Evaluating $int_0^1 log log left(frac{1}{x}right) frac{dx}{1+x^2}$
$begingroup$
Show that $displaystyle{int_0^1 log log left(frac{1}{x}right) frac{dx}{1+x^2} = frac{pi}{2}log left(sqrt{2pi} Gammaleft(frac{3}{4}right) / Gammaleft(frac{1}{4}right)right)}$
This question was posted as part of this question:
Solve the integral $S_k = (-1)^k int_0^1 (log(sin pi x))^k dx$
I cannot think of a change of variable nor other integrating methods. May be there is a known method that I am missing.
calculus integration definite-integrals logarithms gamma-function
$endgroup$
add a comment |
$begingroup$
Show that $displaystyle{int_0^1 log log left(frac{1}{x}right) frac{dx}{1+x^2} = frac{pi}{2}log left(sqrt{2pi} Gammaleft(frac{3}{4}right) / Gammaleft(frac{1}{4}right)right)}$
This question was posted as part of this question:
Solve the integral $S_k = (-1)^k int_0^1 (log(sin pi x))^k dx$
I cannot think of a change of variable nor other integrating methods. May be there is a known method that I am missing.
calculus integration definite-integrals logarithms gamma-function
$endgroup$
$begingroup$
@PeterT.off: That isn't true at all.
$endgroup$
– Eric Naslund
Mar 18 '12 at 12:18
$begingroup$
For some variants of this integral see C.J. Malmsten.
$endgroup$
– Raymond Manzoni
Mar 9 '14 at 19:30
add a comment |
$begingroup$
Show that $displaystyle{int_0^1 log log left(frac{1}{x}right) frac{dx}{1+x^2} = frac{pi}{2}log left(sqrt{2pi} Gammaleft(frac{3}{4}right) / Gammaleft(frac{1}{4}right)right)}$
This question was posted as part of this question:
Solve the integral $S_k = (-1)^k int_0^1 (log(sin pi x))^k dx$
I cannot think of a change of variable nor other integrating methods. May be there is a known method that I am missing.
calculus integration definite-integrals logarithms gamma-function
$endgroup$
Show that $displaystyle{int_0^1 log log left(frac{1}{x}right) frac{dx}{1+x^2} = frac{pi}{2}log left(sqrt{2pi} Gammaleft(frac{3}{4}right) / Gammaleft(frac{1}{4}right)right)}$
This question was posted as part of this question:
Solve the integral $S_k = (-1)^k int_0^1 (log(sin pi x))^k dx$
I cannot think of a change of variable nor other integrating methods. May be there is a known method that I am missing.
calculus integration definite-integrals logarithms gamma-function
calculus integration definite-integrals logarithms gamma-function
edited Dec 28 '18 at 8:42
DavidG
1
1
asked Mar 18 '12 at 0:44
Kirthi RamanKirthi Raman
6,3502956
6,3502956
$begingroup$
@PeterT.off: That isn't true at all.
$endgroup$
– Eric Naslund
Mar 18 '12 at 12:18
$begingroup$
For some variants of this integral see C.J. Malmsten.
$endgroup$
– Raymond Manzoni
Mar 9 '14 at 19:30
add a comment |
$begingroup$
@PeterT.off: That isn't true at all.
$endgroup$
– Eric Naslund
Mar 18 '12 at 12:18
$begingroup$
For some variants of this integral see C.J. Malmsten.
$endgroup$
– Raymond Manzoni
Mar 9 '14 at 19:30
$begingroup$
@PeterT.off: That isn't true at all.
$endgroup$
– Eric Naslund
Mar 18 '12 at 12:18
$begingroup$
@PeterT.off: That isn't true at all.
$endgroup$
– Eric Naslund
Mar 18 '12 at 12:18
$begingroup$
For some variants of this integral see C.J. Malmsten.
$endgroup$
– Raymond Manzoni
Mar 9 '14 at 19:30
$begingroup$
For some variants of this integral see C.J. Malmsten.
$endgroup$
– Raymond Manzoni
Mar 9 '14 at 19:30
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
By the substitution $x = e^{-t}$, we find that
$$begin{align*}
int_{0}^{1} frac{(log (1/x))^s}{1+x^2} ; dx
&= int_{0}^{infty} frac{t^s e^{-t}}{1 + e^{-2t}} ; dt \
&= int_{0}^{infty} sum_{n=0}^{infty} (-1)^n t^s e^{-(2n+1)t} ; dt \
&= sum_{n=0}^{infty} (-1)^n , frac{Gamma(s+1)}{(2n+1)^{s+1}} \
&= Gamma(s+1)L(s+1, chi_4),
end{align*}$$
where $L(s, chi_4)$ is the Dirichlet L-function of the unique non-principal character $chi_4$ to the modulus 4. Often it is denoted as $beta(s)$ and called the Dirichlet beta function. Thus differentiating both sides with respect to $s$ and plugging $s = 0$, we obtain a representation formula
$$int_{0}^{1} frac{log log (1/x)}{1+x^2} ; dx = psi_0(1) beta(1) + beta'(1),$$
and the problem reduces to find the value of $beta(1)$ and $beta'(1)$. Note that $beta(1) = frac{pi}{4}$ is just the Gregory series. For $beta'(1)$, we first notice that the following functional equation holds.
$$ beta(s)=left(frac{pi}{2}right)^{s-1} Gamma(1-s) cos left( frac{pi s}{2} right),beta(1-s). $$
This follows from the general theory of Dirichlet L-functions, and one can consult with any analytic number theory textbook to find its proof. Therefore it is sufficient to calculate $beta'(0)$. For $0 < s$, we have
$$begin{align*}
-beta'(s)
&= sum_{n=1}^{infty} left[ frac{log(4n+1)}{(4n+1)^s} - frac{log(4n-1)}{(4n-1)^s} right] \
&= sum_{n=1}^{infty} frac{1}{(4n)^s} left[ log left( frac{4n+1}{4n-1} right) - frac{1}{2n} right] + 2^{-2s-1}zeta(s+1) \
& qquad + sum_{n=1}^{infty} left( frac{1}{(4n+1)^s} - frac{1}{(4n)^s} right) log (4n+1) \
& qquad + sum_{n=1}^{infty} left( frac{1}{(4n)^s} - frac{1}{(4n-1)^s} right) log (4n-1) \
& =: A(s) + 2^{-2s-1}zeta(s+1) + B(s) + C(s).
end{align*}$$
We first estimate $B(s)$. As $n to infty$, we have
$$ log left( frac{4n}{4n+1} right) = -frac{1}{4n} + Oleft( frac{1}{n^2} right), quad log left( frac{4n}{4n-1} right) = frac{1}{4n} + Oleft( frac{1}{n^2} right). $$
Thus when $s to 0$,
$$begin{align*}
B(s)
&= sum_{n=1}^{infty} frac{1}{(4n)^s} left[ expleft( s log left( frac{4n}{4n+1} right) right) - 1 right] left[ log (4n) - log left(frac{4n}{4n+1} right) right] \
&= sum_{n=1}^{infty} frac{1}{(4n)^s} left[ - frac{s}{4n} + O left(frac{s^2}{n^2} right) right] left[ log (4n) + O left(frac{1}{n} right) right] \
&= -s 2^{-2s-2} sum_{n=1}^{infty} frac{1}{n^{s+1}} log (4n) + O(s) \
&= s 2^{-2s-2} left[ zeta'(s+1) - zeta(s+1) log 4 right] + O(s).
end{align*}$$
Similar consideration also shows that
$$ C(s) = s 2^{-2s-2} left[ zeta'(s+1) - zeta(s+1) log 4 right] + O(s).$$
Thus we have
$$ 2^{-2s-1}zeta(s+1) + B(s) + C(s) = 2^{-2s-1} left[ zeta(s+1) + s zeta'(s+1) - s zeta(s+1) log 4 right] + O(s). $$
But since
$$zeta(1+s) = frac{1}{s} + gamma + O(s),$$
we have
$$ lim_{sdownarrow 0} left( 2^{-2s-1}zeta(s+1) + B(s) + C(s) right) = frac{gamma}{2} - log 2.$$
For $A(s)$, the summands are positive with possible finite exceptional terms. Thus the Monotone Convergence Theorem guarantees that
$$ lim_{sdownarrow 0} A(s) = sum_{n=1}^{infty} left[ log left( frac{4n+1}{4n-1} right) - frac{1}{2n} right]. $$
Let $L$ denote this limit. Then by Stirling's formula,
$$begin{align*}
e^{L}
& stackrel{Ntoinfty}{sim} prod_{n=1}^{N} left( frac{4n+1}{4n-1} right) e^{-1/2n}
sim frac{e^{-gamma/2}}{sqrt{N}} prod_{n=1}^{N} left( frac{n+(1/4)}{n-(1/4)} right) \
& sim frac{e^{-gamma/2}}{sqrt{N}} frac{Gammaleft(frac{3}{4}right)}{Gammaleft(frac{5}{4}right)} frac{Gammaleft(N+frac{5}{4}right)}{Gammaleft(N+frac{3}{4}right)}
sim frac{e^{-gamma/2}}{sqrt{N}} frac{Gammaleft(frac{3}{4}right)}{Gammaleft(frac{5}{4}right)} frac{left( frac{N + (5/4)}{e} right)^{N+frac{5}{4}}}{left( frac{N + (3/4)}{e} right)^{N+frac{3}{4}}} \
& sim e^{-gamma/2} frac{Gammaleft(frac{3}{4}right)}{Gammaleft(frac{5}{4}right)}
= 4 e^{-gamma/2} frac{pi sqrt{2}}{Gammaleft(frac{1}{4}right)^2},
end{align*}$$
where we have used the Euler's reflection formula in the last line. Combining all the efforts, we obtain
$$-beta'(0) = log (2 pi sqrt{2}) - 2 log Gammaleft(frac{1}{4}right) .$$
Now taking logarithmic differntiation to the functional equation, we have
$$ frac{beta'(s)}{beta(s)} = logleft(frac{pi}{2}right) - psi_0 (1-s) - frac{pi}{2} tan left( frac{pi s}{2} right) - frac{beta'(1-s)}{beta(1-s)}. $$
Taking $s = 0$, we have
$$ frac{beta'(0)}{beta(0)} = logleft(frac{pi}{2}right) + gamma - frac{beta'(1)}{beta(1)} quad Longrightarrow quad beta'(1) = beta(1) left[ logleft(frac{pi}{2}right) + gamma - frac{beta'(0)}{beta(0)} right]. $$
But again by the functional equation, we have $beta(0) = frac{1}{2}$. Therefore
$$ beta'(1) = frac{pi}{4} left[ gamma + 2 log 2 + 3 log pi - 4 log Gammaleft(frac{1}{4}right) right], $$
and hence
$$ int_{0}^{1} frac{log log (1/x)}{1+x^2} ; dx = frac{pi}{4} left[ 2 log 2 + 3 log pi - 4 log Gammaleft(frac{1}{4}right) right], $$
which is identical to the proposed answer.
$endgroup$
$begingroup$
Excellent answer. I was trying to figure out how to evaluate $beta^'(1)$, but couldn't get very far.
$endgroup$
– Eric Naslund
Mar 18 '12 at 12:18
$begingroup$
Ahhh, a small typo. Each of the zeta terms should be of the form $zeta(s+1)$, specifically it should be $2^{-2s-1}zeta(s+1)$ instead of $2^{-2s-1}zeta(s)$. Otherwise in the line where you take $srightarrow 0$, the pole from $szeta^'(s+1)$ will not cancel out with anything. ($zeta^'(s+1)$ has a double pole)
$endgroup$
– Eric Naslund
Mar 18 '12 at 12:29
$begingroup$
@EricNaslund, thanks for pointing out typos! I will fix it right now.
$endgroup$
– Sangchul Lee
Mar 18 '12 at 12:32
5
$begingroup$
@sos440, I just wanted to add, this is one of my favorite proofs I have read so far on Math Stack Exchange.
$endgroup$
– Eric Naslund
Apr 14 '12 at 9:33
2
$begingroup$
This is nuts, man.
$endgroup$
– Pedro Tamaroff♦
Oct 21 '12 at 18:49
|
show 2 more comments
$begingroup$
$newcommand{+}{^{dagger}}
newcommand{angles}[1]{leftlangle #1 rightrangle}
newcommand{braces}[1]{leftlbrace #1 rightrbrace}
newcommand{bracks}[1]{leftlbrack #1 rightrbrack}
newcommand{ceil}[1]{,leftlceil #1 rightrceil,}
newcommand{dd}{{rm d}}
newcommand{down}{downarrow}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{equalby}[1]{{#1 atop {= atop vphantom{huge A}}}}
newcommand{expo}[1]{,{rm e}^{#1},}
newcommand{fermi}{,{rm f}}
newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}
newcommand{half}{{1 over 2}}
newcommand{ic}{{rm i}}
newcommand{iff}{Longleftrightarrow}
newcommand{imp}{Longrightarrow}
newcommand{isdiv}{,left.rightvert,}
newcommand{ket}[1]{leftvert #1rightrangle}
newcommand{ol}[1]{overline{#1}}
newcommand{pars}[1]{left( #1 right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{pp}{{cal P}}
newcommand{root}[2]{,sqrt[#1]{,#2,},}
newcommand{sech}{,{rm sech}}
newcommand{sgn}{,{rm sgn}}
newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
newcommand{ul}[1]{underline{#1}}
newcommand{verts}[1]{leftvert, #1 ,rightvert}$
$ds{int_{0}^{1}lnpars{lnpars{1 over x}},{dd x over 1 + x^{2}}
={pi over 2},lnpars{root{vphantom{large A}2pi},
{Gammapars{3/4} over Gammapars{1/4}}}: {Large ?}}$
With $ds{x to 1/x}$:
$$
color{#f00}{int_{0}^{1}lnpars{lnpars{1 over x}},{dd x over 1 + x^{2}}}=
int_{infty}^{1}lnpars{lnpars{x}},pars{-,{dd x/x^{2} over 1 + 1/x^{2}}}
=int_{1}^{infty}{lnpars{lnpars{x}} over 1 + x^{2}},dd x
$$
With $x equiv expo{t}quadiffquad t = lnpars{x}$:
begin{align}
&color{#f00}{int_{0}^{1}lnpars{lnpars{1 over x}},{dd x over 1 + x^{2}}}=
int_{0}^{infty}{lnpars{t} over 1 + expo{2t}},expo{t}dd t
=int_{0}^{infty}lnpars{t}expo{-t},{1 over 1 + expo{-2t}},dd t
\[3mm]&=int_{0}^{infty}lnpars{t}expo{-t},
sum_{ell = 0}^{infty}pars{-1}^{ell}expo{-2ell t},dd t
=sum_{ell = 0}^{infty}pars{-1}^{ell}lim_{mu to 0}partiald{}{mu}bracks{%
int_{0}^{infty}t^{mu}expo{-pars{2ell + 1}t},dd t}
\[3mm]&=sum_{ell = 0}^{infty}pars{-1}^{ell}lim_{mu to 0}partiald{}{mu}bracks{%
{1 over pars{2ell + 1}^{mu + 1}}
overbrace{int_{0}^{infty}t^{mu}expo{-t},dd t}^{ds{Gammapars{mu + 1}}} }
end{align}
where $Gammapars{z}$ is the
Gamma Function.
begin{align}
&color{#f00}{int_{0}^{1}lnpars{lnpars{1 over x}},{dd x over 1 + x^{2}}}=
sum_{ell = 0}^{infty}pars{-1}^{ell}lim_{mu to 0}partiald{}{mu}bracks{%
{Gammapars{mu + 1} over pars{2ell + 1}^{mu + 1}}}
\[3mm]&=
lim_{mu to 0}partiald{}{mu}bracks{%
Gammapars{mu + 1}sum_{ell = 0}^{infty}
{pars{-1}^{ell}over pars{2ell + 1}^{mu + 1}}}
\[3mm]&=
lim_{mu to 0}braces{%
Gamma'pars{mu + 1}sum_{ell = 0}^{infty}
{pars{-1}^{ell}over pars{2ell + 1}^{mu + 1}}
+Gammapars{mu + 1}partiald{}{mu}bracks{%
sum_{ell = 0}^{infty}{pars{-1}^{ell}over pars{2ell + 1}^{mu + 1}}}}
\[3mm]&=-gammasum_{ell = 0}^{infty}{pars{-1}^{ell}over 2ell + 1}
+
lim_{mu to 0}partiald{}{mu}
sum_{ell = 0}^{infty}{pars{-1}^{ell}over pars{2ell + 1}^{mu + 1}}tag{1}
end{align}
In this result, we used $Psipars{1} = -gamma$ and $Gammapars{1} = 1$ where
$Psipars{z} equiv ddlnGammapars{z}/dd z$ is the
Digamma Function and $gamma$ is the
Euler-Mascheroni constant.
The first $ell$-sum in the right member of $pars{1}$ is given by:
begin{align}
&sum_{ell = 0}{pars{-}^{ell} over 2ell + 1}=
sum_{ell = 0}pars{{1 over 4ell + 1} - {1 over 4ell + 3}}
={1 over 8}sum_{ell = 0}{1 over pars{ell + 1/4}pars{ell + 3/4}}
\[3mm]&=-,{1 over 4}bracks{Psipars{1 over 4} - Psipars{3 over 4}}
= {pi over 4}
end{align}
where we used the identities:
begin{align}
sum_{ell = 0}^{infty}{1 over pars{ell + z_{0}}pars{ell + z_{1}}}
&={Psipars{z_{0}} - Psipars{z_{1}} over z_{0} - z_{1}}tag{1.1}
\[3mm]Psipars{z} - Psipars{1 - z} &= -picotpars{pi z}tag{1.2}
end{align}
$$
mbox{Then,}quad
color{#f00}{int_{0}^{1}lnpars{lnpars{1 over x}},{dd x over 1 + x^{2}}}=
-,{1 over 4},gammapi + lim_{mu to 0}partiald{}{mu}
sum_{ell = 0}^{infty}{pars{-1}^{ell}over pars{2ell + 1}^{mu + 1}}tag{2}
$$
Also,
begin{align}
sum_{ell = 0}^{infty}{pars{-1}^{ell}over pars{2ell + 1}^{mu + 1}}
&=sum_{ell = 0}^{infty}{1 over bracks{2pars{2ell} + 1}^{mu + 1}}
-sum_{ell = 0}^{infty}{1 over bracks{2pars{2ell + 1} + 1}^{mu + 1}}
\[3mm]&=2^{-2mu - 2}bracks{%
sum_{ell = 0}^{infty}{1 over pars{ell + 1/4}^{mu + 1}}
-sum_{ell = 0}^{infty}{1 over pars{ell + 3/4}^{mu + 1}}}
\[3mm]&=2^{-2mu - 2}bracks{%
zetapars{mu + 1,{1 over 4}} - zetapars{mu + 1,{3 over 4}}}
end{align}
where $ds{zetapars{s,q} equiv sum_{n = 0}^{infty}{1 over pars{q + n}^{s}}}$
with $Repars{s} > 1$ and $Repars{q} > 0$ i s the
Hurwitz Zeta Function or/and Generalizated Zeta Funcion .
So,
begin{align}
&lim_{mu to 0}partiald{}{mu}sum_{ell = 0}^{infty}{pars{-1}^{ell}over pars{2ell + 1}^{mu + 1}}
\[3mm]&=-,{1 over 4},lnpars{2}
underbrace{overbrace{sum_{ell = 0}^{infty}{1 over pars{ell + 3/4}pars{ell + 1/4}}}
^{ds{2bracks{Psipars{3/4} - Psipars{1/4}} = 2pi}}}
_{ds{mbox{See} pars{1.1} mbox{and} pars{1.2}}}
+ {1 over 4}
overbrace{partiald{}{mu}bracks{%
zetapars{mu,{1 over 4}} - zetapars{mu,{3 over 4}}}_{mu = 1}}
^{ds{-gamma_{1}pars{1/4} + gamma_{1}pars{3/4}}}
end{align}
where $gamma_{n}pars{z}$ is a
Generalizated Stieltjes Constant
.
With this result, $pars{2}$ is reduced to:
begin{align}
color{#f00}{int_{0}^{1}lnpars{lnpars{1 over x}},{dd x over 1 + x^{2}}}
&=-,{1 over 4},braces{%
pibracks{%
gamma + 2lnpars{2}} + gamma_{1}pars{1 over 4} - gamma_{1}pars{3 over 4}}
tag{3}
end{align}
The difference $gamma_{1}pars{1/4} - gamma_{1}pars{3/4}$ is evaluated with the 1846 Carl Malmsten identity
:
$$
gamma_{1}pars{m over n} - gamma_{1}pars{1 - {m over n}}
=-pibracks{gamma + lnpars{2pi n}}cotpars{mpi over n}
+ 2pisum_{ell = 1}^{n - 1}
sinpars{{2pi m over n},ell}lnpars{Gammapars{ell over n}}
$$
With $m = 1$ and $n = 4$:
begin{align}
&gamma_{1}pars{1 over 4} - gamma_{1}pars{3 over 4}
\[3mm]&=-pibracks{gamma + lnpars{8pi}}cotpars{pi over 4}
+ 2pisum_{ell = 1}^{3}sinpars{pi,ell over 2}
lnpars{Gammapars{ell over 4}}
\[3mm]&=-pibracks{gamma + 2lnpars{2} + lnpars{2pi}}
\[3mm]&phantom{=}
+ 2pibracks{sinpars{pi over 2}lnpars{Gammapars{1 over 4}}
+ sinpars{pi}lnpars{Gammapars{1 over 2}}
+ sinpars{3pi over 2}Gammapars{3 over 4}}
\[3mm]&=-pibracks{gamma + 2lnpars{2} + lnpars{2pi}}
+2pibracks{lnpars{Gammapars{1 over 4}} - lnpars{Gammapars{3 over 4}}}
\[3mm]&=-pibracks{gamma + 2lnpars{2}} - 2pibracks{%
lnpars{root{2pi}} +lnpars{Gammapars{3 over 4} over Gammapars{1 over 4}}}
\[3mm]&=-pibracks{gamma + 2lnpars{2}}
-2pilnpars{root{2pi},{Gammapars{3 over 4} over Gammapars{1 over 4}}}
end{align}
By replacing this result in $pars{3}$, we find:
$$color{#00f}{large%
int_{0}^{1}lnpars{lnpars{1 over x}},{dd x over 1 + x^{2}}
={pi over 2},lnpars{root{vphantom{large A}2pi},
{Gammapars{3/4} over Gammapars{1/4}}}}
$$
As an 'extra-bonus' we can use the identity
$ds{Gammapars{z} = {pi over Gammapars{1 - z}sinpars{pi z}}}$ to 'kill' one of the $Gamma,$'s functions:
$ds{Gammapars{1 over 4} = {root{2}pi over Gammapars{3/4}}}$ which yields:
$$
int_{0}^{1}lnpars{lnpars{1 over x}},{dd x over 1 + x^{2}}
={pi over 2},lnpars{Gamma^{,2}pars{3/4} over root{pi}}
$$
$endgroup$
add a comment |
$begingroup$
See also V. Adamchik's formula $$int_0^1 frac{x^{p-1}}{1+x^n}log log frac{1}{x}dx = frac{gamma+log(2n)}{2n}(psi(frac{p}{2n})-psi(frac{n+p}{2n}))+frac{1}{2n}(zeta'(1,frac{p}{2n})-zeta'(1,frac{n+p}{2n}))$$ in http://dx.doi.org/10.1145/258726.258736 .
$endgroup$
add a comment |
$begingroup$
The above integral was long-time known as the Vardi's integral. Quite recently, an interesting research work devoted to this integral was published by Iaroslav Blagouchine. It appears that this integral was first evaluated by Carl Malmsten in 1842 (and not by Ilan Vardi in 1988). Blagouchine describes two different methods for its evaluation: the original Malmsten's method and the contour integration method. In the same paper, numerous integrals similar to the above one are also treated, and it is shown that many of them may be evaluated by the contour integration methods.
More recent paper by Blagouchine (mentioned above in the context of Malmsten's formula derived in 1846) is also integersting, but it is less directly related to the integral in question than the first one.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f121545%2fevaluating-int-01-log-log-left-frac1x-right-fracdx1x2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
By the substitution $x = e^{-t}$, we find that
$$begin{align*}
int_{0}^{1} frac{(log (1/x))^s}{1+x^2} ; dx
&= int_{0}^{infty} frac{t^s e^{-t}}{1 + e^{-2t}} ; dt \
&= int_{0}^{infty} sum_{n=0}^{infty} (-1)^n t^s e^{-(2n+1)t} ; dt \
&= sum_{n=0}^{infty} (-1)^n , frac{Gamma(s+1)}{(2n+1)^{s+1}} \
&= Gamma(s+1)L(s+1, chi_4),
end{align*}$$
where $L(s, chi_4)$ is the Dirichlet L-function of the unique non-principal character $chi_4$ to the modulus 4. Often it is denoted as $beta(s)$ and called the Dirichlet beta function. Thus differentiating both sides with respect to $s$ and plugging $s = 0$, we obtain a representation formula
$$int_{0}^{1} frac{log log (1/x)}{1+x^2} ; dx = psi_0(1) beta(1) + beta'(1),$$
and the problem reduces to find the value of $beta(1)$ and $beta'(1)$. Note that $beta(1) = frac{pi}{4}$ is just the Gregory series. For $beta'(1)$, we first notice that the following functional equation holds.
$$ beta(s)=left(frac{pi}{2}right)^{s-1} Gamma(1-s) cos left( frac{pi s}{2} right),beta(1-s). $$
This follows from the general theory of Dirichlet L-functions, and one can consult with any analytic number theory textbook to find its proof. Therefore it is sufficient to calculate $beta'(0)$. For $0 < s$, we have
$$begin{align*}
-beta'(s)
&= sum_{n=1}^{infty} left[ frac{log(4n+1)}{(4n+1)^s} - frac{log(4n-1)}{(4n-1)^s} right] \
&= sum_{n=1}^{infty} frac{1}{(4n)^s} left[ log left( frac{4n+1}{4n-1} right) - frac{1}{2n} right] + 2^{-2s-1}zeta(s+1) \
& qquad + sum_{n=1}^{infty} left( frac{1}{(4n+1)^s} - frac{1}{(4n)^s} right) log (4n+1) \
& qquad + sum_{n=1}^{infty} left( frac{1}{(4n)^s} - frac{1}{(4n-1)^s} right) log (4n-1) \
& =: A(s) + 2^{-2s-1}zeta(s+1) + B(s) + C(s).
end{align*}$$
We first estimate $B(s)$. As $n to infty$, we have
$$ log left( frac{4n}{4n+1} right) = -frac{1}{4n} + Oleft( frac{1}{n^2} right), quad log left( frac{4n}{4n-1} right) = frac{1}{4n} + Oleft( frac{1}{n^2} right). $$
Thus when $s to 0$,
$$begin{align*}
B(s)
&= sum_{n=1}^{infty} frac{1}{(4n)^s} left[ expleft( s log left( frac{4n}{4n+1} right) right) - 1 right] left[ log (4n) - log left(frac{4n}{4n+1} right) right] \
&= sum_{n=1}^{infty} frac{1}{(4n)^s} left[ - frac{s}{4n} + O left(frac{s^2}{n^2} right) right] left[ log (4n) + O left(frac{1}{n} right) right] \
&= -s 2^{-2s-2} sum_{n=1}^{infty} frac{1}{n^{s+1}} log (4n) + O(s) \
&= s 2^{-2s-2} left[ zeta'(s+1) - zeta(s+1) log 4 right] + O(s).
end{align*}$$
Similar consideration also shows that
$$ C(s) = s 2^{-2s-2} left[ zeta'(s+1) - zeta(s+1) log 4 right] + O(s).$$
Thus we have
$$ 2^{-2s-1}zeta(s+1) + B(s) + C(s) = 2^{-2s-1} left[ zeta(s+1) + s zeta'(s+1) - s zeta(s+1) log 4 right] + O(s). $$
But since
$$zeta(1+s) = frac{1}{s} + gamma + O(s),$$
we have
$$ lim_{sdownarrow 0} left( 2^{-2s-1}zeta(s+1) + B(s) + C(s) right) = frac{gamma}{2} - log 2.$$
For $A(s)$, the summands are positive with possible finite exceptional terms. Thus the Monotone Convergence Theorem guarantees that
$$ lim_{sdownarrow 0} A(s) = sum_{n=1}^{infty} left[ log left( frac{4n+1}{4n-1} right) - frac{1}{2n} right]. $$
Let $L$ denote this limit. Then by Stirling's formula,
$$begin{align*}
e^{L}
& stackrel{Ntoinfty}{sim} prod_{n=1}^{N} left( frac{4n+1}{4n-1} right) e^{-1/2n}
sim frac{e^{-gamma/2}}{sqrt{N}} prod_{n=1}^{N} left( frac{n+(1/4)}{n-(1/4)} right) \
& sim frac{e^{-gamma/2}}{sqrt{N}} frac{Gammaleft(frac{3}{4}right)}{Gammaleft(frac{5}{4}right)} frac{Gammaleft(N+frac{5}{4}right)}{Gammaleft(N+frac{3}{4}right)}
sim frac{e^{-gamma/2}}{sqrt{N}} frac{Gammaleft(frac{3}{4}right)}{Gammaleft(frac{5}{4}right)} frac{left( frac{N + (5/4)}{e} right)^{N+frac{5}{4}}}{left( frac{N + (3/4)}{e} right)^{N+frac{3}{4}}} \
& sim e^{-gamma/2} frac{Gammaleft(frac{3}{4}right)}{Gammaleft(frac{5}{4}right)}
= 4 e^{-gamma/2} frac{pi sqrt{2}}{Gammaleft(frac{1}{4}right)^2},
end{align*}$$
where we have used the Euler's reflection formula in the last line. Combining all the efforts, we obtain
$$-beta'(0) = log (2 pi sqrt{2}) - 2 log Gammaleft(frac{1}{4}right) .$$
Now taking logarithmic differntiation to the functional equation, we have
$$ frac{beta'(s)}{beta(s)} = logleft(frac{pi}{2}right) - psi_0 (1-s) - frac{pi}{2} tan left( frac{pi s}{2} right) - frac{beta'(1-s)}{beta(1-s)}. $$
Taking $s = 0$, we have
$$ frac{beta'(0)}{beta(0)} = logleft(frac{pi}{2}right) + gamma - frac{beta'(1)}{beta(1)} quad Longrightarrow quad beta'(1) = beta(1) left[ logleft(frac{pi}{2}right) + gamma - frac{beta'(0)}{beta(0)} right]. $$
But again by the functional equation, we have $beta(0) = frac{1}{2}$. Therefore
$$ beta'(1) = frac{pi}{4} left[ gamma + 2 log 2 + 3 log pi - 4 log Gammaleft(frac{1}{4}right) right], $$
and hence
$$ int_{0}^{1} frac{log log (1/x)}{1+x^2} ; dx = frac{pi}{4} left[ 2 log 2 + 3 log pi - 4 log Gammaleft(frac{1}{4}right) right], $$
which is identical to the proposed answer.
$endgroup$
$begingroup$
Excellent answer. I was trying to figure out how to evaluate $beta^'(1)$, but couldn't get very far.
$endgroup$
– Eric Naslund
Mar 18 '12 at 12:18
$begingroup$
Ahhh, a small typo. Each of the zeta terms should be of the form $zeta(s+1)$, specifically it should be $2^{-2s-1}zeta(s+1)$ instead of $2^{-2s-1}zeta(s)$. Otherwise in the line where you take $srightarrow 0$, the pole from $szeta^'(s+1)$ will not cancel out with anything. ($zeta^'(s+1)$ has a double pole)
$endgroup$
– Eric Naslund
Mar 18 '12 at 12:29
$begingroup$
@EricNaslund, thanks for pointing out typos! I will fix it right now.
$endgroup$
– Sangchul Lee
Mar 18 '12 at 12:32
5
$begingroup$
@sos440, I just wanted to add, this is one of my favorite proofs I have read so far on Math Stack Exchange.
$endgroup$
– Eric Naslund
Apr 14 '12 at 9:33
2
$begingroup$
This is nuts, man.
$endgroup$
– Pedro Tamaroff♦
Oct 21 '12 at 18:49
|
show 2 more comments
$begingroup$
By the substitution $x = e^{-t}$, we find that
$$begin{align*}
int_{0}^{1} frac{(log (1/x))^s}{1+x^2} ; dx
&= int_{0}^{infty} frac{t^s e^{-t}}{1 + e^{-2t}} ; dt \
&= int_{0}^{infty} sum_{n=0}^{infty} (-1)^n t^s e^{-(2n+1)t} ; dt \
&= sum_{n=0}^{infty} (-1)^n , frac{Gamma(s+1)}{(2n+1)^{s+1}} \
&= Gamma(s+1)L(s+1, chi_4),
end{align*}$$
where $L(s, chi_4)$ is the Dirichlet L-function of the unique non-principal character $chi_4$ to the modulus 4. Often it is denoted as $beta(s)$ and called the Dirichlet beta function. Thus differentiating both sides with respect to $s$ and plugging $s = 0$, we obtain a representation formula
$$int_{0}^{1} frac{log log (1/x)}{1+x^2} ; dx = psi_0(1) beta(1) + beta'(1),$$
and the problem reduces to find the value of $beta(1)$ and $beta'(1)$. Note that $beta(1) = frac{pi}{4}$ is just the Gregory series. For $beta'(1)$, we first notice that the following functional equation holds.
$$ beta(s)=left(frac{pi}{2}right)^{s-1} Gamma(1-s) cos left( frac{pi s}{2} right),beta(1-s). $$
This follows from the general theory of Dirichlet L-functions, and one can consult with any analytic number theory textbook to find its proof. Therefore it is sufficient to calculate $beta'(0)$. For $0 < s$, we have
$$begin{align*}
-beta'(s)
&= sum_{n=1}^{infty} left[ frac{log(4n+1)}{(4n+1)^s} - frac{log(4n-1)}{(4n-1)^s} right] \
&= sum_{n=1}^{infty} frac{1}{(4n)^s} left[ log left( frac{4n+1}{4n-1} right) - frac{1}{2n} right] + 2^{-2s-1}zeta(s+1) \
& qquad + sum_{n=1}^{infty} left( frac{1}{(4n+1)^s} - frac{1}{(4n)^s} right) log (4n+1) \
& qquad + sum_{n=1}^{infty} left( frac{1}{(4n)^s} - frac{1}{(4n-1)^s} right) log (4n-1) \
& =: A(s) + 2^{-2s-1}zeta(s+1) + B(s) + C(s).
end{align*}$$
We first estimate $B(s)$. As $n to infty$, we have
$$ log left( frac{4n}{4n+1} right) = -frac{1}{4n} + Oleft( frac{1}{n^2} right), quad log left( frac{4n}{4n-1} right) = frac{1}{4n} + Oleft( frac{1}{n^2} right). $$
Thus when $s to 0$,
$$begin{align*}
B(s)
&= sum_{n=1}^{infty} frac{1}{(4n)^s} left[ expleft( s log left( frac{4n}{4n+1} right) right) - 1 right] left[ log (4n) - log left(frac{4n}{4n+1} right) right] \
&= sum_{n=1}^{infty} frac{1}{(4n)^s} left[ - frac{s}{4n} + O left(frac{s^2}{n^2} right) right] left[ log (4n) + O left(frac{1}{n} right) right] \
&= -s 2^{-2s-2} sum_{n=1}^{infty} frac{1}{n^{s+1}} log (4n) + O(s) \
&= s 2^{-2s-2} left[ zeta'(s+1) - zeta(s+1) log 4 right] + O(s).
end{align*}$$
Similar consideration also shows that
$$ C(s) = s 2^{-2s-2} left[ zeta'(s+1) - zeta(s+1) log 4 right] + O(s).$$
Thus we have
$$ 2^{-2s-1}zeta(s+1) + B(s) + C(s) = 2^{-2s-1} left[ zeta(s+1) + s zeta'(s+1) - s zeta(s+1) log 4 right] + O(s). $$
But since
$$zeta(1+s) = frac{1}{s} + gamma + O(s),$$
we have
$$ lim_{sdownarrow 0} left( 2^{-2s-1}zeta(s+1) + B(s) + C(s) right) = frac{gamma}{2} - log 2.$$
For $A(s)$, the summands are positive with possible finite exceptional terms. Thus the Monotone Convergence Theorem guarantees that
$$ lim_{sdownarrow 0} A(s) = sum_{n=1}^{infty} left[ log left( frac{4n+1}{4n-1} right) - frac{1}{2n} right]. $$
Let $L$ denote this limit. Then by Stirling's formula,
$$begin{align*}
e^{L}
& stackrel{Ntoinfty}{sim} prod_{n=1}^{N} left( frac{4n+1}{4n-1} right) e^{-1/2n}
sim frac{e^{-gamma/2}}{sqrt{N}} prod_{n=1}^{N} left( frac{n+(1/4)}{n-(1/4)} right) \
& sim frac{e^{-gamma/2}}{sqrt{N}} frac{Gammaleft(frac{3}{4}right)}{Gammaleft(frac{5}{4}right)} frac{Gammaleft(N+frac{5}{4}right)}{Gammaleft(N+frac{3}{4}right)}
sim frac{e^{-gamma/2}}{sqrt{N}} frac{Gammaleft(frac{3}{4}right)}{Gammaleft(frac{5}{4}right)} frac{left( frac{N + (5/4)}{e} right)^{N+frac{5}{4}}}{left( frac{N + (3/4)}{e} right)^{N+frac{3}{4}}} \
& sim e^{-gamma/2} frac{Gammaleft(frac{3}{4}right)}{Gammaleft(frac{5}{4}right)}
= 4 e^{-gamma/2} frac{pi sqrt{2}}{Gammaleft(frac{1}{4}right)^2},
end{align*}$$
where we have used the Euler's reflection formula in the last line. Combining all the efforts, we obtain
$$-beta'(0) = log (2 pi sqrt{2}) - 2 log Gammaleft(frac{1}{4}right) .$$
Now taking logarithmic differntiation to the functional equation, we have
$$ frac{beta'(s)}{beta(s)} = logleft(frac{pi}{2}right) - psi_0 (1-s) - frac{pi}{2} tan left( frac{pi s}{2} right) - frac{beta'(1-s)}{beta(1-s)}. $$
Taking $s = 0$, we have
$$ frac{beta'(0)}{beta(0)} = logleft(frac{pi}{2}right) + gamma - frac{beta'(1)}{beta(1)} quad Longrightarrow quad beta'(1) = beta(1) left[ logleft(frac{pi}{2}right) + gamma - frac{beta'(0)}{beta(0)} right]. $$
But again by the functional equation, we have $beta(0) = frac{1}{2}$. Therefore
$$ beta'(1) = frac{pi}{4} left[ gamma + 2 log 2 + 3 log pi - 4 log Gammaleft(frac{1}{4}right) right], $$
and hence
$$ int_{0}^{1} frac{log log (1/x)}{1+x^2} ; dx = frac{pi}{4} left[ 2 log 2 + 3 log pi - 4 log Gammaleft(frac{1}{4}right) right], $$
which is identical to the proposed answer.
$endgroup$
$begingroup$
Excellent answer. I was trying to figure out how to evaluate $beta^'(1)$, but couldn't get very far.
$endgroup$
– Eric Naslund
Mar 18 '12 at 12:18
$begingroup$
Ahhh, a small typo. Each of the zeta terms should be of the form $zeta(s+1)$, specifically it should be $2^{-2s-1}zeta(s+1)$ instead of $2^{-2s-1}zeta(s)$. Otherwise in the line where you take $srightarrow 0$, the pole from $szeta^'(s+1)$ will not cancel out with anything. ($zeta^'(s+1)$ has a double pole)
$endgroup$
– Eric Naslund
Mar 18 '12 at 12:29
$begingroup$
@EricNaslund, thanks for pointing out typos! I will fix it right now.
$endgroup$
– Sangchul Lee
Mar 18 '12 at 12:32
5
$begingroup$
@sos440, I just wanted to add, this is one of my favorite proofs I have read so far on Math Stack Exchange.
$endgroup$
– Eric Naslund
Apr 14 '12 at 9:33
2
$begingroup$
This is nuts, man.
$endgroup$
– Pedro Tamaroff♦
Oct 21 '12 at 18:49
|
show 2 more comments
$begingroup$
By the substitution $x = e^{-t}$, we find that
$$begin{align*}
int_{0}^{1} frac{(log (1/x))^s}{1+x^2} ; dx
&= int_{0}^{infty} frac{t^s e^{-t}}{1 + e^{-2t}} ; dt \
&= int_{0}^{infty} sum_{n=0}^{infty} (-1)^n t^s e^{-(2n+1)t} ; dt \
&= sum_{n=0}^{infty} (-1)^n , frac{Gamma(s+1)}{(2n+1)^{s+1}} \
&= Gamma(s+1)L(s+1, chi_4),
end{align*}$$
where $L(s, chi_4)$ is the Dirichlet L-function of the unique non-principal character $chi_4$ to the modulus 4. Often it is denoted as $beta(s)$ and called the Dirichlet beta function. Thus differentiating both sides with respect to $s$ and plugging $s = 0$, we obtain a representation formula
$$int_{0}^{1} frac{log log (1/x)}{1+x^2} ; dx = psi_0(1) beta(1) + beta'(1),$$
and the problem reduces to find the value of $beta(1)$ and $beta'(1)$. Note that $beta(1) = frac{pi}{4}$ is just the Gregory series. For $beta'(1)$, we first notice that the following functional equation holds.
$$ beta(s)=left(frac{pi}{2}right)^{s-1} Gamma(1-s) cos left( frac{pi s}{2} right),beta(1-s). $$
This follows from the general theory of Dirichlet L-functions, and one can consult with any analytic number theory textbook to find its proof. Therefore it is sufficient to calculate $beta'(0)$. For $0 < s$, we have
$$begin{align*}
-beta'(s)
&= sum_{n=1}^{infty} left[ frac{log(4n+1)}{(4n+1)^s} - frac{log(4n-1)}{(4n-1)^s} right] \
&= sum_{n=1}^{infty} frac{1}{(4n)^s} left[ log left( frac{4n+1}{4n-1} right) - frac{1}{2n} right] + 2^{-2s-1}zeta(s+1) \
& qquad + sum_{n=1}^{infty} left( frac{1}{(4n+1)^s} - frac{1}{(4n)^s} right) log (4n+1) \
& qquad + sum_{n=1}^{infty} left( frac{1}{(4n)^s} - frac{1}{(4n-1)^s} right) log (4n-1) \
& =: A(s) + 2^{-2s-1}zeta(s+1) + B(s) + C(s).
end{align*}$$
We first estimate $B(s)$. As $n to infty$, we have
$$ log left( frac{4n}{4n+1} right) = -frac{1}{4n} + Oleft( frac{1}{n^2} right), quad log left( frac{4n}{4n-1} right) = frac{1}{4n} + Oleft( frac{1}{n^2} right). $$
Thus when $s to 0$,
$$begin{align*}
B(s)
&= sum_{n=1}^{infty} frac{1}{(4n)^s} left[ expleft( s log left( frac{4n}{4n+1} right) right) - 1 right] left[ log (4n) - log left(frac{4n}{4n+1} right) right] \
&= sum_{n=1}^{infty} frac{1}{(4n)^s} left[ - frac{s}{4n} + O left(frac{s^2}{n^2} right) right] left[ log (4n) + O left(frac{1}{n} right) right] \
&= -s 2^{-2s-2} sum_{n=1}^{infty} frac{1}{n^{s+1}} log (4n) + O(s) \
&= s 2^{-2s-2} left[ zeta'(s+1) - zeta(s+1) log 4 right] + O(s).
end{align*}$$
Similar consideration also shows that
$$ C(s) = s 2^{-2s-2} left[ zeta'(s+1) - zeta(s+1) log 4 right] + O(s).$$
Thus we have
$$ 2^{-2s-1}zeta(s+1) + B(s) + C(s) = 2^{-2s-1} left[ zeta(s+1) + s zeta'(s+1) - s zeta(s+1) log 4 right] + O(s). $$
But since
$$zeta(1+s) = frac{1}{s} + gamma + O(s),$$
we have
$$ lim_{sdownarrow 0} left( 2^{-2s-1}zeta(s+1) + B(s) + C(s) right) = frac{gamma}{2} - log 2.$$
For $A(s)$, the summands are positive with possible finite exceptional terms. Thus the Monotone Convergence Theorem guarantees that
$$ lim_{sdownarrow 0} A(s) = sum_{n=1}^{infty} left[ log left( frac{4n+1}{4n-1} right) - frac{1}{2n} right]. $$
Let $L$ denote this limit. Then by Stirling's formula,
$$begin{align*}
e^{L}
& stackrel{Ntoinfty}{sim} prod_{n=1}^{N} left( frac{4n+1}{4n-1} right) e^{-1/2n}
sim frac{e^{-gamma/2}}{sqrt{N}} prod_{n=1}^{N} left( frac{n+(1/4)}{n-(1/4)} right) \
& sim frac{e^{-gamma/2}}{sqrt{N}} frac{Gammaleft(frac{3}{4}right)}{Gammaleft(frac{5}{4}right)} frac{Gammaleft(N+frac{5}{4}right)}{Gammaleft(N+frac{3}{4}right)}
sim frac{e^{-gamma/2}}{sqrt{N}} frac{Gammaleft(frac{3}{4}right)}{Gammaleft(frac{5}{4}right)} frac{left( frac{N + (5/4)}{e} right)^{N+frac{5}{4}}}{left( frac{N + (3/4)}{e} right)^{N+frac{3}{4}}} \
& sim e^{-gamma/2} frac{Gammaleft(frac{3}{4}right)}{Gammaleft(frac{5}{4}right)}
= 4 e^{-gamma/2} frac{pi sqrt{2}}{Gammaleft(frac{1}{4}right)^2},
end{align*}$$
where we have used the Euler's reflection formula in the last line. Combining all the efforts, we obtain
$$-beta'(0) = log (2 pi sqrt{2}) - 2 log Gammaleft(frac{1}{4}right) .$$
Now taking logarithmic differntiation to the functional equation, we have
$$ frac{beta'(s)}{beta(s)} = logleft(frac{pi}{2}right) - psi_0 (1-s) - frac{pi}{2} tan left( frac{pi s}{2} right) - frac{beta'(1-s)}{beta(1-s)}. $$
Taking $s = 0$, we have
$$ frac{beta'(0)}{beta(0)} = logleft(frac{pi}{2}right) + gamma - frac{beta'(1)}{beta(1)} quad Longrightarrow quad beta'(1) = beta(1) left[ logleft(frac{pi}{2}right) + gamma - frac{beta'(0)}{beta(0)} right]. $$
But again by the functional equation, we have $beta(0) = frac{1}{2}$. Therefore
$$ beta'(1) = frac{pi}{4} left[ gamma + 2 log 2 + 3 log pi - 4 log Gammaleft(frac{1}{4}right) right], $$
and hence
$$ int_{0}^{1} frac{log log (1/x)}{1+x^2} ; dx = frac{pi}{4} left[ 2 log 2 + 3 log pi - 4 log Gammaleft(frac{1}{4}right) right], $$
which is identical to the proposed answer.
$endgroup$
By the substitution $x = e^{-t}$, we find that
$$begin{align*}
int_{0}^{1} frac{(log (1/x))^s}{1+x^2} ; dx
&= int_{0}^{infty} frac{t^s e^{-t}}{1 + e^{-2t}} ; dt \
&= int_{0}^{infty} sum_{n=0}^{infty} (-1)^n t^s e^{-(2n+1)t} ; dt \
&= sum_{n=0}^{infty} (-1)^n , frac{Gamma(s+1)}{(2n+1)^{s+1}} \
&= Gamma(s+1)L(s+1, chi_4),
end{align*}$$
where $L(s, chi_4)$ is the Dirichlet L-function of the unique non-principal character $chi_4$ to the modulus 4. Often it is denoted as $beta(s)$ and called the Dirichlet beta function. Thus differentiating both sides with respect to $s$ and plugging $s = 0$, we obtain a representation formula
$$int_{0}^{1} frac{log log (1/x)}{1+x^2} ; dx = psi_0(1) beta(1) + beta'(1),$$
and the problem reduces to find the value of $beta(1)$ and $beta'(1)$. Note that $beta(1) = frac{pi}{4}$ is just the Gregory series. For $beta'(1)$, we first notice that the following functional equation holds.
$$ beta(s)=left(frac{pi}{2}right)^{s-1} Gamma(1-s) cos left( frac{pi s}{2} right),beta(1-s). $$
This follows from the general theory of Dirichlet L-functions, and one can consult with any analytic number theory textbook to find its proof. Therefore it is sufficient to calculate $beta'(0)$. For $0 < s$, we have
$$begin{align*}
-beta'(s)
&= sum_{n=1}^{infty} left[ frac{log(4n+1)}{(4n+1)^s} - frac{log(4n-1)}{(4n-1)^s} right] \
&= sum_{n=1}^{infty} frac{1}{(4n)^s} left[ log left( frac{4n+1}{4n-1} right) - frac{1}{2n} right] + 2^{-2s-1}zeta(s+1) \
& qquad + sum_{n=1}^{infty} left( frac{1}{(4n+1)^s} - frac{1}{(4n)^s} right) log (4n+1) \
& qquad + sum_{n=1}^{infty} left( frac{1}{(4n)^s} - frac{1}{(4n-1)^s} right) log (4n-1) \
& =: A(s) + 2^{-2s-1}zeta(s+1) + B(s) + C(s).
end{align*}$$
We first estimate $B(s)$. As $n to infty$, we have
$$ log left( frac{4n}{4n+1} right) = -frac{1}{4n} + Oleft( frac{1}{n^2} right), quad log left( frac{4n}{4n-1} right) = frac{1}{4n} + Oleft( frac{1}{n^2} right). $$
Thus when $s to 0$,
$$begin{align*}
B(s)
&= sum_{n=1}^{infty} frac{1}{(4n)^s} left[ expleft( s log left( frac{4n}{4n+1} right) right) - 1 right] left[ log (4n) - log left(frac{4n}{4n+1} right) right] \
&= sum_{n=1}^{infty} frac{1}{(4n)^s} left[ - frac{s}{4n} + O left(frac{s^2}{n^2} right) right] left[ log (4n) + O left(frac{1}{n} right) right] \
&= -s 2^{-2s-2} sum_{n=1}^{infty} frac{1}{n^{s+1}} log (4n) + O(s) \
&= s 2^{-2s-2} left[ zeta'(s+1) - zeta(s+1) log 4 right] + O(s).
end{align*}$$
Similar consideration also shows that
$$ C(s) = s 2^{-2s-2} left[ zeta'(s+1) - zeta(s+1) log 4 right] + O(s).$$
Thus we have
$$ 2^{-2s-1}zeta(s+1) + B(s) + C(s) = 2^{-2s-1} left[ zeta(s+1) + s zeta'(s+1) - s zeta(s+1) log 4 right] + O(s). $$
But since
$$zeta(1+s) = frac{1}{s} + gamma + O(s),$$
we have
$$ lim_{sdownarrow 0} left( 2^{-2s-1}zeta(s+1) + B(s) + C(s) right) = frac{gamma}{2} - log 2.$$
For $A(s)$, the summands are positive with possible finite exceptional terms. Thus the Monotone Convergence Theorem guarantees that
$$ lim_{sdownarrow 0} A(s) = sum_{n=1}^{infty} left[ log left( frac{4n+1}{4n-1} right) - frac{1}{2n} right]. $$
Let $L$ denote this limit. Then by Stirling's formula,
$$begin{align*}
e^{L}
& stackrel{Ntoinfty}{sim} prod_{n=1}^{N} left( frac{4n+1}{4n-1} right) e^{-1/2n}
sim frac{e^{-gamma/2}}{sqrt{N}} prod_{n=1}^{N} left( frac{n+(1/4)}{n-(1/4)} right) \
& sim frac{e^{-gamma/2}}{sqrt{N}} frac{Gammaleft(frac{3}{4}right)}{Gammaleft(frac{5}{4}right)} frac{Gammaleft(N+frac{5}{4}right)}{Gammaleft(N+frac{3}{4}right)}
sim frac{e^{-gamma/2}}{sqrt{N}} frac{Gammaleft(frac{3}{4}right)}{Gammaleft(frac{5}{4}right)} frac{left( frac{N + (5/4)}{e} right)^{N+frac{5}{4}}}{left( frac{N + (3/4)}{e} right)^{N+frac{3}{4}}} \
& sim e^{-gamma/2} frac{Gammaleft(frac{3}{4}right)}{Gammaleft(frac{5}{4}right)}
= 4 e^{-gamma/2} frac{pi sqrt{2}}{Gammaleft(frac{1}{4}right)^2},
end{align*}$$
where we have used the Euler's reflection formula in the last line. Combining all the efforts, we obtain
$$-beta'(0) = log (2 pi sqrt{2}) - 2 log Gammaleft(frac{1}{4}right) .$$
Now taking logarithmic differntiation to the functional equation, we have
$$ frac{beta'(s)}{beta(s)} = logleft(frac{pi}{2}right) - psi_0 (1-s) - frac{pi}{2} tan left( frac{pi s}{2} right) - frac{beta'(1-s)}{beta(1-s)}. $$
Taking $s = 0$, we have
$$ frac{beta'(0)}{beta(0)} = logleft(frac{pi}{2}right) + gamma - frac{beta'(1)}{beta(1)} quad Longrightarrow quad beta'(1) = beta(1) left[ logleft(frac{pi}{2}right) + gamma - frac{beta'(0)}{beta(0)} right]. $$
But again by the functional equation, we have $beta(0) = frac{1}{2}$. Therefore
$$ beta'(1) = frac{pi}{4} left[ gamma + 2 log 2 + 3 log pi - 4 log Gammaleft(frac{1}{4}right) right], $$
and hence
$$ int_{0}^{1} frac{log log (1/x)}{1+x^2} ; dx = frac{pi}{4} left[ 2 log 2 + 3 log pi - 4 log Gammaleft(frac{1}{4}right) right], $$
which is identical to the proposed answer.
edited Mar 18 '12 at 13:33
answered Mar 18 '12 at 6:48
Sangchul LeeSangchul Lee
96k12171280
96k12171280
$begingroup$
Excellent answer. I was trying to figure out how to evaluate $beta^'(1)$, but couldn't get very far.
$endgroup$
– Eric Naslund
Mar 18 '12 at 12:18
$begingroup$
Ahhh, a small typo. Each of the zeta terms should be of the form $zeta(s+1)$, specifically it should be $2^{-2s-1}zeta(s+1)$ instead of $2^{-2s-1}zeta(s)$. Otherwise in the line where you take $srightarrow 0$, the pole from $szeta^'(s+1)$ will not cancel out with anything. ($zeta^'(s+1)$ has a double pole)
$endgroup$
– Eric Naslund
Mar 18 '12 at 12:29
$begingroup$
@EricNaslund, thanks for pointing out typos! I will fix it right now.
$endgroup$
– Sangchul Lee
Mar 18 '12 at 12:32
5
$begingroup$
@sos440, I just wanted to add, this is one of my favorite proofs I have read so far on Math Stack Exchange.
$endgroup$
– Eric Naslund
Apr 14 '12 at 9:33
2
$begingroup$
This is nuts, man.
$endgroup$
– Pedro Tamaroff♦
Oct 21 '12 at 18:49
|
show 2 more comments
$begingroup$
Excellent answer. I was trying to figure out how to evaluate $beta^'(1)$, but couldn't get very far.
$endgroup$
– Eric Naslund
Mar 18 '12 at 12:18
$begingroup$
Ahhh, a small typo. Each of the zeta terms should be of the form $zeta(s+1)$, specifically it should be $2^{-2s-1}zeta(s+1)$ instead of $2^{-2s-1}zeta(s)$. Otherwise in the line where you take $srightarrow 0$, the pole from $szeta^'(s+1)$ will not cancel out with anything. ($zeta^'(s+1)$ has a double pole)
$endgroup$
– Eric Naslund
Mar 18 '12 at 12:29
$begingroup$
@EricNaslund, thanks for pointing out typos! I will fix it right now.
$endgroup$
– Sangchul Lee
Mar 18 '12 at 12:32
5
$begingroup$
@sos440, I just wanted to add, this is one of my favorite proofs I have read so far on Math Stack Exchange.
$endgroup$
– Eric Naslund
Apr 14 '12 at 9:33
2
$begingroup$
This is nuts, man.
$endgroup$
– Pedro Tamaroff♦
Oct 21 '12 at 18:49
$begingroup$
Excellent answer. I was trying to figure out how to evaluate $beta^'(1)$, but couldn't get very far.
$endgroup$
– Eric Naslund
Mar 18 '12 at 12:18
$begingroup$
Excellent answer. I was trying to figure out how to evaluate $beta^'(1)$, but couldn't get very far.
$endgroup$
– Eric Naslund
Mar 18 '12 at 12:18
$begingroup$
Ahhh, a small typo. Each of the zeta terms should be of the form $zeta(s+1)$, specifically it should be $2^{-2s-1}zeta(s+1)$ instead of $2^{-2s-1}zeta(s)$. Otherwise in the line where you take $srightarrow 0$, the pole from $szeta^'(s+1)$ will not cancel out with anything. ($zeta^'(s+1)$ has a double pole)
$endgroup$
– Eric Naslund
Mar 18 '12 at 12:29
$begingroup$
Ahhh, a small typo. Each of the zeta terms should be of the form $zeta(s+1)$, specifically it should be $2^{-2s-1}zeta(s+1)$ instead of $2^{-2s-1}zeta(s)$. Otherwise in the line where you take $srightarrow 0$, the pole from $szeta^'(s+1)$ will not cancel out with anything. ($zeta^'(s+1)$ has a double pole)
$endgroup$
– Eric Naslund
Mar 18 '12 at 12:29
$begingroup$
@EricNaslund, thanks for pointing out typos! I will fix it right now.
$endgroup$
– Sangchul Lee
Mar 18 '12 at 12:32
$begingroup$
@EricNaslund, thanks for pointing out typos! I will fix it right now.
$endgroup$
– Sangchul Lee
Mar 18 '12 at 12:32
5
5
$begingroup$
@sos440, I just wanted to add, this is one of my favorite proofs I have read so far on Math Stack Exchange.
$endgroup$
– Eric Naslund
Apr 14 '12 at 9:33
$begingroup$
@sos440, I just wanted to add, this is one of my favorite proofs I have read so far on Math Stack Exchange.
$endgroup$
– Eric Naslund
Apr 14 '12 at 9:33
2
2
$begingroup$
This is nuts, man.
$endgroup$
– Pedro Tamaroff♦
Oct 21 '12 at 18:49
$begingroup$
This is nuts, man.
$endgroup$
– Pedro Tamaroff♦
Oct 21 '12 at 18:49
|
show 2 more comments
$begingroup$
$newcommand{+}{^{dagger}}
newcommand{angles}[1]{leftlangle #1 rightrangle}
newcommand{braces}[1]{leftlbrace #1 rightrbrace}
newcommand{bracks}[1]{leftlbrack #1 rightrbrack}
newcommand{ceil}[1]{,leftlceil #1 rightrceil,}
newcommand{dd}{{rm d}}
newcommand{down}{downarrow}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{equalby}[1]{{#1 atop {= atop vphantom{huge A}}}}
newcommand{expo}[1]{,{rm e}^{#1},}
newcommand{fermi}{,{rm f}}
newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}
newcommand{half}{{1 over 2}}
newcommand{ic}{{rm i}}
newcommand{iff}{Longleftrightarrow}
newcommand{imp}{Longrightarrow}
newcommand{isdiv}{,left.rightvert,}
newcommand{ket}[1]{leftvert #1rightrangle}
newcommand{ol}[1]{overline{#1}}
newcommand{pars}[1]{left( #1 right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{pp}{{cal P}}
newcommand{root}[2]{,sqrt[#1]{,#2,},}
newcommand{sech}{,{rm sech}}
newcommand{sgn}{,{rm sgn}}
newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
newcommand{ul}[1]{underline{#1}}
newcommand{verts}[1]{leftvert, #1 ,rightvert}$
$ds{int_{0}^{1}lnpars{lnpars{1 over x}},{dd x over 1 + x^{2}}
={pi over 2},lnpars{root{vphantom{large A}2pi},
{Gammapars{3/4} over Gammapars{1/4}}}: {Large ?}}$
With $ds{x to 1/x}$:
$$
color{#f00}{int_{0}^{1}lnpars{lnpars{1 over x}},{dd x over 1 + x^{2}}}=
int_{infty}^{1}lnpars{lnpars{x}},pars{-,{dd x/x^{2} over 1 + 1/x^{2}}}
=int_{1}^{infty}{lnpars{lnpars{x}} over 1 + x^{2}},dd x
$$
With $x equiv expo{t}quadiffquad t = lnpars{x}$:
begin{align}
&color{#f00}{int_{0}^{1}lnpars{lnpars{1 over x}},{dd x over 1 + x^{2}}}=
int_{0}^{infty}{lnpars{t} over 1 + expo{2t}},expo{t}dd t
=int_{0}^{infty}lnpars{t}expo{-t},{1 over 1 + expo{-2t}},dd t
\[3mm]&=int_{0}^{infty}lnpars{t}expo{-t},
sum_{ell = 0}^{infty}pars{-1}^{ell}expo{-2ell t},dd t
=sum_{ell = 0}^{infty}pars{-1}^{ell}lim_{mu to 0}partiald{}{mu}bracks{%
int_{0}^{infty}t^{mu}expo{-pars{2ell + 1}t},dd t}
\[3mm]&=sum_{ell = 0}^{infty}pars{-1}^{ell}lim_{mu to 0}partiald{}{mu}bracks{%
{1 over pars{2ell + 1}^{mu + 1}}
overbrace{int_{0}^{infty}t^{mu}expo{-t},dd t}^{ds{Gammapars{mu + 1}}} }
end{align}
where $Gammapars{z}$ is the
Gamma Function.
begin{align}
&color{#f00}{int_{0}^{1}lnpars{lnpars{1 over x}},{dd x over 1 + x^{2}}}=
sum_{ell = 0}^{infty}pars{-1}^{ell}lim_{mu to 0}partiald{}{mu}bracks{%
{Gammapars{mu + 1} over pars{2ell + 1}^{mu + 1}}}
\[3mm]&=
lim_{mu to 0}partiald{}{mu}bracks{%
Gammapars{mu + 1}sum_{ell = 0}^{infty}
{pars{-1}^{ell}over pars{2ell + 1}^{mu + 1}}}
\[3mm]&=
lim_{mu to 0}braces{%
Gamma'pars{mu + 1}sum_{ell = 0}^{infty}
{pars{-1}^{ell}over pars{2ell + 1}^{mu + 1}}
+Gammapars{mu + 1}partiald{}{mu}bracks{%
sum_{ell = 0}^{infty}{pars{-1}^{ell}over pars{2ell + 1}^{mu + 1}}}}
\[3mm]&=-gammasum_{ell = 0}^{infty}{pars{-1}^{ell}over 2ell + 1}
+
lim_{mu to 0}partiald{}{mu}
sum_{ell = 0}^{infty}{pars{-1}^{ell}over pars{2ell + 1}^{mu + 1}}tag{1}
end{align}
In this result, we used $Psipars{1} = -gamma$ and $Gammapars{1} = 1$ where
$Psipars{z} equiv ddlnGammapars{z}/dd z$ is the
Digamma Function and $gamma$ is the
Euler-Mascheroni constant.
The first $ell$-sum in the right member of $pars{1}$ is given by:
begin{align}
&sum_{ell = 0}{pars{-}^{ell} over 2ell + 1}=
sum_{ell = 0}pars{{1 over 4ell + 1} - {1 over 4ell + 3}}
={1 over 8}sum_{ell = 0}{1 over pars{ell + 1/4}pars{ell + 3/4}}
\[3mm]&=-,{1 over 4}bracks{Psipars{1 over 4} - Psipars{3 over 4}}
= {pi over 4}
end{align}
where we used the identities:
begin{align}
sum_{ell = 0}^{infty}{1 over pars{ell + z_{0}}pars{ell + z_{1}}}
&={Psipars{z_{0}} - Psipars{z_{1}} over z_{0} - z_{1}}tag{1.1}
\[3mm]Psipars{z} - Psipars{1 - z} &= -picotpars{pi z}tag{1.2}
end{align}
$$
mbox{Then,}quad
color{#f00}{int_{0}^{1}lnpars{lnpars{1 over x}},{dd x over 1 + x^{2}}}=
-,{1 over 4},gammapi + lim_{mu to 0}partiald{}{mu}
sum_{ell = 0}^{infty}{pars{-1}^{ell}over pars{2ell + 1}^{mu + 1}}tag{2}
$$
Also,
begin{align}
sum_{ell = 0}^{infty}{pars{-1}^{ell}over pars{2ell + 1}^{mu + 1}}
&=sum_{ell = 0}^{infty}{1 over bracks{2pars{2ell} + 1}^{mu + 1}}
-sum_{ell = 0}^{infty}{1 over bracks{2pars{2ell + 1} + 1}^{mu + 1}}
\[3mm]&=2^{-2mu - 2}bracks{%
sum_{ell = 0}^{infty}{1 over pars{ell + 1/4}^{mu + 1}}
-sum_{ell = 0}^{infty}{1 over pars{ell + 3/4}^{mu + 1}}}
\[3mm]&=2^{-2mu - 2}bracks{%
zetapars{mu + 1,{1 over 4}} - zetapars{mu + 1,{3 over 4}}}
end{align}
where $ds{zetapars{s,q} equiv sum_{n = 0}^{infty}{1 over pars{q + n}^{s}}}$
with $Repars{s} > 1$ and $Repars{q} > 0$ i s the
Hurwitz Zeta Function or/and Generalizated Zeta Funcion .
So,
begin{align}
&lim_{mu to 0}partiald{}{mu}sum_{ell = 0}^{infty}{pars{-1}^{ell}over pars{2ell + 1}^{mu + 1}}
\[3mm]&=-,{1 over 4},lnpars{2}
underbrace{overbrace{sum_{ell = 0}^{infty}{1 over pars{ell + 3/4}pars{ell + 1/4}}}
^{ds{2bracks{Psipars{3/4} - Psipars{1/4}} = 2pi}}}
_{ds{mbox{See} pars{1.1} mbox{and} pars{1.2}}}
+ {1 over 4}
overbrace{partiald{}{mu}bracks{%
zetapars{mu,{1 over 4}} - zetapars{mu,{3 over 4}}}_{mu = 1}}
^{ds{-gamma_{1}pars{1/4} + gamma_{1}pars{3/4}}}
end{align}
where $gamma_{n}pars{z}$ is a
Generalizated Stieltjes Constant
.
With this result, $pars{2}$ is reduced to:
begin{align}
color{#f00}{int_{0}^{1}lnpars{lnpars{1 over x}},{dd x over 1 + x^{2}}}
&=-,{1 over 4},braces{%
pibracks{%
gamma + 2lnpars{2}} + gamma_{1}pars{1 over 4} - gamma_{1}pars{3 over 4}}
tag{3}
end{align}
The difference $gamma_{1}pars{1/4} - gamma_{1}pars{3/4}$ is evaluated with the 1846 Carl Malmsten identity
:
$$
gamma_{1}pars{m over n} - gamma_{1}pars{1 - {m over n}}
=-pibracks{gamma + lnpars{2pi n}}cotpars{mpi over n}
+ 2pisum_{ell = 1}^{n - 1}
sinpars{{2pi m over n},ell}lnpars{Gammapars{ell over n}}
$$
With $m = 1$ and $n = 4$:
begin{align}
&gamma_{1}pars{1 over 4} - gamma_{1}pars{3 over 4}
\[3mm]&=-pibracks{gamma + lnpars{8pi}}cotpars{pi over 4}
+ 2pisum_{ell = 1}^{3}sinpars{pi,ell over 2}
lnpars{Gammapars{ell over 4}}
\[3mm]&=-pibracks{gamma + 2lnpars{2} + lnpars{2pi}}
\[3mm]&phantom{=}
+ 2pibracks{sinpars{pi over 2}lnpars{Gammapars{1 over 4}}
+ sinpars{pi}lnpars{Gammapars{1 over 2}}
+ sinpars{3pi over 2}Gammapars{3 over 4}}
\[3mm]&=-pibracks{gamma + 2lnpars{2} + lnpars{2pi}}
+2pibracks{lnpars{Gammapars{1 over 4}} - lnpars{Gammapars{3 over 4}}}
\[3mm]&=-pibracks{gamma + 2lnpars{2}} - 2pibracks{%
lnpars{root{2pi}} +lnpars{Gammapars{3 over 4} over Gammapars{1 over 4}}}
\[3mm]&=-pibracks{gamma + 2lnpars{2}}
-2pilnpars{root{2pi},{Gammapars{3 over 4} over Gammapars{1 over 4}}}
end{align}
By replacing this result in $pars{3}$, we find:
$$color{#00f}{large%
int_{0}^{1}lnpars{lnpars{1 over x}},{dd x over 1 + x^{2}}
={pi over 2},lnpars{root{vphantom{large A}2pi},
{Gammapars{3/4} over Gammapars{1/4}}}}
$$
As an 'extra-bonus' we can use the identity
$ds{Gammapars{z} = {pi over Gammapars{1 - z}sinpars{pi z}}}$ to 'kill' one of the $Gamma,$'s functions:
$ds{Gammapars{1 over 4} = {root{2}pi over Gammapars{3/4}}}$ which yields:
$$
int_{0}^{1}lnpars{lnpars{1 over x}},{dd x over 1 + x^{2}}
={pi over 2},lnpars{Gamma^{,2}pars{3/4} over root{pi}}
$$
$endgroup$
add a comment |
$begingroup$
$newcommand{+}{^{dagger}}
newcommand{angles}[1]{leftlangle #1 rightrangle}
newcommand{braces}[1]{leftlbrace #1 rightrbrace}
newcommand{bracks}[1]{leftlbrack #1 rightrbrack}
newcommand{ceil}[1]{,leftlceil #1 rightrceil,}
newcommand{dd}{{rm d}}
newcommand{down}{downarrow}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{equalby}[1]{{#1 atop {= atop vphantom{huge A}}}}
newcommand{expo}[1]{,{rm e}^{#1},}
newcommand{fermi}{,{rm f}}
newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}
newcommand{half}{{1 over 2}}
newcommand{ic}{{rm i}}
newcommand{iff}{Longleftrightarrow}
newcommand{imp}{Longrightarrow}
newcommand{isdiv}{,left.rightvert,}
newcommand{ket}[1]{leftvert #1rightrangle}
newcommand{ol}[1]{overline{#1}}
newcommand{pars}[1]{left( #1 right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{pp}{{cal P}}
newcommand{root}[2]{,sqrt[#1]{,#2,},}
newcommand{sech}{,{rm sech}}
newcommand{sgn}{,{rm sgn}}
newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
newcommand{ul}[1]{underline{#1}}
newcommand{verts}[1]{leftvert, #1 ,rightvert}$
$ds{int_{0}^{1}lnpars{lnpars{1 over x}},{dd x over 1 + x^{2}}
={pi over 2},lnpars{root{vphantom{large A}2pi},
{Gammapars{3/4} over Gammapars{1/4}}}: {Large ?}}$
With $ds{x to 1/x}$:
$$
color{#f00}{int_{0}^{1}lnpars{lnpars{1 over x}},{dd x over 1 + x^{2}}}=
int_{infty}^{1}lnpars{lnpars{x}},pars{-,{dd x/x^{2} over 1 + 1/x^{2}}}
=int_{1}^{infty}{lnpars{lnpars{x}} over 1 + x^{2}},dd x
$$
With $x equiv expo{t}quadiffquad t = lnpars{x}$:
begin{align}
&color{#f00}{int_{0}^{1}lnpars{lnpars{1 over x}},{dd x over 1 + x^{2}}}=
int_{0}^{infty}{lnpars{t} over 1 + expo{2t}},expo{t}dd t
=int_{0}^{infty}lnpars{t}expo{-t},{1 over 1 + expo{-2t}},dd t
\[3mm]&=int_{0}^{infty}lnpars{t}expo{-t},
sum_{ell = 0}^{infty}pars{-1}^{ell}expo{-2ell t},dd t
=sum_{ell = 0}^{infty}pars{-1}^{ell}lim_{mu to 0}partiald{}{mu}bracks{%
int_{0}^{infty}t^{mu}expo{-pars{2ell + 1}t},dd t}
\[3mm]&=sum_{ell = 0}^{infty}pars{-1}^{ell}lim_{mu to 0}partiald{}{mu}bracks{%
{1 over pars{2ell + 1}^{mu + 1}}
overbrace{int_{0}^{infty}t^{mu}expo{-t},dd t}^{ds{Gammapars{mu + 1}}} }
end{align}
where $Gammapars{z}$ is the
Gamma Function.
begin{align}
&color{#f00}{int_{0}^{1}lnpars{lnpars{1 over x}},{dd x over 1 + x^{2}}}=
sum_{ell = 0}^{infty}pars{-1}^{ell}lim_{mu to 0}partiald{}{mu}bracks{%
{Gammapars{mu + 1} over pars{2ell + 1}^{mu + 1}}}
\[3mm]&=
lim_{mu to 0}partiald{}{mu}bracks{%
Gammapars{mu + 1}sum_{ell = 0}^{infty}
{pars{-1}^{ell}over pars{2ell + 1}^{mu + 1}}}
\[3mm]&=
lim_{mu to 0}braces{%
Gamma'pars{mu + 1}sum_{ell = 0}^{infty}
{pars{-1}^{ell}over pars{2ell + 1}^{mu + 1}}
+Gammapars{mu + 1}partiald{}{mu}bracks{%
sum_{ell = 0}^{infty}{pars{-1}^{ell}over pars{2ell + 1}^{mu + 1}}}}
\[3mm]&=-gammasum_{ell = 0}^{infty}{pars{-1}^{ell}over 2ell + 1}
+
lim_{mu to 0}partiald{}{mu}
sum_{ell = 0}^{infty}{pars{-1}^{ell}over pars{2ell + 1}^{mu + 1}}tag{1}
end{align}
In this result, we used $Psipars{1} = -gamma$ and $Gammapars{1} = 1$ where
$Psipars{z} equiv ddlnGammapars{z}/dd z$ is the
Digamma Function and $gamma$ is the
Euler-Mascheroni constant.
The first $ell$-sum in the right member of $pars{1}$ is given by:
begin{align}
&sum_{ell = 0}{pars{-}^{ell} over 2ell + 1}=
sum_{ell = 0}pars{{1 over 4ell + 1} - {1 over 4ell + 3}}
={1 over 8}sum_{ell = 0}{1 over pars{ell + 1/4}pars{ell + 3/4}}
\[3mm]&=-,{1 over 4}bracks{Psipars{1 over 4} - Psipars{3 over 4}}
= {pi over 4}
end{align}
where we used the identities:
begin{align}
sum_{ell = 0}^{infty}{1 over pars{ell + z_{0}}pars{ell + z_{1}}}
&={Psipars{z_{0}} - Psipars{z_{1}} over z_{0} - z_{1}}tag{1.1}
\[3mm]Psipars{z} - Psipars{1 - z} &= -picotpars{pi z}tag{1.2}
end{align}
$$
mbox{Then,}quad
color{#f00}{int_{0}^{1}lnpars{lnpars{1 over x}},{dd x over 1 + x^{2}}}=
-,{1 over 4},gammapi + lim_{mu to 0}partiald{}{mu}
sum_{ell = 0}^{infty}{pars{-1}^{ell}over pars{2ell + 1}^{mu + 1}}tag{2}
$$
Also,
begin{align}
sum_{ell = 0}^{infty}{pars{-1}^{ell}over pars{2ell + 1}^{mu + 1}}
&=sum_{ell = 0}^{infty}{1 over bracks{2pars{2ell} + 1}^{mu + 1}}
-sum_{ell = 0}^{infty}{1 over bracks{2pars{2ell + 1} + 1}^{mu + 1}}
\[3mm]&=2^{-2mu - 2}bracks{%
sum_{ell = 0}^{infty}{1 over pars{ell + 1/4}^{mu + 1}}
-sum_{ell = 0}^{infty}{1 over pars{ell + 3/4}^{mu + 1}}}
\[3mm]&=2^{-2mu - 2}bracks{%
zetapars{mu + 1,{1 over 4}} - zetapars{mu + 1,{3 over 4}}}
end{align}
where $ds{zetapars{s,q} equiv sum_{n = 0}^{infty}{1 over pars{q + n}^{s}}}$
with $Repars{s} > 1$ and $Repars{q} > 0$ i s the
Hurwitz Zeta Function or/and Generalizated Zeta Funcion .
So,
begin{align}
&lim_{mu to 0}partiald{}{mu}sum_{ell = 0}^{infty}{pars{-1}^{ell}over pars{2ell + 1}^{mu + 1}}
\[3mm]&=-,{1 over 4},lnpars{2}
underbrace{overbrace{sum_{ell = 0}^{infty}{1 over pars{ell + 3/4}pars{ell + 1/4}}}
^{ds{2bracks{Psipars{3/4} - Psipars{1/4}} = 2pi}}}
_{ds{mbox{See} pars{1.1} mbox{and} pars{1.2}}}
+ {1 over 4}
overbrace{partiald{}{mu}bracks{%
zetapars{mu,{1 over 4}} - zetapars{mu,{3 over 4}}}_{mu = 1}}
^{ds{-gamma_{1}pars{1/4} + gamma_{1}pars{3/4}}}
end{align}
where $gamma_{n}pars{z}$ is a
Generalizated Stieltjes Constant
.
With this result, $pars{2}$ is reduced to:
begin{align}
color{#f00}{int_{0}^{1}lnpars{lnpars{1 over x}},{dd x over 1 + x^{2}}}
&=-,{1 over 4},braces{%
pibracks{%
gamma + 2lnpars{2}} + gamma_{1}pars{1 over 4} - gamma_{1}pars{3 over 4}}
tag{3}
end{align}
The difference $gamma_{1}pars{1/4} - gamma_{1}pars{3/4}$ is evaluated with the 1846 Carl Malmsten identity
:
$$
gamma_{1}pars{m over n} - gamma_{1}pars{1 - {m over n}}
=-pibracks{gamma + lnpars{2pi n}}cotpars{mpi over n}
+ 2pisum_{ell = 1}^{n - 1}
sinpars{{2pi m over n},ell}lnpars{Gammapars{ell over n}}
$$
With $m = 1$ and $n = 4$:
begin{align}
&gamma_{1}pars{1 over 4} - gamma_{1}pars{3 over 4}
\[3mm]&=-pibracks{gamma + lnpars{8pi}}cotpars{pi over 4}
+ 2pisum_{ell = 1}^{3}sinpars{pi,ell over 2}
lnpars{Gammapars{ell over 4}}
\[3mm]&=-pibracks{gamma + 2lnpars{2} + lnpars{2pi}}
\[3mm]&phantom{=}
+ 2pibracks{sinpars{pi over 2}lnpars{Gammapars{1 over 4}}
+ sinpars{pi}lnpars{Gammapars{1 over 2}}
+ sinpars{3pi over 2}Gammapars{3 over 4}}
\[3mm]&=-pibracks{gamma + 2lnpars{2} + lnpars{2pi}}
+2pibracks{lnpars{Gammapars{1 over 4}} - lnpars{Gammapars{3 over 4}}}
\[3mm]&=-pibracks{gamma + 2lnpars{2}} - 2pibracks{%
lnpars{root{2pi}} +lnpars{Gammapars{3 over 4} over Gammapars{1 over 4}}}
\[3mm]&=-pibracks{gamma + 2lnpars{2}}
-2pilnpars{root{2pi},{Gammapars{3 over 4} over Gammapars{1 over 4}}}
end{align}
By replacing this result in $pars{3}$, we find:
$$color{#00f}{large%
int_{0}^{1}lnpars{lnpars{1 over x}},{dd x over 1 + x^{2}}
={pi over 2},lnpars{root{vphantom{large A}2pi},
{Gammapars{3/4} over Gammapars{1/4}}}}
$$
As an 'extra-bonus' we can use the identity
$ds{Gammapars{z} = {pi over Gammapars{1 - z}sinpars{pi z}}}$ to 'kill' one of the $Gamma,$'s functions:
$ds{Gammapars{1 over 4} = {root{2}pi over Gammapars{3/4}}}$ which yields:
$$
int_{0}^{1}lnpars{lnpars{1 over x}},{dd x over 1 + x^{2}}
={pi over 2},lnpars{Gamma^{,2}pars{3/4} over root{pi}}
$$
$endgroup$
add a comment |
$begingroup$
$newcommand{+}{^{dagger}}
newcommand{angles}[1]{leftlangle #1 rightrangle}
newcommand{braces}[1]{leftlbrace #1 rightrbrace}
newcommand{bracks}[1]{leftlbrack #1 rightrbrack}
newcommand{ceil}[1]{,leftlceil #1 rightrceil,}
newcommand{dd}{{rm d}}
newcommand{down}{downarrow}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{equalby}[1]{{#1 atop {= atop vphantom{huge A}}}}
newcommand{expo}[1]{,{rm e}^{#1},}
newcommand{fermi}{,{rm f}}
newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}
newcommand{half}{{1 over 2}}
newcommand{ic}{{rm i}}
newcommand{iff}{Longleftrightarrow}
newcommand{imp}{Longrightarrow}
newcommand{isdiv}{,left.rightvert,}
newcommand{ket}[1]{leftvert #1rightrangle}
newcommand{ol}[1]{overline{#1}}
newcommand{pars}[1]{left( #1 right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{pp}{{cal P}}
newcommand{root}[2]{,sqrt[#1]{,#2,},}
newcommand{sech}{,{rm sech}}
newcommand{sgn}{,{rm sgn}}
newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
newcommand{ul}[1]{underline{#1}}
newcommand{verts}[1]{leftvert, #1 ,rightvert}$
$ds{int_{0}^{1}lnpars{lnpars{1 over x}},{dd x over 1 + x^{2}}
={pi over 2},lnpars{root{vphantom{large A}2pi},
{Gammapars{3/4} over Gammapars{1/4}}}: {Large ?}}$
With $ds{x to 1/x}$:
$$
color{#f00}{int_{0}^{1}lnpars{lnpars{1 over x}},{dd x over 1 + x^{2}}}=
int_{infty}^{1}lnpars{lnpars{x}},pars{-,{dd x/x^{2} over 1 + 1/x^{2}}}
=int_{1}^{infty}{lnpars{lnpars{x}} over 1 + x^{2}},dd x
$$
With $x equiv expo{t}quadiffquad t = lnpars{x}$:
begin{align}
&color{#f00}{int_{0}^{1}lnpars{lnpars{1 over x}},{dd x over 1 + x^{2}}}=
int_{0}^{infty}{lnpars{t} over 1 + expo{2t}},expo{t}dd t
=int_{0}^{infty}lnpars{t}expo{-t},{1 over 1 + expo{-2t}},dd t
\[3mm]&=int_{0}^{infty}lnpars{t}expo{-t},
sum_{ell = 0}^{infty}pars{-1}^{ell}expo{-2ell t},dd t
=sum_{ell = 0}^{infty}pars{-1}^{ell}lim_{mu to 0}partiald{}{mu}bracks{%
int_{0}^{infty}t^{mu}expo{-pars{2ell + 1}t},dd t}
\[3mm]&=sum_{ell = 0}^{infty}pars{-1}^{ell}lim_{mu to 0}partiald{}{mu}bracks{%
{1 over pars{2ell + 1}^{mu + 1}}
overbrace{int_{0}^{infty}t^{mu}expo{-t},dd t}^{ds{Gammapars{mu + 1}}} }
end{align}
where $Gammapars{z}$ is the
Gamma Function.
begin{align}
&color{#f00}{int_{0}^{1}lnpars{lnpars{1 over x}},{dd x over 1 + x^{2}}}=
sum_{ell = 0}^{infty}pars{-1}^{ell}lim_{mu to 0}partiald{}{mu}bracks{%
{Gammapars{mu + 1} over pars{2ell + 1}^{mu + 1}}}
\[3mm]&=
lim_{mu to 0}partiald{}{mu}bracks{%
Gammapars{mu + 1}sum_{ell = 0}^{infty}
{pars{-1}^{ell}over pars{2ell + 1}^{mu + 1}}}
\[3mm]&=
lim_{mu to 0}braces{%
Gamma'pars{mu + 1}sum_{ell = 0}^{infty}
{pars{-1}^{ell}over pars{2ell + 1}^{mu + 1}}
+Gammapars{mu + 1}partiald{}{mu}bracks{%
sum_{ell = 0}^{infty}{pars{-1}^{ell}over pars{2ell + 1}^{mu + 1}}}}
\[3mm]&=-gammasum_{ell = 0}^{infty}{pars{-1}^{ell}over 2ell + 1}
+
lim_{mu to 0}partiald{}{mu}
sum_{ell = 0}^{infty}{pars{-1}^{ell}over pars{2ell + 1}^{mu + 1}}tag{1}
end{align}
In this result, we used $Psipars{1} = -gamma$ and $Gammapars{1} = 1$ where
$Psipars{z} equiv ddlnGammapars{z}/dd z$ is the
Digamma Function and $gamma$ is the
Euler-Mascheroni constant.
The first $ell$-sum in the right member of $pars{1}$ is given by:
begin{align}
&sum_{ell = 0}{pars{-}^{ell} over 2ell + 1}=
sum_{ell = 0}pars{{1 over 4ell + 1} - {1 over 4ell + 3}}
={1 over 8}sum_{ell = 0}{1 over pars{ell + 1/4}pars{ell + 3/4}}
\[3mm]&=-,{1 over 4}bracks{Psipars{1 over 4} - Psipars{3 over 4}}
= {pi over 4}
end{align}
where we used the identities:
begin{align}
sum_{ell = 0}^{infty}{1 over pars{ell + z_{0}}pars{ell + z_{1}}}
&={Psipars{z_{0}} - Psipars{z_{1}} over z_{0} - z_{1}}tag{1.1}
\[3mm]Psipars{z} - Psipars{1 - z} &= -picotpars{pi z}tag{1.2}
end{align}
$$
mbox{Then,}quad
color{#f00}{int_{0}^{1}lnpars{lnpars{1 over x}},{dd x over 1 + x^{2}}}=
-,{1 over 4},gammapi + lim_{mu to 0}partiald{}{mu}
sum_{ell = 0}^{infty}{pars{-1}^{ell}over pars{2ell + 1}^{mu + 1}}tag{2}
$$
Also,
begin{align}
sum_{ell = 0}^{infty}{pars{-1}^{ell}over pars{2ell + 1}^{mu + 1}}
&=sum_{ell = 0}^{infty}{1 over bracks{2pars{2ell} + 1}^{mu + 1}}
-sum_{ell = 0}^{infty}{1 over bracks{2pars{2ell + 1} + 1}^{mu + 1}}
\[3mm]&=2^{-2mu - 2}bracks{%
sum_{ell = 0}^{infty}{1 over pars{ell + 1/4}^{mu + 1}}
-sum_{ell = 0}^{infty}{1 over pars{ell + 3/4}^{mu + 1}}}
\[3mm]&=2^{-2mu - 2}bracks{%
zetapars{mu + 1,{1 over 4}} - zetapars{mu + 1,{3 over 4}}}
end{align}
where $ds{zetapars{s,q} equiv sum_{n = 0}^{infty}{1 over pars{q + n}^{s}}}$
with $Repars{s} > 1$ and $Repars{q} > 0$ i s the
Hurwitz Zeta Function or/and Generalizated Zeta Funcion .
So,
begin{align}
&lim_{mu to 0}partiald{}{mu}sum_{ell = 0}^{infty}{pars{-1}^{ell}over pars{2ell + 1}^{mu + 1}}
\[3mm]&=-,{1 over 4},lnpars{2}
underbrace{overbrace{sum_{ell = 0}^{infty}{1 over pars{ell + 3/4}pars{ell + 1/4}}}
^{ds{2bracks{Psipars{3/4} - Psipars{1/4}} = 2pi}}}
_{ds{mbox{See} pars{1.1} mbox{and} pars{1.2}}}
+ {1 over 4}
overbrace{partiald{}{mu}bracks{%
zetapars{mu,{1 over 4}} - zetapars{mu,{3 over 4}}}_{mu = 1}}
^{ds{-gamma_{1}pars{1/4} + gamma_{1}pars{3/4}}}
end{align}
where $gamma_{n}pars{z}$ is a
Generalizated Stieltjes Constant
.
With this result, $pars{2}$ is reduced to:
begin{align}
color{#f00}{int_{0}^{1}lnpars{lnpars{1 over x}},{dd x over 1 + x^{2}}}
&=-,{1 over 4},braces{%
pibracks{%
gamma + 2lnpars{2}} + gamma_{1}pars{1 over 4} - gamma_{1}pars{3 over 4}}
tag{3}
end{align}
The difference $gamma_{1}pars{1/4} - gamma_{1}pars{3/4}$ is evaluated with the 1846 Carl Malmsten identity
:
$$
gamma_{1}pars{m over n} - gamma_{1}pars{1 - {m over n}}
=-pibracks{gamma + lnpars{2pi n}}cotpars{mpi over n}
+ 2pisum_{ell = 1}^{n - 1}
sinpars{{2pi m over n},ell}lnpars{Gammapars{ell over n}}
$$
With $m = 1$ and $n = 4$:
begin{align}
&gamma_{1}pars{1 over 4} - gamma_{1}pars{3 over 4}
\[3mm]&=-pibracks{gamma + lnpars{8pi}}cotpars{pi over 4}
+ 2pisum_{ell = 1}^{3}sinpars{pi,ell over 2}
lnpars{Gammapars{ell over 4}}
\[3mm]&=-pibracks{gamma + 2lnpars{2} + lnpars{2pi}}
\[3mm]&phantom{=}
+ 2pibracks{sinpars{pi over 2}lnpars{Gammapars{1 over 4}}
+ sinpars{pi}lnpars{Gammapars{1 over 2}}
+ sinpars{3pi over 2}Gammapars{3 over 4}}
\[3mm]&=-pibracks{gamma + 2lnpars{2} + lnpars{2pi}}
+2pibracks{lnpars{Gammapars{1 over 4}} - lnpars{Gammapars{3 over 4}}}
\[3mm]&=-pibracks{gamma + 2lnpars{2}} - 2pibracks{%
lnpars{root{2pi}} +lnpars{Gammapars{3 over 4} over Gammapars{1 over 4}}}
\[3mm]&=-pibracks{gamma + 2lnpars{2}}
-2pilnpars{root{2pi},{Gammapars{3 over 4} over Gammapars{1 over 4}}}
end{align}
By replacing this result in $pars{3}$, we find:
$$color{#00f}{large%
int_{0}^{1}lnpars{lnpars{1 over x}},{dd x over 1 + x^{2}}
={pi over 2},lnpars{root{vphantom{large A}2pi},
{Gammapars{3/4} over Gammapars{1/4}}}}
$$
As an 'extra-bonus' we can use the identity
$ds{Gammapars{z} = {pi over Gammapars{1 - z}sinpars{pi z}}}$ to 'kill' one of the $Gamma,$'s functions:
$ds{Gammapars{1 over 4} = {root{2}pi over Gammapars{3/4}}}$ which yields:
$$
int_{0}^{1}lnpars{lnpars{1 over x}},{dd x over 1 + x^{2}}
={pi over 2},lnpars{Gamma^{,2}pars{3/4} over root{pi}}
$$
$endgroup$
$newcommand{+}{^{dagger}}
newcommand{angles}[1]{leftlangle #1 rightrangle}
newcommand{braces}[1]{leftlbrace #1 rightrbrace}
newcommand{bracks}[1]{leftlbrack #1 rightrbrack}
newcommand{ceil}[1]{,leftlceil #1 rightrceil,}
newcommand{dd}{{rm d}}
newcommand{down}{downarrow}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{equalby}[1]{{#1 atop {= atop vphantom{huge A}}}}
newcommand{expo}[1]{,{rm e}^{#1},}
newcommand{fermi}{,{rm f}}
newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}
newcommand{half}{{1 over 2}}
newcommand{ic}{{rm i}}
newcommand{iff}{Longleftrightarrow}
newcommand{imp}{Longrightarrow}
newcommand{isdiv}{,left.rightvert,}
newcommand{ket}[1]{leftvert #1rightrangle}
newcommand{ol}[1]{overline{#1}}
newcommand{pars}[1]{left( #1 right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{pp}{{cal P}}
newcommand{root}[2]{,sqrt[#1]{,#2,},}
newcommand{sech}{,{rm sech}}
newcommand{sgn}{,{rm sgn}}
newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
newcommand{ul}[1]{underline{#1}}
newcommand{verts}[1]{leftvert, #1 ,rightvert}$
$ds{int_{0}^{1}lnpars{lnpars{1 over x}},{dd x over 1 + x^{2}}
={pi over 2},lnpars{root{vphantom{large A}2pi},
{Gammapars{3/4} over Gammapars{1/4}}}: {Large ?}}$
With $ds{x to 1/x}$:
$$
color{#f00}{int_{0}^{1}lnpars{lnpars{1 over x}},{dd x over 1 + x^{2}}}=
int_{infty}^{1}lnpars{lnpars{x}},pars{-,{dd x/x^{2} over 1 + 1/x^{2}}}
=int_{1}^{infty}{lnpars{lnpars{x}} over 1 + x^{2}},dd x
$$
With $x equiv expo{t}quadiffquad t = lnpars{x}$:
begin{align}
&color{#f00}{int_{0}^{1}lnpars{lnpars{1 over x}},{dd x over 1 + x^{2}}}=
int_{0}^{infty}{lnpars{t} over 1 + expo{2t}},expo{t}dd t
=int_{0}^{infty}lnpars{t}expo{-t},{1 over 1 + expo{-2t}},dd t
\[3mm]&=int_{0}^{infty}lnpars{t}expo{-t},
sum_{ell = 0}^{infty}pars{-1}^{ell}expo{-2ell t},dd t
=sum_{ell = 0}^{infty}pars{-1}^{ell}lim_{mu to 0}partiald{}{mu}bracks{%
int_{0}^{infty}t^{mu}expo{-pars{2ell + 1}t},dd t}
\[3mm]&=sum_{ell = 0}^{infty}pars{-1}^{ell}lim_{mu to 0}partiald{}{mu}bracks{%
{1 over pars{2ell + 1}^{mu + 1}}
overbrace{int_{0}^{infty}t^{mu}expo{-t},dd t}^{ds{Gammapars{mu + 1}}} }
end{align}
where $Gammapars{z}$ is the
Gamma Function.
begin{align}
&color{#f00}{int_{0}^{1}lnpars{lnpars{1 over x}},{dd x over 1 + x^{2}}}=
sum_{ell = 0}^{infty}pars{-1}^{ell}lim_{mu to 0}partiald{}{mu}bracks{%
{Gammapars{mu + 1} over pars{2ell + 1}^{mu + 1}}}
\[3mm]&=
lim_{mu to 0}partiald{}{mu}bracks{%
Gammapars{mu + 1}sum_{ell = 0}^{infty}
{pars{-1}^{ell}over pars{2ell + 1}^{mu + 1}}}
\[3mm]&=
lim_{mu to 0}braces{%
Gamma'pars{mu + 1}sum_{ell = 0}^{infty}
{pars{-1}^{ell}over pars{2ell + 1}^{mu + 1}}
+Gammapars{mu + 1}partiald{}{mu}bracks{%
sum_{ell = 0}^{infty}{pars{-1}^{ell}over pars{2ell + 1}^{mu + 1}}}}
\[3mm]&=-gammasum_{ell = 0}^{infty}{pars{-1}^{ell}over 2ell + 1}
+
lim_{mu to 0}partiald{}{mu}
sum_{ell = 0}^{infty}{pars{-1}^{ell}over pars{2ell + 1}^{mu + 1}}tag{1}
end{align}
In this result, we used $Psipars{1} = -gamma$ and $Gammapars{1} = 1$ where
$Psipars{z} equiv ddlnGammapars{z}/dd z$ is the
Digamma Function and $gamma$ is the
Euler-Mascheroni constant.
The first $ell$-sum in the right member of $pars{1}$ is given by:
begin{align}
&sum_{ell = 0}{pars{-}^{ell} over 2ell + 1}=
sum_{ell = 0}pars{{1 over 4ell + 1} - {1 over 4ell + 3}}
={1 over 8}sum_{ell = 0}{1 over pars{ell + 1/4}pars{ell + 3/4}}
\[3mm]&=-,{1 over 4}bracks{Psipars{1 over 4} - Psipars{3 over 4}}
= {pi over 4}
end{align}
where we used the identities:
begin{align}
sum_{ell = 0}^{infty}{1 over pars{ell + z_{0}}pars{ell + z_{1}}}
&={Psipars{z_{0}} - Psipars{z_{1}} over z_{0} - z_{1}}tag{1.1}
\[3mm]Psipars{z} - Psipars{1 - z} &= -picotpars{pi z}tag{1.2}
end{align}
$$
mbox{Then,}quad
color{#f00}{int_{0}^{1}lnpars{lnpars{1 over x}},{dd x over 1 + x^{2}}}=
-,{1 over 4},gammapi + lim_{mu to 0}partiald{}{mu}
sum_{ell = 0}^{infty}{pars{-1}^{ell}over pars{2ell + 1}^{mu + 1}}tag{2}
$$
Also,
begin{align}
sum_{ell = 0}^{infty}{pars{-1}^{ell}over pars{2ell + 1}^{mu + 1}}
&=sum_{ell = 0}^{infty}{1 over bracks{2pars{2ell} + 1}^{mu + 1}}
-sum_{ell = 0}^{infty}{1 over bracks{2pars{2ell + 1} + 1}^{mu + 1}}
\[3mm]&=2^{-2mu - 2}bracks{%
sum_{ell = 0}^{infty}{1 over pars{ell + 1/4}^{mu + 1}}
-sum_{ell = 0}^{infty}{1 over pars{ell + 3/4}^{mu + 1}}}
\[3mm]&=2^{-2mu - 2}bracks{%
zetapars{mu + 1,{1 over 4}} - zetapars{mu + 1,{3 over 4}}}
end{align}
where $ds{zetapars{s,q} equiv sum_{n = 0}^{infty}{1 over pars{q + n}^{s}}}$
with $Repars{s} > 1$ and $Repars{q} > 0$ i s the
Hurwitz Zeta Function or/and Generalizated Zeta Funcion .
So,
begin{align}
&lim_{mu to 0}partiald{}{mu}sum_{ell = 0}^{infty}{pars{-1}^{ell}over pars{2ell + 1}^{mu + 1}}
\[3mm]&=-,{1 over 4},lnpars{2}
underbrace{overbrace{sum_{ell = 0}^{infty}{1 over pars{ell + 3/4}pars{ell + 1/4}}}
^{ds{2bracks{Psipars{3/4} - Psipars{1/4}} = 2pi}}}
_{ds{mbox{See} pars{1.1} mbox{and} pars{1.2}}}
+ {1 over 4}
overbrace{partiald{}{mu}bracks{%
zetapars{mu,{1 over 4}} - zetapars{mu,{3 over 4}}}_{mu = 1}}
^{ds{-gamma_{1}pars{1/4} + gamma_{1}pars{3/4}}}
end{align}
where $gamma_{n}pars{z}$ is a
Generalizated Stieltjes Constant
.
With this result, $pars{2}$ is reduced to:
begin{align}
color{#f00}{int_{0}^{1}lnpars{lnpars{1 over x}},{dd x over 1 + x^{2}}}
&=-,{1 over 4},braces{%
pibracks{%
gamma + 2lnpars{2}} + gamma_{1}pars{1 over 4} - gamma_{1}pars{3 over 4}}
tag{3}
end{align}
The difference $gamma_{1}pars{1/4} - gamma_{1}pars{3/4}$ is evaluated with the 1846 Carl Malmsten identity
:
$$
gamma_{1}pars{m over n} - gamma_{1}pars{1 - {m over n}}
=-pibracks{gamma + lnpars{2pi n}}cotpars{mpi over n}
+ 2pisum_{ell = 1}^{n - 1}
sinpars{{2pi m over n},ell}lnpars{Gammapars{ell over n}}
$$
With $m = 1$ and $n = 4$:
begin{align}
&gamma_{1}pars{1 over 4} - gamma_{1}pars{3 over 4}
\[3mm]&=-pibracks{gamma + lnpars{8pi}}cotpars{pi over 4}
+ 2pisum_{ell = 1}^{3}sinpars{pi,ell over 2}
lnpars{Gammapars{ell over 4}}
\[3mm]&=-pibracks{gamma + 2lnpars{2} + lnpars{2pi}}
\[3mm]&phantom{=}
+ 2pibracks{sinpars{pi over 2}lnpars{Gammapars{1 over 4}}
+ sinpars{pi}lnpars{Gammapars{1 over 2}}
+ sinpars{3pi over 2}Gammapars{3 over 4}}
\[3mm]&=-pibracks{gamma + 2lnpars{2} + lnpars{2pi}}
+2pibracks{lnpars{Gammapars{1 over 4}} - lnpars{Gammapars{3 over 4}}}
\[3mm]&=-pibracks{gamma + 2lnpars{2}} - 2pibracks{%
lnpars{root{2pi}} +lnpars{Gammapars{3 over 4} over Gammapars{1 over 4}}}
\[3mm]&=-pibracks{gamma + 2lnpars{2}}
-2pilnpars{root{2pi},{Gammapars{3 over 4} over Gammapars{1 over 4}}}
end{align}
By replacing this result in $pars{3}$, we find:
$$color{#00f}{large%
int_{0}^{1}lnpars{lnpars{1 over x}},{dd x over 1 + x^{2}}
={pi over 2},lnpars{root{vphantom{large A}2pi},
{Gammapars{3/4} over Gammapars{1/4}}}}
$$
As an 'extra-bonus' we can use the identity
$ds{Gammapars{z} = {pi over Gammapars{1 - z}sinpars{pi z}}}$ to 'kill' one of the $Gamma,$'s functions:
$ds{Gammapars{1 over 4} = {root{2}pi over Gammapars{3/4}}}$ which yields:
$$
int_{0}^{1}lnpars{lnpars{1 over x}},{dd x over 1 + x^{2}}
={pi over 2},lnpars{Gamma^{,2}pars{3/4} over root{pi}}
$$
edited Jul 5 '14 at 19:44
answered Mar 2 '14 at 0:28
Felix MarinFelix Marin
68.6k7109145
68.6k7109145
add a comment |
add a comment |
$begingroup$
See also V. Adamchik's formula $$int_0^1 frac{x^{p-1}}{1+x^n}log log frac{1}{x}dx = frac{gamma+log(2n)}{2n}(psi(frac{p}{2n})-psi(frac{n+p}{2n}))+frac{1}{2n}(zeta'(1,frac{p}{2n})-zeta'(1,frac{n+p}{2n}))$$ in http://dx.doi.org/10.1145/258726.258736 .
$endgroup$
add a comment |
$begingroup$
See also V. Adamchik's formula $$int_0^1 frac{x^{p-1}}{1+x^n}log log frac{1}{x}dx = frac{gamma+log(2n)}{2n}(psi(frac{p}{2n})-psi(frac{n+p}{2n}))+frac{1}{2n}(zeta'(1,frac{p}{2n})-zeta'(1,frac{n+p}{2n}))$$ in http://dx.doi.org/10.1145/258726.258736 .
$endgroup$
add a comment |
$begingroup$
See also V. Adamchik's formula $$int_0^1 frac{x^{p-1}}{1+x^n}log log frac{1}{x}dx = frac{gamma+log(2n)}{2n}(psi(frac{p}{2n})-psi(frac{n+p}{2n}))+frac{1}{2n}(zeta'(1,frac{p}{2n})-zeta'(1,frac{n+p}{2n}))$$ in http://dx.doi.org/10.1145/258726.258736 .
$endgroup$
See also V. Adamchik's formula $$int_0^1 frac{x^{p-1}}{1+x^n}log log frac{1}{x}dx = frac{gamma+log(2n)}{2n}(psi(frac{p}{2n})-psi(frac{n+p}{2n}))+frac{1}{2n}(zeta'(1,frac{p}{2n})-zeta'(1,frac{n+p}{2n}))$$ in http://dx.doi.org/10.1145/258726.258736 .
answered Mar 1 '14 at 18:40
R. J. MatharR. J. Mathar
6912
6912
add a comment |
add a comment |
$begingroup$
The above integral was long-time known as the Vardi's integral. Quite recently, an interesting research work devoted to this integral was published by Iaroslav Blagouchine. It appears that this integral was first evaluated by Carl Malmsten in 1842 (and not by Ilan Vardi in 1988). Blagouchine describes two different methods for its evaluation: the original Malmsten's method and the contour integration method. In the same paper, numerous integrals similar to the above one are also treated, and it is shown that many of them may be evaluated by the contour integration methods.
More recent paper by Blagouchine (mentioned above in the context of Malmsten's formula derived in 1846) is also integersting, but it is less directly related to the integral in question than the first one.
$endgroup$
add a comment |
$begingroup$
The above integral was long-time known as the Vardi's integral. Quite recently, an interesting research work devoted to this integral was published by Iaroslav Blagouchine. It appears that this integral was first evaluated by Carl Malmsten in 1842 (and not by Ilan Vardi in 1988). Blagouchine describes two different methods for its evaluation: the original Malmsten's method and the contour integration method. In the same paper, numerous integrals similar to the above one are also treated, and it is shown that many of them may be evaluated by the contour integration methods.
More recent paper by Blagouchine (mentioned above in the context of Malmsten's formula derived in 1846) is also integersting, but it is less directly related to the integral in question than the first one.
$endgroup$
add a comment |
$begingroup$
The above integral was long-time known as the Vardi's integral. Quite recently, an interesting research work devoted to this integral was published by Iaroslav Blagouchine. It appears that this integral was first evaluated by Carl Malmsten in 1842 (and not by Ilan Vardi in 1988). Blagouchine describes two different methods for its evaluation: the original Malmsten's method and the contour integration method. In the same paper, numerous integrals similar to the above one are also treated, and it is shown that many of them may be evaluated by the contour integration methods.
More recent paper by Blagouchine (mentioned above in the context of Malmsten's formula derived in 1846) is also integersting, but it is less directly related to the integral in question than the first one.
$endgroup$
The above integral was long-time known as the Vardi's integral. Quite recently, an interesting research work devoted to this integral was published by Iaroslav Blagouchine. It appears that this integral was first evaluated by Carl Malmsten in 1842 (and not by Ilan Vardi in 1988). Blagouchine describes two different methods for its evaluation: the original Malmsten's method and the contour integration method. In the same paper, numerous integrals similar to the above one are also treated, and it is shown that many of them may be evaluated by the contour integration methods.
More recent paper by Blagouchine (mentioned above in the context of Malmsten's formula derived in 1846) is also integersting, but it is less directly related to the integral in question than the first one.
edited Nov 29 '14 at 2:42
Iaroslav Blagouchine
31727
31727
answered Jun 24 '14 at 21:50
MarkMark
812
812
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f121545%2fevaluating-int-01-log-log-left-frac1x-right-fracdx1x2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
@PeterT.off: That isn't true at all.
$endgroup$
– Eric Naslund
Mar 18 '12 at 12:18
$begingroup$
For some variants of this integral see C.J. Malmsten.
$endgroup$
– Raymond Manzoni
Mar 9 '14 at 19:30