Second order taylor series expansion of $cos(x+2y)e^{2x}$ around $(2, -1)$
$begingroup$
I'm asked to find the second order taylor series expansion of $cos(x+2y)e^{2x}$ around $(2, -1)$. It's from an old exam of a professor who doesn't give solutions to them, so I don't know if my results are correct. So I woud like that you tell me if my results are correct, and if not, where I made a mistake. Thank you.
As first partial derivatives, I get $$f_x=-sin(x+2y)e^{2x}+2cos(x+2y)e^{2x}$$ $$f_y=-2sin(x+2y)e^{2x}$$ As second partial derivatives, I get
$$begin{align}
f_{xx}&=-cos(x+2y)e^{2x}-2sin(x+2y)e^{2x}-2sin(x+2y)e^{2x}+4cos(x+2y)e^{2x}\
&=3cos(x+2y)e^{2x}-4sin(x+2y)e^{2x}
end{align}$$
$$f_{yy}=-4cos(x+2y)e^{2x}$$ $$f_{xy}=f_{yx}=-2cos(x+2y)e^{2x}-4sin(x+2y)e^{2x}$$
So now, if I plug everything into the formula, I get
$$e^{4}+2e^{4}(x-2)+frac{1}{2!}(3e^{4}(x-2)^2-4e^{4}(x-2)(y+1)-4e^{4}(y+1)^2)=e^{4}(1+2(x-2)+frac{1}{2!}(3(x-2)^2-4(x-2)(y+1)-4(y+1)^2))$$
Are my results correct ? I just proceeded as usual, using the common two-variables taylor series expansion. Thanks for your help !
real-analysis analysis multivariable-calculus taylor-expansion approximation
$endgroup$
add a comment |
$begingroup$
I'm asked to find the second order taylor series expansion of $cos(x+2y)e^{2x}$ around $(2, -1)$. It's from an old exam of a professor who doesn't give solutions to them, so I don't know if my results are correct. So I woud like that you tell me if my results are correct, and if not, where I made a mistake. Thank you.
As first partial derivatives, I get $$f_x=-sin(x+2y)e^{2x}+2cos(x+2y)e^{2x}$$ $$f_y=-2sin(x+2y)e^{2x}$$ As second partial derivatives, I get
$$begin{align}
f_{xx}&=-cos(x+2y)e^{2x}-2sin(x+2y)e^{2x}-2sin(x+2y)e^{2x}+4cos(x+2y)e^{2x}\
&=3cos(x+2y)e^{2x}-4sin(x+2y)e^{2x}
end{align}$$
$$f_{yy}=-4cos(x+2y)e^{2x}$$ $$f_{xy}=f_{yx}=-2cos(x+2y)e^{2x}-4sin(x+2y)e^{2x}$$
So now, if I plug everything into the formula, I get
$$e^{4}+2e^{4}(x-2)+frac{1}{2!}(3e^{4}(x-2)^2-4e^{4}(x-2)(y+1)-4e^{4}(y+1)^2)=e^{4}(1+2(x-2)+frac{1}{2!}(3(x-2)^2-4(x-2)(y+1)-4(y+1)^2))$$
Are my results correct ? I just proceeded as usual, using the common two-variables taylor series expansion. Thanks for your help !
real-analysis analysis multivariable-calculus taylor-expansion approximation
$endgroup$
$begingroup$
Your results seem correct to me. Checking such calculations is usually best done with a tool like Wolfram Alpha
$endgroup$
– 0x539
Dec 27 '18 at 20:02
$begingroup$
@0x539 Yeah, I tried, but either I didn't give in the correct term (i.e. "two-variables taylor series expansion") or WolframAlpha doesn't accept multivariable taylor series expansions.
$endgroup$
– Poujh
Dec 27 '18 at 20:05
$begingroup$
Your probably right. At least the derivatives should be easy to check.
$endgroup$
– 0x539
Dec 27 '18 at 20:10
add a comment |
$begingroup$
I'm asked to find the second order taylor series expansion of $cos(x+2y)e^{2x}$ around $(2, -1)$. It's from an old exam of a professor who doesn't give solutions to them, so I don't know if my results are correct. So I woud like that you tell me if my results are correct, and if not, where I made a mistake. Thank you.
As first partial derivatives, I get $$f_x=-sin(x+2y)e^{2x}+2cos(x+2y)e^{2x}$$ $$f_y=-2sin(x+2y)e^{2x}$$ As second partial derivatives, I get
$$begin{align}
f_{xx}&=-cos(x+2y)e^{2x}-2sin(x+2y)e^{2x}-2sin(x+2y)e^{2x}+4cos(x+2y)e^{2x}\
&=3cos(x+2y)e^{2x}-4sin(x+2y)e^{2x}
end{align}$$
$$f_{yy}=-4cos(x+2y)e^{2x}$$ $$f_{xy}=f_{yx}=-2cos(x+2y)e^{2x}-4sin(x+2y)e^{2x}$$
So now, if I plug everything into the formula, I get
$$e^{4}+2e^{4}(x-2)+frac{1}{2!}(3e^{4}(x-2)^2-4e^{4}(x-2)(y+1)-4e^{4}(y+1)^2)=e^{4}(1+2(x-2)+frac{1}{2!}(3(x-2)^2-4(x-2)(y+1)-4(y+1)^2))$$
Are my results correct ? I just proceeded as usual, using the common two-variables taylor series expansion. Thanks for your help !
real-analysis analysis multivariable-calculus taylor-expansion approximation
$endgroup$
I'm asked to find the second order taylor series expansion of $cos(x+2y)e^{2x}$ around $(2, -1)$. It's from an old exam of a professor who doesn't give solutions to them, so I don't know if my results are correct. So I woud like that you tell me if my results are correct, and if not, where I made a mistake. Thank you.
As first partial derivatives, I get $$f_x=-sin(x+2y)e^{2x}+2cos(x+2y)e^{2x}$$ $$f_y=-2sin(x+2y)e^{2x}$$ As second partial derivatives, I get
$$begin{align}
f_{xx}&=-cos(x+2y)e^{2x}-2sin(x+2y)e^{2x}-2sin(x+2y)e^{2x}+4cos(x+2y)e^{2x}\
&=3cos(x+2y)e^{2x}-4sin(x+2y)e^{2x}
end{align}$$
$$f_{yy}=-4cos(x+2y)e^{2x}$$ $$f_{xy}=f_{yx}=-2cos(x+2y)e^{2x}-4sin(x+2y)e^{2x}$$
So now, if I plug everything into the formula, I get
$$e^{4}+2e^{4}(x-2)+frac{1}{2!}(3e^{4}(x-2)^2-4e^{4}(x-2)(y+1)-4e^{4}(y+1)^2)=e^{4}(1+2(x-2)+frac{1}{2!}(3(x-2)^2-4(x-2)(y+1)-4(y+1)^2))$$
Are my results correct ? I just proceeded as usual, using the common two-variables taylor series expansion. Thanks for your help !
real-analysis analysis multivariable-calculus taylor-expansion approximation
real-analysis analysis multivariable-calculus taylor-expansion approximation
edited Dec 27 '18 at 21:16
mechanodroid
28.7k62548
28.7k62548
asked Dec 27 '18 at 19:31
PoujhPoujh
6161516
6161516
$begingroup$
Your results seem correct to me. Checking such calculations is usually best done with a tool like Wolfram Alpha
$endgroup$
– 0x539
Dec 27 '18 at 20:02
$begingroup$
@0x539 Yeah, I tried, but either I didn't give in the correct term (i.e. "two-variables taylor series expansion") or WolframAlpha doesn't accept multivariable taylor series expansions.
$endgroup$
– Poujh
Dec 27 '18 at 20:05
$begingroup$
Your probably right. At least the derivatives should be easy to check.
$endgroup$
– 0x539
Dec 27 '18 at 20:10
add a comment |
$begingroup$
Your results seem correct to me. Checking such calculations is usually best done with a tool like Wolfram Alpha
$endgroup$
– 0x539
Dec 27 '18 at 20:02
$begingroup$
@0x539 Yeah, I tried, but either I didn't give in the correct term (i.e. "two-variables taylor series expansion") or WolframAlpha doesn't accept multivariable taylor series expansions.
$endgroup$
– Poujh
Dec 27 '18 at 20:05
$begingroup$
Your probably right. At least the derivatives should be easy to check.
$endgroup$
– 0x539
Dec 27 '18 at 20:10
$begingroup$
Your results seem correct to me. Checking such calculations is usually best done with a tool like Wolfram Alpha
$endgroup$
– 0x539
Dec 27 '18 at 20:02
$begingroup$
Your results seem correct to me. Checking such calculations is usually best done with a tool like Wolfram Alpha
$endgroup$
– 0x539
Dec 27 '18 at 20:02
$begingroup$
@0x539 Yeah, I tried, but either I didn't give in the correct term (i.e. "two-variables taylor series expansion") or WolframAlpha doesn't accept multivariable taylor series expansions.
$endgroup$
– Poujh
Dec 27 '18 at 20:05
$begingroup$
@0x539 Yeah, I tried, but either I didn't give in the correct term (i.e. "two-variables taylor series expansion") or WolframAlpha doesn't accept multivariable taylor series expansions.
$endgroup$
– Poujh
Dec 27 '18 at 20:05
$begingroup$
Your probably right. At least the derivatives should be easy to check.
$endgroup$
– 0x539
Dec 27 '18 at 20:10
$begingroup$
Your probably right. At least the derivatives should be easy to check.
$endgroup$
– 0x539
Dec 27 '18 at 20:10
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Yes, it is correct. An easy way to make sure is just to plot things: blue is the original function, red is your expansion
And this is the code to draw it
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import numpy as np
fig = plt.figure()
ax = fig.gca(projection = '3d')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
def f(X, Y):
return np.cos(X + 2 * Y) * np.exp(2 * X)
def taylor(x, y):
return np.exp(4) * (1 + 2 * (x - 2) + 0.5 * (3 * (x - 2)**2 - 4 * (x - 2) * (y + 1) - 4 * (y + 1)**2))
# Make data.
X = np.arange(1, 3, 0.25)
Y = np.arange(-2, 0, 0.25)
X, Y = np.meshgrid(X, Y)
Z = f(X, Y)
W = taylor(X, Y)
# Plot the surface.
surf = ax.plot_surface(X, Y, Z, cmap = cm.autumn, linewidth = 0, antialiased = False, alpha = 0.5)
sur1 = ax.plot_surface(X, Y, W, cmap = cm.winter, linewidth = 0, antialiased = False, alpha = 0.7)
# Add a color bar which maps values to colors.
ax.xaxis.set_major_locator(LinearLocator(4))
ax.yaxis.set_major_locator(LinearLocator(4))
ax.zaxis.set_major_locator(LinearLocator(4))
plt.show()
$endgroup$
1
$begingroup$
Can you post your code as well ?
$endgroup$
– Gabriel Romon
Dec 27 '18 at 21:07
1
$begingroup$
@GabrielRomon Done
$endgroup$
– caverac
Dec 27 '18 at 21:15
add a comment |
$begingroup$
It is correct. You can also obtain the expansion by using the Taylor series of $sin, cos,exp$:
begin{align}
cos(x+2y)e^{2x} &= cos((x-2) + 2(y+1))e^{4+2(x-2)}\
&= e^{4}big[cos(x-2)cos(2(y+1)) - sin(x-2)sin(2(y+1))big]e^{2(x+2)}\
&= e^{4}left[left(sum_{n=0}^infty frac{(-1)^n}{(2n)!}(x-2)^{2n}right)left(sum_{n=0}^infty frac{(-1)^n}{(2n)!}2^{2n}(y+1)^{2n}right)right.\
&- left.left(sum_{n=0}^infty frac{(-1)^n}{(2n+1)!}(x-2)^{2n+1}right)left(sum_{n=0}^infty frac{(-1)^n}{(2n+1)!}2^{2n+1}(y+1)^{2n+1}right)right]left(sum_{n=0}^infty frac{2^n}{n!}(x-2)^{n}right)\
&= e^{4}left[1+2(x-2) + left(frac{(-1)^1}{2!} - frac{(-1)^1}{1!}frac{2^1}{1!}right)(x-2)^2 - frac{(-1)^0}{0!}2^1cdot frac{2}{2!}(x-2)(y+1) + frac{(-1)^1}{2!}2^2(y+2)^2 + cdotsright]\
&= e^4left[1+2(x-2)+frac32 e^{4}(x-2)^2-2e^{4}(x-2)(y+1)-2e^{4}(y+1)^2 + cdotsright]
end{align}
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054291%2fsecond-order-taylor-series-expansion-of-cosx2ye2x-around-2-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Yes, it is correct. An easy way to make sure is just to plot things: blue is the original function, red is your expansion
And this is the code to draw it
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import numpy as np
fig = plt.figure()
ax = fig.gca(projection = '3d')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
def f(X, Y):
return np.cos(X + 2 * Y) * np.exp(2 * X)
def taylor(x, y):
return np.exp(4) * (1 + 2 * (x - 2) + 0.5 * (3 * (x - 2)**2 - 4 * (x - 2) * (y + 1) - 4 * (y + 1)**2))
# Make data.
X = np.arange(1, 3, 0.25)
Y = np.arange(-2, 0, 0.25)
X, Y = np.meshgrid(X, Y)
Z = f(X, Y)
W = taylor(X, Y)
# Plot the surface.
surf = ax.plot_surface(X, Y, Z, cmap = cm.autumn, linewidth = 0, antialiased = False, alpha = 0.5)
sur1 = ax.plot_surface(X, Y, W, cmap = cm.winter, linewidth = 0, antialiased = False, alpha = 0.7)
# Add a color bar which maps values to colors.
ax.xaxis.set_major_locator(LinearLocator(4))
ax.yaxis.set_major_locator(LinearLocator(4))
ax.zaxis.set_major_locator(LinearLocator(4))
plt.show()
$endgroup$
1
$begingroup$
Can you post your code as well ?
$endgroup$
– Gabriel Romon
Dec 27 '18 at 21:07
1
$begingroup$
@GabrielRomon Done
$endgroup$
– caverac
Dec 27 '18 at 21:15
add a comment |
$begingroup$
Yes, it is correct. An easy way to make sure is just to plot things: blue is the original function, red is your expansion
And this is the code to draw it
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import numpy as np
fig = plt.figure()
ax = fig.gca(projection = '3d')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
def f(X, Y):
return np.cos(X + 2 * Y) * np.exp(2 * X)
def taylor(x, y):
return np.exp(4) * (1 + 2 * (x - 2) + 0.5 * (3 * (x - 2)**2 - 4 * (x - 2) * (y + 1) - 4 * (y + 1)**2))
# Make data.
X = np.arange(1, 3, 0.25)
Y = np.arange(-2, 0, 0.25)
X, Y = np.meshgrid(X, Y)
Z = f(X, Y)
W = taylor(X, Y)
# Plot the surface.
surf = ax.plot_surface(X, Y, Z, cmap = cm.autumn, linewidth = 0, antialiased = False, alpha = 0.5)
sur1 = ax.plot_surface(X, Y, W, cmap = cm.winter, linewidth = 0, antialiased = False, alpha = 0.7)
# Add a color bar which maps values to colors.
ax.xaxis.set_major_locator(LinearLocator(4))
ax.yaxis.set_major_locator(LinearLocator(4))
ax.zaxis.set_major_locator(LinearLocator(4))
plt.show()
$endgroup$
1
$begingroup$
Can you post your code as well ?
$endgroup$
– Gabriel Romon
Dec 27 '18 at 21:07
1
$begingroup$
@GabrielRomon Done
$endgroup$
– caverac
Dec 27 '18 at 21:15
add a comment |
$begingroup$
Yes, it is correct. An easy way to make sure is just to plot things: blue is the original function, red is your expansion
And this is the code to draw it
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import numpy as np
fig = plt.figure()
ax = fig.gca(projection = '3d')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
def f(X, Y):
return np.cos(X + 2 * Y) * np.exp(2 * X)
def taylor(x, y):
return np.exp(4) * (1 + 2 * (x - 2) + 0.5 * (3 * (x - 2)**2 - 4 * (x - 2) * (y + 1) - 4 * (y + 1)**2))
# Make data.
X = np.arange(1, 3, 0.25)
Y = np.arange(-2, 0, 0.25)
X, Y = np.meshgrid(X, Y)
Z = f(X, Y)
W = taylor(X, Y)
# Plot the surface.
surf = ax.plot_surface(X, Y, Z, cmap = cm.autumn, linewidth = 0, antialiased = False, alpha = 0.5)
sur1 = ax.plot_surface(X, Y, W, cmap = cm.winter, linewidth = 0, antialiased = False, alpha = 0.7)
# Add a color bar which maps values to colors.
ax.xaxis.set_major_locator(LinearLocator(4))
ax.yaxis.set_major_locator(LinearLocator(4))
ax.zaxis.set_major_locator(LinearLocator(4))
plt.show()
$endgroup$
Yes, it is correct. An easy way to make sure is just to plot things: blue is the original function, red is your expansion
And this is the code to draw it
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import numpy as np
fig = plt.figure()
ax = fig.gca(projection = '3d')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
def f(X, Y):
return np.cos(X + 2 * Y) * np.exp(2 * X)
def taylor(x, y):
return np.exp(4) * (1 + 2 * (x - 2) + 0.5 * (3 * (x - 2)**2 - 4 * (x - 2) * (y + 1) - 4 * (y + 1)**2))
# Make data.
X = np.arange(1, 3, 0.25)
Y = np.arange(-2, 0, 0.25)
X, Y = np.meshgrid(X, Y)
Z = f(X, Y)
W = taylor(X, Y)
# Plot the surface.
surf = ax.plot_surface(X, Y, Z, cmap = cm.autumn, linewidth = 0, antialiased = False, alpha = 0.5)
sur1 = ax.plot_surface(X, Y, W, cmap = cm.winter, linewidth = 0, antialiased = False, alpha = 0.7)
# Add a color bar which maps values to colors.
ax.xaxis.set_major_locator(LinearLocator(4))
ax.yaxis.set_major_locator(LinearLocator(4))
ax.zaxis.set_major_locator(LinearLocator(4))
plt.show()
edited Dec 27 '18 at 21:15
answered Dec 27 '18 at 20:22
caveraccaverac
14.8k31130
14.8k31130
1
$begingroup$
Can you post your code as well ?
$endgroup$
– Gabriel Romon
Dec 27 '18 at 21:07
1
$begingroup$
@GabrielRomon Done
$endgroup$
– caverac
Dec 27 '18 at 21:15
add a comment |
1
$begingroup$
Can you post your code as well ?
$endgroup$
– Gabriel Romon
Dec 27 '18 at 21:07
1
$begingroup$
@GabrielRomon Done
$endgroup$
– caverac
Dec 27 '18 at 21:15
1
1
$begingroup$
Can you post your code as well ?
$endgroup$
– Gabriel Romon
Dec 27 '18 at 21:07
$begingroup$
Can you post your code as well ?
$endgroup$
– Gabriel Romon
Dec 27 '18 at 21:07
1
1
$begingroup$
@GabrielRomon Done
$endgroup$
– caverac
Dec 27 '18 at 21:15
$begingroup$
@GabrielRomon Done
$endgroup$
– caverac
Dec 27 '18 at 21:15
add a comment |
$begingroup$
It is correct. You can also obtain the expansion by using the Taylor series of $sin, cos,exp$:
begin{align}
cos(x+2y)e^{2x} &= cos((x-2) + 2(y+1))e^{4+2(x-2)}\
&= e^{4}big[cos(x-2)cos(2(y+1)) - sin(x-2)sin(2(y+1))big]e^{2(x+2)}\
&= e^{4}left[left(sum_{n=0}^infty frac{(-1)^n}{(2n)!}(x-2)^{2n}right)left(sum_{n=0}^infty frac{(-1)^n}{(2n)!}2^{2n}(y+1)^{2n}right)right.\
&- left.left(sum_{n=0}^infty frac{(-1)^n}{(2n+1)!}(x-2)^{2n+1}right)left(sum_{n=0}^infty frac{(-1)^n}{(2n+1)!}2^{2n+1}(y+1)^{2n+1}right)right]left(sum_{n=0}^infty frac{2^n}{n!}(x-2)^{n}right)\
&= e^{4}left[1+2(x-2) + left(frac{(-1)^1}{2!} - frac{(-1)^1}{1!}frac{2^1}{1!}right)(x-2)^2 - frac{(-1)^0}{0!}2^1cdot frac{2}{2!}(x-2)(y+1) + frac{(-1)^1}{2!}2^2(y+2)^2 + cdotsright]\
&= e^4left[1+2(x-2)+frac32 e^{4}(x-2)^2-2e^{4}(x-2)(y+1)-2e^{4}(y+1)^2 + cdotsright]
end{align}
$endgroup$
add a comment |
$begingroup$
It is correct. You can also obtain the expansion by using the Taylor series of $sin, cos,exp$:
begin{align}
cos(x+2y)e^{2x} &= cos((x-2) + 2(y+1))e^{4+2(x-2)}\
&= e^{4}big[cos(x-2)cos(2(y+1)) - sin(x-2)sin(2(y+1))big]e^{2(x+2)}\
&= e^{4}left[left(sum_{n=0}^infty frac{(-1)^n}{(2n)!}(x-2)^{2n}right)left(sum_{n=0}^infty frac{(-1)^n}{(2n)!}2^{2n}(y+1)^{2n}right)right.\
&- left.left(sum_{n=0}^infty frac{(-1)^n}{(2n+1)!}(x-2)^{2n+1}right)left(sum_{n=0}^infty frac{(-1)^n}{(2n+1)!}2^{2n+1}(y+1)^{2n+1}right)right]left(sum_{n=0}^infty frac{2^n}{n!}(x-2)^{n}right)\
&= e^{4}left[1+2(x-2) + left(frac{(-1)^1}{2!} - frac{(-1)^1}{1!}frac{2^1}{1!}right)(x-2)^2 - frac{(-1)^0}{0!}2^1cdot frac{2}{2!}(x-2)(y+1) + frac{(-1)^1}{2!}2^2(y+2)^2 + cdotsright]\
&= e^4left[1+2(x-2)+frac32 e^{4}(x-2)^2-2e^{4}(x-2)(y+1)-2e^{4}(y+1)^2 + cdotsright]
end{align}
$endgroup$
add a comment |
$begingroup$
It is correct. You can also obtain the expansion by using the Taylor series of $sin, cos,exp$:
begin{align}
cos(x+2y)e^{2x} &= cos((x-2) + 2(y+1))e^{4+2(x-2)}\
&= e^{4}big[cos(x-2)cos(2(y+1)) - sin(x-2)sin(2(y+1))big]e^{2(x+2)}\
&= e^{4}left[left(sum_{n=0}^infty frac{(-1)^n}{(2n)!}(x-2)^{2n}right)left(sum_{n=0}^infty frac{(-1)^n}{(2n)!}2^{2n}(y+1)^{2n}right)right.\
&- left.left(sum_{n=0}^infty frac{(-1)^n}{(2n+1)!}(x-2)^{2n+1}right)left(sum_{n=0}^infty frac{(-1)^n}{(2n+1)!}2^{2n+1}(y+1)^{2n+1}right)right]left(sum_{n=0}^infty frac{2^n}{n!}(x-2)^{n}right)\
&= e^{4}left[1+2(x-2) + left(frac{(-1)^1}{2!} - frac{(-1)^1}{1!}frac{2^1}{1!}right)(x-2)^2 - frac{(-1)^0}{0!}2^1cdot frac{2}{2!}(x-2)(y+1) + frac{(-1)^1}{2!}2^2(y+2)^2 + cdotsright]\
&= e^4left[1+2(x-2)+frac32 e^{4}(x-2)^2-2e^{4}(x-2)(y+1)-2e^{4}(y+1)^2 + cdotsright]
end{align}
$endgroup$
It is correct. You can also obtain the expansion by using the Taylor series of $sin, cos,exp$:
begin{align}
cos(x+2y)e^{2x} &= cos((x-2) + 2(y+1))e^{4+2(x-2)}\
&= e^{4}big[cos(x-2)cos(2(y+1)) - sin(x-2)sin(2(y+1))big]e^{2(x+2)}\
&= e^{4}left[left(sum_{n=0}^infty frac{(-1)^n}{(2n)!}(x-2)^{2n}right)left(sum_{n=0}^infty frac{(-1)^n}{(2n)!}2^{2n}(y+1)^{2n}right)right.\
&- left.left(sum_{n=0}^infty frac{(-1)^n}{(2n+1)!}(x-2)^{2n+1}right)left(sum_{n=0}^infty frac{(-1)^n}{(2n+1)!}2^{2n+1}(y+1)^{2n+1}right)right]left(sum_{n=0}^infty frac{2^n}{n!}(x-2)^{n}right)\
&= e^{4}left[1+2(x-2) + left(frac{(-1)^1}{2!} - frac{(-1)^1}{1!}frac{2^1}{1!}right)(x-2)^2 - frac{(-1)^0}{0!}2^1cdot frac{2}{2!}(x-2)(y+1) + frac{(-1)^1}{2!}2^2(y+2)^2 + cdotsright]\
&= e^4left[1+2(x-2)+frac32 e^{4}(x-2)^2-2e^{4}(x-2)(y+1)-2e^{4}(y+1)^2 + cdotsright]
end{align}
edited Dec 27 '18 at 21:05
answered Dec 27 '18 at 21:00
mechanodroidmechanodroid
28.7k62548
28.7k62548
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054291%2fsecond-order-taylor-series-expansion-of-cosx2ye2x-around-2-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Your results seem correct to me. Checking such calculations is usually best done with a tool like Wolfram Alpha
$endgroup$
– 0x539
Dec 27 '18 at 20:02
$begingroup$
@0x539 Yeah, I tried, but either I didn't give in the correct term (i.e. "two-variables taylor series expansion") or WolframAlpha doesn't accept multivariable taylor series expansions.
$endgroup$
– Poujh
Dec 27 '18 at 20:05
$begingroup$
Your probably right. At least the derivatives should be easy to check.
$endgroup$
– 0x539
Dec 27 '18 at 20:10