface.
    surf = ax.plot_surface(X, Y, Z, cmap = cm.autumn, linewidth = 0, antialiased = False, alpha = 0.5)
    sur1 = ax.plot_surface(X, Y, W, cmap = cm.winter, linewidth = 0, antialiased = False, alpha = 0.7)

    # Add a color bar which maps values to colors.
    ax.xaxis.set_major_locator(LinearLocator(4))
    ax.yaxis.set_major_locator(LinearLocator(4))
    ax.zaxis.set_major_locator(LinearLocator(4))

    plt.show()






    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Dec 27 '18 at 21:15

























    answered Dec 27 '18 at 20:22









    caveraccaverac

    14.8k31130




    14.8k31130








    • 1




      $begingroup$
      Can you post your code as well ?
      $endgroup$
      – Gabriel Romon
      Dec 27 '18 at 21:07






    • 1




      $begingroup$
      @GabrielRomon Done
      $endgroup$
      – caverac
      Dec 27 '18 at 21:15














    • 1




      $begingroup$
      Can you post your code as well ?
      $endgroup$
      – Gabriel Romon
      Dec 27 '18 at 21:07






    • 1




      $begingroup$
      @GabrielRomon Done
      $endgroup$
      – caverac
      Dec 27 '18 at 21:15








    1




    1




    $begingroup$
    Can you post your code as well ?
    $endgroup$
    – Gabriel Romon
    Dec 27 '18 at 21:07




    $begingroup$
    Can you post your code as well ?
    $endgroup$
    – Gabriel Romon
    Dec 27 '18 at 21:07




    1




    1




    $begingroup$
    @GabrielRomon Done
    $endgroup$
    – caverac
    Dec 27 '18 at 21:15




    $begingroup$
    @GabrielRomon Done
    $endgroup$
    – caverac
    Dec 27 '18 at 21:15











    2












    $begingroup$

    It is correct. You can also obtain the expansion by using the Taylor series of $sin, cos,exp$:



    begin{align}
    cos(x+2y)e^{2x} &= cos((x-2) + 2(y+1))e^{4+2(x-2)}\
    &= e^{4}big[cos(x-2)cos(2(y+1)) - sin(x-2)sin(2(y+1))big]e^{2(x+2)}\
    &= e^{4}left[left(sum_{n=0}^infty frac{(-1)^n}{(2n)!}(x-2)^{2n}right)left(sum_{n=0}^infty frac{(-1)^n}{(2n)!}2^{2n}(y+1)^{2n}right)right.\
    &- left.left(sum_{n=0}^infty frac{(-1)^n}{(2n+1)!}(x-2)^{2n+1}right)left(sum_{n=0}^infty frac{(-1)^n}{(2n+1)!}2^{2n+1}(y+1)^{2n+1}right)right]left(sum_{n=0}^infty frac{2^n}{n!}(x-2)^{n}right)\
    &= e^{4}left[1+2(x-2) + left(frac{(-1)^1}{2!} - frac{(-1)^1}{1!}frac{2^1}{1!}right)(x-2)^2 - frac{(-1)^0}{0!}2^1cdot frac{2}{2!}(x-2)(y+1) + frac{(-1)^1}{2!}2^2(y+2)^2 + cdotsright]\
    &= e^4left[1+2(x-2)+frac32 e^{4}(x-2)^2-2e^{4}(x-2)(y+1)-2e^{4}(y+1)^2 + cdotsright]
    end{align}






    share|cite|improve this answer











    $endgroup$


















      2












      $begingroup$

      It is correct. You can also obtain the expansion by using the Taylor series of $sin, cos,exp$:



      begin{align}
      cos(x+2y)e^{2x} &= cos((x-2) + 2(y+1))e^{4+2(x-2)}\
      &= e^{4}big[cos(x-2)cos(2(y+1)) - sin(x-2)sin(2(y+1))big]e^{2(x+2)}\
      &= e^{4}left[left(sum_{n=0}^infty frac{(-1)^n}{(2n)!}(x-2)^{2n}right)left(sum_{n=0}^infty frac{(-1)^n}{(2n)!}2^{2n}(y+1)^{2n}right)right.\
      &- left.left(sum_{n=0}^infty frac{(-1)^n}{(2n+1)!}(x-2)^{2n+1}right)left(sum_{n=0}^infty frac{(-1)^n}{(2n+1)!}2^{2n+1}(y+1)^{2n+1}right)right]left(sum_{n=0}^infty frac{2^n}{n!}(x-2)^{n}right)\
      &= e^{4}left[1+2(x-2) + left(frac{(-1)^1}{2!} - frac{(-1)^1}{1!}frac{2^1}{1!}right)(x-2)^2 - frac{(-1)^0}{0!}2^1cdot frac{2}{2!}(x-2)(y+1) + frac{(-1)^1}{2!}2^2(y+2)^2 + cdotsright]\
      &= e^4left[1+2(x-2)+frac32 e^{4}(x-2)^2-2e^{4}(x-2)(y+1)-2e^{4}(y+1)^2 + cdotsright]
      end{align}






      share|cite|improve this answer











      $endgroup$
















        2












        2








        2





        $begingroup$

        It is correct. You can also obtain the expansion by using the Taylor series of $sin, cos,exp$:



        begin{align}
        cos(x+2y)e^{2x} &= cos((x-2) + 2(y+1))e^{4+2(x-2)}\
        &= e^{4}big[cos(x-2)cos(2(y+1)) - sin(x-2)sin(2(y+1))big]e^{2(x+2)}\
        &= e^{4}left[left(sum_{n=0}^infty frac{(-1)^n}{(2n)!}(x-2)^{2n}right)left(sum_{n=0}^infty frac{(-1)^n}{(2n)!}2^{2n}(y+1)^{2n}right)right.\
        &- left.left(sum_{n=0}^infty frac{(-1)^n}{(2n+1)!}(x-2)^{2n+1}right)left(sum_{n=0}^infty frac{(-1)^n}{(2n+1)!}2^{2n+1}(y+1)^{2n+1}right)right]left(sum_{n=0}^infty frac{2^n}{n!}(x-2)^{n}right)\
        &= e^{4}left[1+2(x-2) + left(frac{(-1)^1}{2!} - frac{(-1)^1}{1!}frac{2^1}{1!}right)(x-2)^2 - frac{(-1)^0}{0!}2^1cdot frac{2}{2!}(x-2)(y+1) + frac{(-1)^1}{2!}2^2(y+2)^2 + cdotsright]\
        &= e^4left[1+2(x-2)+frac32 e^{4}(x-2)^2-2e^{4}(x-2)(y+1)-2e^{4}(y+1)^2 + cdotsright]
        end{align}






        share|cite|improve this answer











        $endgroup$



        It is correct. You can also obtain the expansion by using the Taylor series of $sin, cos,exp$:



        begin{align}
        cos(x+2y)e^{2x} &= cos((x-2) + 2(y+1))e^{4+2(x-2)}\
        &= e^{4}big[cos(x-2)cos(2(y+1)) - sin(x-2)sin(2(y+1))big]e^{2(x+2)}\
        &= e^{4}left[left(sum_{n=0}^infty frac{(-1)^n}{(2n)!}(x-2)^{2n}right)left(sum_{n=0}^infty frac{(-1)^n}{(2n)!}2^{2n}(y+1)^{2n}right)right.\
        &- left.left(sum_{n=0}^infty frac{(-1)^n}{(2n+1)!}(x-2)^{2n+1}right)left(sum_{n=0}^infty frac{(-1)^n}{(2n+1)!}2^{2n+1}(y+1)^{2n+1}right)right]left(sum_{n=0}^infty frac{2^n}{n!}(x-2)^{n}right)\
        &= e^{4}left[1+2(x-2) + left(frac{(-1)^1}{2!} - frac{(-1)^1}{1!}frac{2^1}{1!}right)(x-2)^2 - frac{(-1)^0}{0!}2^1cdot frac{2}{2!}(x-2)(y+1) + frac{(-1)^1}{2!}2^2(y+2)^2 + cdotsright]\
        &= e^4left[1+2(x-2)+frac32 e^{4}(x-2)^2-2e^{4}(x-2)(y+1)-2e^{4}(y+1)^2 + cdotsright]
        end{align}







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Dec 27 '18 at 21:05

























        answered Dec 27 '18 at 21:00









        mechanodroidmechanodroid

        28.7k62548




        28.7k62548






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054291%2fsecond-order-taylor-series-expansion-of-cosx2ye2x-around-2-1%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Wiesbaden

            Marschland

            Dieringhausen